Reduction of Motional Resistance Using Piezoelectric on Silicon MEMS Disk Arrays for Ambient Air Applications

This paper presents the implementation of a piezoelectric contour resonance mode in a micro-electro-mechanical (MEM) disk resonator array, fabricated using a low-cost, commercially available MEMS technology. The resonator operates in a Button-like (BL) mode, which is suitable for a fully differentia...

Full description

Saved in:
Bibliographic Details
Published inJournal of microelectromechanical systems Vol. 34; no. 4; pp. 459 - 471
Main Authors Ali, Abid, Tariq Balghari, Suaid, Wajih Ullah Siddiqi, Muhammad, Nabki, Frederic
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1057-7157
1941-0158
DOI10.1109/JMEMS.2025.3571721

Cover

Abstract This paper presents the implementation of a piezoelectric contour resonance mode in a micro-electro-mechanical (MEM) disk resonator array, fabricated using a low-cost, commercially available MEMS technology. The resonator operates in a Button-like (BL) mode, which is suitable for a fully differential piezoelectric transduction mechanism. Compared to other modes, such as the anti-symmetric (AS) mode and the Higher wine glass (HWG) mode, the BL mode offers a higher quality factor ( Q ) and a reasonable coupling coefficient (<inline-formula> <tex-math notation="LaTeX">k_{t}^{2} </tex-math></inline-formula>) for the same perimeter around the disk device. The mechanical coupling and excitation of a parallel array of nodal point-coupled piezoelectric disk resonators significantly reduce the motional resistance ( R m ) of the vibrating disk MEMS resonator, making the BL mode highly attractive due to the achieved performance improvements. The implementation of this method with three resonators results in an effective motional resistance of <inline-formula> <tex-math notation="LaTeX">101~\Omega </tex-math></inline-formula> at 32 MHz under ambient air conditions. This value is approximately 3.9 times lower ( Q ul normalized) than the R m of <inline-formula> <tex-math notation="LaTeX">822~\Omega </tex-math></inline-formula> exhibited by a single contour mode disk resonator. Additionally, an unloaded quality factor ( Q ul ) of 8,230 is observed when operating at 0 dBm power in ambient air. Notably, these enhancements are achieved while maintaining an effective <inline-formula> <tex-math notation="LaTeX">Q_{ul} \gt 10,000 </tex-math></inline-formula>, as measured in vacuum conditions, along with notable power-handling capabilities in both ambient air and vacuum environments. This work also investigates two other contour resonance modes with the same design considerations to further validate the proposed methodology. [2025-0006]
AbstractList This paper presents the implementation of a piezoelectric contour resonance mode in a micro-electro-mechanical (MEM) disk resonator array, fabricated using a low-cost, commercially available MEMS technology. The resonator operates in a Button-like (BL) mode, which is suitable for a fully differential piezoelectric transduction mechanism. Compared to other modes, such as the anti-symmetric (AS) mode and the Higher wine glass (HWG) mode, the BL mode offers a higher quality factor ( Q ) and a reasonable coupling coefficient (<inline-formula> <tex-math notation="LaTeX">k_{t}^{2} </tex-math></inline-formula>) for the same perimeter around the disk device. The mechanical coupling and excitation of a parallel array of nodal point-coupled piezoelectric disk resonators significantly reduce the motional resistance ( R m ) of the vibrating disk MEMS resonator, making the BL mode highly attractive due to the achieved performance improvements. The implementation of this method with three resonators results in an effective motional resistance of <inline-formula> <tex-math notation="LaTeX">101~\Omega </tex-math></inline-formula> at 32 MHz under ambient air conditions. This value is approximately 3.9 times lower ( Q ul normalized) than the R m of <inline-formula> <tex-math notation="LaTeX">822~\Omega </tex-math></inline-formula> exhibited by a single contour mode disk resonator. Additionally, an unloaded quality factor ( Q ul ) of 8,230 is observed when operating at 0 dBm power in ambient air. Notably, these enhancements are achieved while maintaining an effective <inline-formula> <tex-math notation="LaTeX">Q_{ul} \gt 10,000 </tex-math></inline-formula>, as measured in vacuum conditions, along with notable power-handling capabilities in both ambient air and vacuum environments. This work also investigates two other contour resonance modes with the same design considerations to further validate the proposed methodology. [2025-0006]
This paper presents the implementation of a piezoelectric contour resonance mode in a micro-electro-mechanical (MEM) disk resonator array, fabricated using a low-cost, commercially available MEMS technology. The resonator operates in a Button-like (BL) mode, which is suitable for a fully differential piezoelectric transduction mechanism. Compared to other modes, such as the anti-symmetric (AS) mode and the Higher wine glass (HWG) mode, the BL mode offers a higher quality factor (Q) and a reasonable coupling coefficient ([Formula Omitted]) for the same perimeter around the disk device. The mechanical coupling and excitation of a parallel array of nodal point-coupled piezoelectric disk resonators significantly reduce the motional resistance (Rm) of the vibrating disk MEMS resonator, making the BL mode highly attractive due to the achieved performance improvements. The implementation of this method with three resonators results in an effective motional resistance of [Formula Omitted] at 32 MHz under ambient air conditions. This value is approximately 3.9 times lower (Qul normalized) than the Rm of [Formula Omitted] exhibited by a single contour mode disk resonator. Additionally, an unloaded quality factor (Qul) of 8,230 is observed when operating at 0 dBm power in ambient air. Notably, these enhancements are achieved while maintaining an effective [Formula Omitted], as measured in vacuum conditions, along with notable power-handling capabilities in both ambient air and vacuum environments. This work also investigates two other contour resonance modes with the same design considerations to further validate the proposed methodology. [2025-0006]
Author Tariq Balghari, Suaid
Wajih Ullah Siddiqi, Muhammad
Ali, Abid
Nabki, Frederic
Author_xml – sequence: 1
  givenname: Abid
  orcidid: 0000-0002-7343-1835
  surname: Ali
  fullname: Ali, Abid
  email: abid_ali@sfu.ca
  organization: School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC, Canada
– sequence: 2
  givenname: Suaid
  orcidid: 0009-0000-8599-1090
  surname: Tariq Balghari
  fullname: Tariq Balghari, Suaid
  email: suaid-tariq.balghari.1@ens.etsmtl.ca
  organization: Department of Electrical Engineering, École de Technologie Supérieure, Université du Québec à Montréal, Montreal, QC, Canada
– sequence: 3
  givenname: Muhammad
  surname: Wajih Ullah Siddiqi
  fullname: Wajih Ullah Siddiqi, Muhammad
  organization: KYOCERA Technologies Oy, Espoo, Finland
– sequence: 4
  givenname: Frederic
  orcidid: 0000-0002-2281-7172
  surname: Nabki
  fullname: Nabki, Frederic
  email: frederic.nabki@etsmtl.ca
  organization: Department of Electrical Engineering, École de Technologie Supérieure, Université du Québec à Montréal, Montreal, QC, Canada
BookMark eNpFkM1OwzAQhC0EEm3hBRAHS5xTbCdx4mNUyp9agVp6jhx7g1zSONjpoTw9Dq3EaUfab2a1M0bnrW0BoRtKppQScf-6nC_XU0ZYOo3TjGaMnqERFQmNCE3z86BJmkUZTbNLNPZ-SwhNkpyP0G4Feq96Y1tsa7y0g5INXoE3vpetArzxpv3E7wZ-LDSgemcUDvTaNEaFORzGD8Z_4cI5efC4tg4Xu8pA2-PCBN11gZRDsL9CF7VsPFyf5gRtHucfs-do8fb0MisWkWKJ6COugIiY8QpIDJrLNKEiq6paa8l1pUWdJyquq7rKVdjljCmtNGdcy0RVVPB4gu6OuZ2z33vwfbm1exce82XMEp6JnOQiUOxIKWe9d1CXnTM76Q4lJeVQa_lXaznUWp5qDabbo8kAwL-BEsYyzuNfV9d3jg
CODEN JMIYET
Cites_doi 10.1109/JMEMS.2006.883588
10.1088/0960-1317/21/4/045010
10.1109/TED.2018.2810700
10.1109/JMEMS.2016.2514267
10.1038/s41378-020-0157-z
10.1109/TUFFC.2008.976
10.1109/MEMSYS.2014.6765883
10.1063/5.0141778
10.3390/s22103857
10.1109/EFTF-IFC.2013.6702311
10.1088/1361-6439/ab392c
10.1016/j.mee.2012.10.004
10.1063/5.0007418
10.1109/TUFFC.2007.240
10.1109/JSEN.2020.3039052
10.1016/j.sna.2017.04.032
10.1109/TED.2013.2243451
10.1109/JSSC.2009.2034434
10.1002/SERIES9891
10.1109/TUFFC.2018.2872923
10.1109/TUFFC.2019.2892227
10.1109/TUFFC.2019.2893121
10.1109/JMEMS.2020.3020787
10.1109/TIE.2017.2748041
10.1109/TED.2007.901403
10.3390/mi7090160
10.1109/TUFFC.2018.2883296
10.1109/MEMS49605.2023.10052210
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
7U5
8FD
FR3
L7M
DOI 10.1109/JMEMS.2025.3571721
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1941-0158
EndPage 471
ExternalDocumentID 10_1109_JMEMS_2025_3571721
11022766
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council (NSERC) of Canada
  funderid: 10.13039/501100000038
GroupedDBID -~X
.DC
0R~
29L
4.4
5GY
5VS
6IK
97E
9M8
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
TWZ
VH1
XWC
AAYXX
CITATION
7SP
7TB
7U5
8FD
FR3
L7M
ID FETCH-LOGICAL-c249t-6ce09326be03ed6a54197bbfdda6dbd9f84c3fbfb8ca54822cdcd626da4cb1963
IEDL.DBID RIE
ISSN 1057-7157
IngestDate Sat Sep 06 07:33:06 EDT 2025
Wed Sep 10 06:03:30 EDT 2025
Wed Aug 27 01:43:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-6ce09326be03ed6a54197bbfdda6dbd9f84c3fbfb8ca54822cdcd626da4cb1963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-8599-1090
0000-0002-7343-1835
0000-0002-2281-7172
PQID 3246798089
PQPubID 106006
PageCount 13
ParticipantIDs crossref_primary_10_1109_JMEMS_2025_3571721
proquest_journals_3246798089
ieee_primary_11022766
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of microelectromechanical systems
PublicationTitleAbbrev JMEMS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref37
Kaajakari (ref2)
Wu (ref38) 2013; 103
ref1
Akgul (ref5) 2019; 66
Shahmohammadi (ref32)
Elsayed (ref39) 2016; 25
ref16
Lee (ref33)
Ali (ref14) 2017; 260
Yang (ref19)
Abdolvand (ref42) 2008; 55
Partridge (ref11) 2004
Thakar (ref27)
Ruffieux (ref40) 2010; 45
Pillai (ref6) 2021; 21
Ali (ref36) 2018; 65
Shahraini (ref21)
Hung (ref31) 2010
Pourkamali (ref10) 2007; 54
Kaajakari (ref29) 2009
Pillai (ref41) 2020; 116
ref23
O’Laughlin (ref7) 2024
Daruwalla (ref18) 2020; 6
ref26
Nguyen (ref4) 2007; 54
ref25
Abdolvand (ref3) 2016; 7
Cowen (ref35) 2014; 1
Shahmohammadi (ref43) 2013; 60
ref22
Xiao (ref17) 2023; 122
Ali (ref20) 2019; 66
Demirci (ref15) 2006; 15
Wu (ref8) 2020; 29
Seth (ref9)
Wang (ref30) 2022; 22
Ali (ref28)
Zuo (ref34)
Lin (ref24)
References_xml – start-page: 1512
  volume-title: Proc. 16th Int. Solid-State Sensors, Actuat. Microsyst. Conf.
  ident: ref24
  article-title: Quality factor enhancement in Lamb wave resonators utilizing AlN plates with convex edges
– start-page: 249
  volume-title: Proc. ESSCIRC
  ident: ref9
  article-title: A -131-dBc/Hz, 20-MHz MEMS oscillator with a 6.9-mW, 69-kΩ, gain-tunable CMOS TIA
– volume-title: It’s High Time to Look at SiTime
  year: 2024
  ident: ref7
– start-page: 350
  volume-title: Solid-State, Actuat., Microsyst. Workshop Tech. Dig.
  ident: ref21
  article-title: Cross-sectional quasi-Lamé modes in thin-film piezoelectric-on-silicon resonators
– start-page: 1
  volume-title: Proc. IEEE Sensors
  ident: ref28
  article-title: Fully-differential AlN-on-Si wine glass mode resonator for enhanced characterization in water
– volume-title: Practical MEMS
  year: 2009
  ident: ref29
– volume: 15
  start-page: 1419
  issue: 6
  year: 2006
  ident: ref15
  article-title: Mechanically corner-coupled square microresonator array for reduced series motional resistance
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2006.883588
– start-page: 1187
  volume-title: Proc. IEEE Int. Ultrason. Symp.
  ident: ref34
  article-title: Power handling and related frequency scaling advantages in piezoelectric AlN contour-mode MEMS resonators
– ident: ref23
  doi: 10.1088/0960-1317/21/4/045010
– start-page: 1452
  volume-title: IEEE MTT-S Int. Microw. Symp. Dig.
  ident: ref32
  article-title: Concurrent enhancement of Q and power handling in multi-tether high-order extensional resonators
– volume: 65
  start-page: 1925
  issue: 5
  year: 2018
  ident: ref36
  article-title: Piezoelectric-on-silicon square wine-glass mode resonator for enhanced electrical characterization in water
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2018.2810700
– volume: 25
  start-page: 252
  issue: 2
  year: 2016
  ident: ref39
  article-title: Bulk mode disk resonator with transverse piezoelectric actuation and electrostatic tuning
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2016.2514267
– volume: 6
  start-page: 1
  issue: 1
  year: 2020
  ident: ref18
  article-title: Low motional impedance distributed Lamé mode resonators for high frequency timing applications
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-020-0157-z
– volume: 55
  start-page: 2596
  issue: 12
  year: 2008
  ident: ref42
  article-title: Thin-film piezoelectric-on-silicon resonators for high-frequency reference oscillator applications
  publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control
  doi: 10.1109/TUFFC.2008.976
– ident: ref12
  doi: 10.1109/MEMSYS.2014.6765883
– volume: 122
  issue: 11
  year: 2023
  ident: ref17
  article-title: A piezoelectric mechanically coupled Lamé mode resonator with ultra-high Q
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0141778
– volume: 22
  start-page: 3857
  issue: 10
  year: 2022
  ident: ref30
  article-title: A review on coupled bulk acoustic wave MEMS resonators
  publication-title: Sensors
  doi: 10.3390/s22103857
– ident: ref1
  doi: 10.1109/EFTF-IFC.2013.6702311
– start-page: 502
  volume-title: Proc. 17th Int. Conf. Solid-State Sensors, Actuat. Microsyst.
  ident: ref19
  article-title: Mechanical coupling of dual breathe-mode ring resonator
– start-page: 214
  volume-title: Proc. IEEE 27th Int. Conf. Micro Electro Mech. Syst. (MEMS)
  ident: ref27
  article-title: Temperature-compensated piezoelectrically actuated Lamé-mode resonators
– ident: ref25
  doi: 10.1088/1361-6439/ab392c
– volume: 103
  start-page: 86
  year: 2013
  ident: ref38
  article-title: Effect of air damping on quality factor of bulk mode microresonators
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2012.10.004
– volume: 116
  issue: 16
  year: 2020
  ident: ref41
  article-title: Quality factor boosting of bulk acoustic wave resonators based on a two dimensional array of high- Q resonant tanks
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0007418
– volume: 54
  start-page: 251
  issue: 2
  year: 2007
  ident: ref4
  article-title: MEMS technology for timing and frequency control
  publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control
  doi: 10.1109/TUFFC.2007.240
– volume: 21
  start-page: 12589
  issue: 11
  year: 2021
  ident: ref6
  article-title: Piezoelectric MEMS resonators: A review
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2020.3039052
– volume: 260
  start-page: 131
  year: 2017
  ident: ref14
  article-title: Single device on-chip feedthrough cancellation for enhanced electrical characterization of piezoelectric-on-silicon resonators in liquid
  publication-title: Sens. Actuators A, Phys.
  doi: 10.1016/j.sna.2017.04.032
– volume: 60
  start-page: 1213
  issue: 3
  year: 2013
  ident: ref43
  article-title: Turnover temperature point in extensional-mode highly doped silicon microresonators
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2013.2243451
– volume: 45
  start-page: 224
  issue: 1
  year: 2010
  ident: ref40
  article-title: Silicon resonator based 3.2 μW real time clock with ±10 ppm frequency accuracy
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2009.2034434
– volume-title: Gap tuning for surface micromachined structures in an epitaxial reactor
  year: 2004
  ident: ref11
– start-page: 144
  volume-title: Proc. IEEE Int. Freq. Control Symp. Expo.
  ident: ref33
  article-title: Mechanically-coupled micromechanical resonator arrays for improved phase noise
– ident: ref26
  doi: 10.1002/SERIES9891
– volume: 66
  start-page: 600
  issue: 3
  year: 2019
  ident: ref20
  article-title: Fully differential piezoelectric button-like mode disk resonator for liquid phase sensing
  publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control
  doi: 10.1109/TUFFC.2018.2872923
– start-page: 1
  volume-title: Proc. Joint Conf. IEEE Int. Freq. Control Symp. Eur. Freq. Time Forum (EFTF/IFC)
  ident: ref2
  article-title: A 32.768 kHz MEMS resonator with +/-20 ppm tolerance in 0.9 mm × 0.6 mm chip scale package
– ident: ref13
  doi: 10.1109/TUFFC.2019.2892227
– ident: ref22
  doi: 10.1109/TUFFC.2019.2893121
– volume: 29
  start-page: 1137
  issue: 5
  year: 2020
  ident: ref8
  article-title: MEMS resonators for frequency reference and timing applications
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2020.3020787
– volume: 1
  year: 2014
  ident: ref35
  article-title: PiezoMUMPs design handbook
– ident: ref37
  doi: 10.1109/TIE.2017.2748041
– volume: 54
  start-page: 2017
  issue: 8
  year: 2007
  ident: ref10
  article-title: Low-impedance VHF and UHF capacitive silicon bulk acoustic wave resonators—Part I: Concept and fabrication
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2007.901403
– volume: 7
  start-page: 160
  issue: 9
  year: 2016
  ident: ref3
  article-title: Micromachined resonators: A review
  publication-title: Micromachines
  doi: 10.3390/mi7090160
– volume: 66
  start-page: 218
  issue: 1
  year: 2019
  ident: ref5
  article-title: RF channel-select micromechanical disk filters—Part II: Demonstration
  publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control
  doi: 10.1109/TUFFC.2018.2883296
– start-page: 7.3.1
  year: 2010
  ident: ref31
  article-title: Q-boosted AlN array-composite resonator with Q>10,000
  publication-title: IEDM Tech. Dig.
– ident: ref16
  doi: 10.1109/MEMS49605.2023.10052210
SSID ssj0014486
Score 2.4674451
Snippet This paper presents the implementation of a piezoelectric contour resonance mode in a micro-electro-mechanical (MEM) disk resonator array, fabricated using a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 459
SubjectTerms Arrays
Bulk mode
Contours
Coupling coefficients
Couplings
differential drive
differential sense
Electrodes
Fabrication
mechanical coupling
Microelectromechanical systems
Micromechanical devices
Motional resistance
Phase noise
piezoelectric array
Piezoelectricity
Q factors
Q-factor
quality factor
Resistance
Resonance
Resonant frequency
Resonators
Strain
timing application
Title Reduction of Motional Resistance Using Piezoelectric on Silicon MEMS Disk Arrays for Ambient Air Applications
URI https://ieeexplore.ieee.org/document/11022766
https://www.proquest.com/docview/3246798089
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0158
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014486
  issn: 1057-7157
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED_cQNAHv8X5RR58k27d1jbr49DJGExEHeytNMkVim6VdXtwf713aadTEXwLNE3T3CX3u88AXJFIa6FrOg76LXS80DVOjLTxJJJ41WyHtIXnh_dBf-QNxv64TFa3uTCIaIPPsM5N68s3mV6wqazRZPVEBkEFKlKGRbLWp8uA9AybSkQAxJFNX64yZNywMRj2hk-kC7b8etuXrPR8k0L2WpVfZ7EVMHe7cL-aWhFX8lJfzFVdL39Ubfz33Pdgp4Saolvwxj5s4PQAttcKEB7Apg0A1fkhTB65hitTSWSJGGaFiVA8Ys4AkzhD2OAC8ZDiMivuzkm1oN5P6Ssx01Twz4vbNH-hD87i91wQGhbdieJ8S9FNqb3mKj-C0V3v-abvlFcxOJr0s7kTaHQZ6Sl022iC2PeaoVQqMSYOjDJh0vF0O1GJ6mh6RqBDG21IVzKxpxVv8mOoTrMpnoBoelKHRruJaSvPVyqm0egY0TIxPtfPq8H1ijTRW1FxI7KaihtGlpAREzIqCVmDI17rr57lMtfgfEXOqNyVeUTgkZ1Obic8_eO1M9ji0YsIv3OozmcLvCDUMVeXlts-AO8z1DU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED-xIrTxMD7GRAdsfuBtSknbOG4eK0ZVGKlQCxJvUWxfpAhoEGkf6F-_Oydl3RASb1bixB939v3O92GAYxJpHfRtz0PZQS-IfOulSAtPIYlXw-eQLvF8PAqHN8HFrbytg9VdLAwiOuczbHHR2fJtYeZ8VHbSZvVEheEHWJekVqgqXOvFaECPXDARQRBPtaVaxsj40clFfBZPSBvsyFZXKlZ7_pFD7mKVV7uxEzGDLRgtO1d5lty15jPdMov_8ja-u_fb8LkGm6JfcccOrOF0FzZXUhDuwoZzATXlF3gYcxZXppMoMhEX1SGhGGPJEJN4Qzj3AnGV46Kobs_JjaDak_ye2GkqePDiV17eUYNP6XMpCA-L_oPmiEvRz6m8Yizfg5vB2fXp0KsvY_AMaWgzLzToM9bT6HfRhqkM2pHSOrM2Da22UdYLTDfTme4Zekeww1hjSVuyaWA0L_Ov0JgWU9wH0Q6UiazxM9vVgdQ6pb_RRmJUZiVn0GvCzyVpkscq50bidBU_ShwhEyZkUhOyCXs8139r1tPchMMlOZN6XZYJwUc2O_m96Nsbn_2Aj8Pr-DK5PB_9PoBP3FLl73cIjdnTHI8Ig8z0d8d5fwA9kdeG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduction+of+Motional+Resistance+Using+Piezoelectric+on+Silicon+MEMS+Disk+Arrays+for+Ambient+Air+Applications&rft.jtitle=Journal+of+microelectromechanical+systems&rft.au=Ali%2C+Abid&rft.au=Tariq+Balghari%2C+Suaid&rft.au=Wajih+Ullah+Siddiqi%2C+Muhammad&rft.au=Nabki%2C+Frederic&rft.date=2025-08-01&rft.issn=1057-7157&rft.eissn=1941-0158&rft.volume=34&rft.issue=4&rft.spage=459&rft.epage=471&rft_id=info:doi/10.1109%2FJMEMS.2025.3571721&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JMEMS_2025_3571721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7157&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7157&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7157&client=summon