Reduction of Motional Resistance Using Piezoelectric on Silicon MEMS Disk Arrays for Ambient Air Applications
This paper presents the implementation of a piezoelectric contour resonance mode in a micro-electro-mechanical (MEM) disk resonator array, fabricated using a low-cost, commercially available MEMS technology. The resonator operates in a Button-like (BL) mode, which is suitable for a fully differentia...
Saved in:
Published in | Journal of microelectromechanical systems Vol. 34; no. 4; pp. 459 - 471 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1057-7157 1941-0158 |
DOI | 10.1109/JMEMS.2025.3571721 |
Cover
Abstract | This paper presents the implementation of a piezoelectric contour resonance mode in a micro-electro-mechanical (MEM) disk resonator array, fabricated using a low-cost, commercially available MEMS technology. The resonator operates in a Button-like (BL) mode, which is suitable for a fully differential piezoelectric transduction mechanism. Compared to other modes, such as the anti-symmetric (AS) mode and the Higher wine glass (HWG) mode, the BL mode offers a higher quality factor ( Q ) and a reasonable coupling coefficient (<inline-formula> <tex-math notation="LaTeX">k_{t}^{2} </tex-math></inline-formula>) for the same perimeter around the disk device. The mechanical coupling and excitation of a parallel array of nodal point-coupled piezoelectric disk resonators significantly reduce the motional resistance ( R m ) of the vibrating disk MEMS resonator, making the BL mode highly attractive due to the achieved performance improvements. The implementation of this method with three resonators results in an effective motional resistance of <inline-formula> <tex-math notation="LaTeX">101~\Omega </tex-math></inline-formula> at 32 MHz under ambient air conditions. This value is approximately 3.9 times lower ( Q ul normalized) than the R m of <inline-formula> <tex-math notation="LaTeX">822~\Omega </tex-math></inline-formula> exhibited by a single contour mode disk resonator. Additionally, an unloaded quality factor ( Q ul ) of 8,230 is observed when operating at 0 dBm power in ambient air. Notably, these enhancements are achieved while maintaining an effective <inline-formula> <tex-math notation="LaTeX">Q_{ul} \gt 10,000 </tex-math></inline-formula>, as measured in vacuum conditions, along with notable power-handling capabilities in both ambient air and vacuum environments. This work also investigates two other contour resonance modes with the same design considerations to further validate the proposed methodology. [2025-0006] |
---|---|
AbstractList | This paper presents the implementation of a piezoelectric contour resonance mode in a micro-electro-mechanical (MEM) disk resonator array, fabricated using a low-cost, commercially available MEMS technology. The resonator operates in a Button-like (BL) mode, which is suitable for a fully differential piezoelectric transduction mechanism. Compared to other modes, such as the anti-symmetric (AS) mode and the Higher wine glass (HWG) mode, the BL mode offers a higher quality factor ( Q ) and a reasonable coupling coefficient (<inline-formula> <tex-math notation="LaTeX">k_{t}^{2} </tex-math></inline-formula>) for the same perimeter around the disk device. The mechanical coupling and excitation of a parallel array of nodal point-coupled piezoelectric disk resonators significantly reduce the motional resistance ( R m ) of the vibrating disk MEMS resonator, making the BL mode highly attractive due to the achieved performance improvements. The implementation of this method with three resonators results in an effective motional resistance of <inline-formula> <tex-math notation="LaTeX">101~\Omega </tex-math></inline-formula> at 32 MHz under ambient air conditions. This value is approximately 3.9 times lower ( Q ul normalized) than the R m of <inline-formula> <tex-math notation="LaTeX">822~\Omega </tex-math></inline-formula> exhibited by a single contour mode disk resonator. Additionally, an unloaded quality factor ( Q ul ) of 8,230 is observed when operating at 0 dBm power in ambient air. Notably, these enhancements are achieved while maintaining an effective <inline-formula> <tex-math notation="LaTeX">Q_{ul} \gt 10,000 </tex-math></inline-formula>, as measured in vacuum conditions, along with notable power-handling capabilities in both ambient air and vacuum environments. This work also investigates two other contour resonance modes with the same design considerations to further validate the proposed methodology. [2025-0006] This paper presents the implementation of a piezoelectric contour resonance mode in a micro-electro-mechanical (MEM) disk resonator array, fabricated using a low-cost, commercially available MEMS technology. The resonator operates in a Button-like (BL) mode, which is suitable for a fully differential piezoelectric transduction mechanism. Compared to other modes, such as the anti-symmetric (AS) mode and the Higher wine glass (HWG) mode, the BL mode offers a higher quality factor (Q) and a reasonable coupling coefficient ([Formula Omitted]) for the same perimeter around the disk device. The mechanical coupling and excitation of a parallel array of nodal point-coupled piezoelectric disk resonators significantly reduce the motional resistance (Rm) of the vibrating disk MEMS resonator, making the BL mode highly attractive due to the achieved performance improvements. The implementation of this method with three resonators results in an effective motional resistance of [Formula Omitted] at 32 MHz under ambient air conditions. This value is approximately 3.9 times lower (Qul normalized) than the Rm of [Formula Omitted] exhibited by a single contour mode disk resonator. Additionally, an unloaded quality factor (Qul) of 8,230 is observed when operating at 0 dBm power in ambient air. Notably, these enhancements are achieved while maintaining an effective [Formula Omitted], as measured in vacuum conditions, along with notable power-handling capabilities in both ambient air and vacuum environments. This work also investigates two other contour resonance modes with the same design considerations to further validate the proposed methodology. [2025-0006] |
Author | Tariq Balghari, Suaid Wajih Ullah Siddiqi, Muhammad Ali, Abid Nabki, Frederic |
Author_xml | – sequence: 1 givenname: Abid orcidid: 0000-0002-7343-1835 surname: Ali fullname: Ali, Abid email: abid_ali@sfu.ca organization: School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC, Canada – sequence: 2 givenname: Suaid orcidid: 0009-0000-8599-1090 surname: Tariq Balghari fullname: Tariq Balghari, Suaid email: suaid-tariq.balghari.1@ens.etsmtl.ca organization: Department of Electrical Engineering, École de Technologie Supérieure, Université du Québec à Montréal, Montreal, QC, Canada – sequence: 3 givenname: Muhammad surname: Wajih Ullah Siddiqi fullname: Wajih Ullah Siddiqi, Muhammad organization: KYOCERA Technologies Oy, Espoo, Finland – sequence: 4 givenname: Frederic orcidid: 0000-0002-2281-7172 surname: Nabki fullname: Nabki, Frederic email: frederic.nabki@etsmtl.ca organization: Department of Electrical Engineering, École de Technologie Supérieure, Université du Québec à Montréal, Montreal, QC, Canada |
BookMark | eNpFkM1OwzAQhC0EEm3hBRAHS5xTbCdx4mNUyp9agVp6jhx7g1zSONjpoTw9Dq3EaUfab2a1M0bnrW0BoRtKppQScf-6nC_XU0ZYOo3TjGaMnqERFQmNCE3z86BJmkUZTbNLNPZ-SwhNkpyP0G4Feq96Y1tsa7y0g5INXoE3vpetArzxpv3E7wZ-LDSgemcUDvTaNEaFORzGD8Z_4cI5efC4tg4Xu8pA2-PCBN11gZRDsL9CF7VsPFyf5gRtHucfs-do8fb0MisWkWKJ6COugIiY8QpIDJrLNKEiq6paa8l1pUWdJyquq7rKVdjljCmtNGdcy0RVVPB4gu6OuZ2z33vwfbm1exce82XMEp6JnOQiUOxIKWe9d1CXnTM76Q4lJeVQa_lXaznUWp5qDabbo8kAwL-BEsYyzuNfV9d3jg |
CODEN | JMIYET |
Cites_doi | 10.1109/JMEMS.2006.883588 10.1088/0960-1317/21/4/045010 10.1109/TED.2018.2810700 10.1109/JMEMS.2016.2514267 10.1038/s41378-020-0157-z 10.1109/TUFFC.2008.976 10.1109/MEMSYS.2014.6765883 10.1063/5.0141778 10.3390/s22103857 10.1109/EFTF-IFC.2013.6702311 10.1088/1361-6439/ab392c 10.1016/j.mee.2012.10.004 10.1063/5.0007418 10.1109/TUFFC.2007.240 10.1109/JSEN.2020.3039052 10.1016/j.sna.2017.04.032 10.1109/TED.2013.2243451 10.1109/JSSC.2009.2034434 10.1002/SERIES9891 10.1109/TUFFC.2018.2872923 10.1109/TUFFC.2019.2892227 10.1109/TUFFC.2019.2893121 10.1109/JMEMS.2020.3020787 10.1109/TIE.2017.2748041 10.1109/TED.2007.901403 10.3390/mi7090160 10.1109/TUFFC.2018.2883296 10.1109/MEMS49605.2023.10052210 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 7U5 8FD FR3 L7M |
DOI | 10.1109/JMEMS.2025.3571721 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1941-0158 |
EndPage | 471 |
ExternalDocumentID | 10_1109_JMEMS_2025_3571721 11022766 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council (NSERC) of Canada funderid: 10.13039/501100000038 |
GroupedDBID | -~X .DC 0R~ 29L 4.4 5GY 5VS 6IK 97E 9M8 AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 TWZ VH1 XWC AAYXX CITATION 7SP 7TB 7U5 8FD FR3 L7M |
ID | FETCH-LOGICAL-c249t-6ce09326be03ed6a54197bbfdda6dbd9f84c3fbfb8ca54822cdcd626da4cb1963 |
IEDL.DBID | RIE |
ISSN | 1057-7157 |
IngestDate | Sat Sep 06 07:33:06 EDT 2025 Wed Sep 10 06:03:30 EDT 2025 Wed Aug 27 01:43:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-6ce09326be03ed6a54197bbfdda6dbd9f84c3fbfb8ca54822cdcd626da4cb1963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0000-8599-1090 0000-0002-7343-1835 0000-0002-2281-7172 |
PQID | 3246798089 |
PQPubID | 106006 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_JMEMS_2025_3571721 proquest_journals_3246798089 ieee_primary_11022766 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of microelectromechanical systems |
PublicationTitleAbbrev | JMEMS |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref37 Kaajakari (ref2) Wu (ref38) 2013; 103 ref1 Akgul (ref5) 2019; 66 Shahmohammadi (ref32) Elsayed (ref39) 2016; 25 ref16 Lee (ref33) Ali (ref14) 2017; 260 Yang (ref19) Abdolvand (ref42) 2008; 55 Partridge (ref11) 2004 Thakar (ref27) Ruffieux (ref40) 2010; 45 Pillai (ref6) 2021; 21 Ali (ref36) 2018; 65 Shahraini (ref21) Hung (ref31) 2010 Pourkamali (ref10) 2007; 54 Kaajakari (ref29) 2009 Pillai (ref41) 2020; 116 ref23 O’Laughlin (ref7) 2024 Daruwalla (ref18) 2020; 6 ref26 Nguyen (ref4) 2007; 54 ref25 Abdolvand (ref3) 2016; 7 Cowen (ref35) 2014; 1 Shahmohammadi (ref43) 2013; 60 ref22 Xiao (ref17) 2023; 122 Ali (ref20) 2019; 66 Demirci (ref15) 2006; 15 Wu (ref8) 2020; 29 Seth (ref9) Wang (ref30) 2022; 22 Ali (ref28) Zuo (ref34) Lin (ref24) |
References_xml | – start-page: 1512 volume-title: Proc. 16th Int. Solid-State Sensors, Actuat. Microsyst. Conf. ident: ref24 article-title: Quality factor enhancement in Lamb wave resonators utilizing AlN plates with convex edges – start-page: 249 volume-title: Proc. ESSCIRC ident: ref9 article-title: A -131-dBc/Hz, 20-MHz MEMS oscillator with a 6.9-mW, 69-kΩ, gain-tunable CMOS TIA – volume-title: It’s High Time to Look at SiTime year: 2024 ident: ref7 – start-page: 350 volume-title: Solid-State, Actuat., Microsyst. Workshop Tech. Dig. ident: ref21 article-title: Cross-sectional quasi-Lamé modes in thin-film piezoelectric-on-silicon resonators – start-page: 1 volume-title: Proc. IEEE Sensors ident: ref28 article-title: Fully-differential AlN-on-Si wine glass mode resonator for enhanced characterization in water – volume-title: Practical MEMS year: 2009 ident: ref29 – volume: 15 start-page: 1419 issue: 6 year: 2006 ident: ref15 article-title: Mechanically corner-coupled square microresonator array for reduced series motional resistance publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2006.883588 – start-page: 1187 volume-title: Proc. IEEE Int. Ultrason. Symp. ident: ref34 article-title: Power handling and related frequency scaling advantages in piezoelectric AlN contour-mode MEMS resonators – ident: ref23 doi: 10.1088/0960-1317/21/4/045010 – start-page: 1452 volume-title: IEEE MTT-S Int. Microw. Symp. Dig. ident: ref32 article-title: Concurrent enhancement of Q and power handling in multi-tether high-order extensional resonators – volume: 65 start-page: 1925 issue: 5 year: 2018 ident: ref36 article-title: Piezoelectric-on-silicon square wine-glass mode resonator for enhanced electrical characterization in water publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2018.2810700 – volume: 25 start-page: 252 issue: 2 year: 2016 ident: ref39 article-title: Bulk mode disk resonator with transverse piezoelectric actuation and electrostatic tuning publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2016.2514267 – volume: 6 start-page: 1 issue: 1 year: 2020 ident: ref18 article-title: Low motional impedance distributed Lamé mode resonators for high frequency timing applications publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-020-0157-z – volume: 55 start-page: 2596 issue: 12 year: 2008 ident: ref42 article-title: Thin-film piezoelectric-on-silicon resonators for high-frequency reference oscillator applications publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control doi: 10.1109/TUFFC.2008.976 – ident: ref12 doi: 10.1109/MEMSYS.2014.6765883 – volume: 122 issue: 11 year: 2023 ident: ref17 article-title: A piezoelectric mechanically coupled Lamé mode resonator with ultra-high Q publication-title: Appl. Phys. Lett. doi: 10.1063/5.0141778 – volume: 22 start-page: 3857 issue: 10 year: 2022 ident: ref30 article-title: A review on coupled bulk acoustic wave MEMS resonators publication-title: Sensors doi: 10.3390/s22103857 – ident: ref1 doi: 10.1109/EFTF-IFC.2013.6702311 – start-page: 502 volume-title: Proc. 17th Int. Conf. Solid-State Sensors, Actuat. Microsyst. ident: ref19 article-title: Mechanical coupling of dual breathe-mode ring resonator – start-page: 214 volume-title: Proc. IEEE 27th Int. Conf. Micro Electro Mech. Syst. (MEMS) ident: ref27 article-title: Temperature-compensated piezoelectrically actuated Lamé-mode resonators – ident: ref25 doi: 10.1088/1361-6439/ab392c – volume: 103 start-page: 86 year: 2013 ident: ref38 article-title: Effect of air damping on quality factor of bulk mode microresonators publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2012.10.004 – volume: 116 issue: 16 year: 2020 ident: ref41 article-title: Quality factor boosting of bulk acoustic wave resonators based on a two dimensional array of high- Q resonant tanks publication-title: Appl. Phys. Lett. doi: 10.1063/5.0007418 – volume: 54 start-page: 251 issue: 2 year: 2007 ident: ref4 article-title: MEMS technology for timing and frequency control publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control doi: 10.1109/TUFFC.2007.240 – volume: 21 start-page: 12589 issue: 11 year: 2021 ident: ref6 article-title: Piezoelectric MEMS resonators: A review publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2020.3039052 – volume: 260 start-page: 131 year: 2017 ident: ref14 article-title: Single device on-chip feedthrough cancellation for enhanced electrical characterization of piezoelectric-on-silicon resonators in liquid publication-title: Sens. Actuators A, Phys. doi: 10.1016/j.sna.2017.04.032 – volume: 60 start-page: 1213 issue: 3 year: 2013 ident: ref43 article-title: Turnover temperature point in extensional-mode highly doped silicon microresonators publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2013.2243451 – volume: 45 start-page: 224 issue: 1 year: 2010 ident: ref40 article-title: Silicon resonator based 3.2 μW real time clock with ±10 ppm frequency accuracy publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2009.2034434 – volume-title: Gap tuning for surface micromachined structures in an epitaxial reactor year: 2004 ident: ref11 – start-page: 144 volume-title: Proc. IEEE Int. Freq. Control Symp. Expo. ident: ref33 article-title: Mechanically-coupled micromechanical resonator arrays for improved phase noise – ident: ref26 doi: 10.1002/SERIES9891 – volume: 66 start-page: 600 issue: 3 year: 2019 ident: ref20 article-title: Fully differential piezoelectric button-like mode disk resonator for liquid phase sensing publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control doi: 10.1109/TUFFC.2018.2872923 – start-page: 1 volume-title: Proc. Joint Conf. IEEE Int. Freq. Control Symp. Eur. Freq. Time Forum (EFTF/IFC) ident: ref2 article-title: A 32.768 kHz MEMS resonator with +/-20 ppm tolerance in 0.9 mm × 0.6 mm chip scale package – ident: ref13 doi: 10.1109/TUFFC.2019.2892227 – ident: ref22 doi: 10.1109/TUFFC.2019.2893121 – volume: 29 start-page: 1137 issue: 5 year: 2020 ident: ref8 article-title: MEMS resonators for frequency reference and timing applications publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2020.3020787 – volume: 1 year: 2014 ident: ref35 article-title: PiezoMUMPs design handbook – ident: ref37 doi: 10.1109/TIE.2017.2748041 – volume: 54 start-page: 2017 issue: 8 year: 2007 ident: ref10 article-title: Low-impedance VHF and UHF capacitive silicon bulk acoustic wave resonators—Part I: Concept and fabrication publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2007.901403 – volume: 7 start-page: 160 issue: 9 year: 2016 ident: ref3 article-title: Micromachined resonators: A review publication-title: Micromachines doi: 10.3390/mi7090160 – volume: 66 start-page: 218 issue: 1 year: 2019 ident: ref5 article-title: RF channel-select micromechanical disk filters—Part II: Demonstration publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control doi: 10.1109/TUFFC.2018.2883296 – start-page: 7.3.1 year: 2010 ident: ref31 article-title: Q-boosted AlN array-composite resonator with Q>10,000 publication-title: IEDM Tech. Dig. – ident: ref16 doi: 10.1109/MEMS49605.2023.10052210 |
SSID | ssj0014486 |
Score | 2.4674451 |
Snippet | This paper presents the implementation of a piezoelectric contour resonance mode in a micro-electro-mechanical (MEM) disk resonator array, fabricated using a... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 459 |
SubjectTerms | Arrays Bulk mode Contours Coupling coefficients Couplings differential drive differential sense Electrodes Fabrication mechanical coupling Microelectromechanical systems Micromechanical devices Motional resistance Phase noise piezoelectric array Piezoelectricity Q factors Q-factor quality factor Resistance Resonance Resonant frequency Resonators Strain timing application |
Title | Reduction of Motional Resistance Using Piezoelectric on Silicon MEMS Disk Arrays for Ambient Air Applications |
URI | https://ieeexplore.ieee.org/document/11022766 https://www.proquest.com/docview/3246798089 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0158 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014486 issn: 1057-7157 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED_cQNAHv8X5RR58k27d1jbr49DJGExEHeytNMkVim6VdXtwf713aadTEXwLNE3T3CX3u88AXJFIa6FrOg76LXS80DVOjLTxJJJ41WyHtIXnh_dBf-QNxv64TFa3uTCIaIPPsM5N68s3mV6wqazRZPVEBkEFKlKGRbLWp8uA9AybSkQAxJFNX64yZNywMRj2hk-kC7b8etuXrPR8k0L2WpVfZ7EVMHe7cL-aWhFX8lJfzFVdL39Ubfz33Pdgp4Saolvwxj5s4PQAttcKEB7Apg0A1fkhTB65hitTSWSJGGaFiVA8Ys4AkzhD2OAC8ZDiMivuzkm1oN5P6Ssx01Twz4vbNH-hD87i91wQGhbdieJ8S9FNqb3mKj-C0V3v-abvlFcxOJr0s7kTaHQZ6Sl022iC2PeaoVQqMSYOjDJh0vF0O1GJ6mh6RqBDG21IVzKxpxVv8mOoTrMpnoBoelKHRruJaSvPVyqm0egY0TIxPtfPq8H1ijTRW1FxI7KaihtGlpAREzIqCVmDI17rr57lMtfgfEXOqNyVeUTgkZ1Obic8_eO1M9ji0YsIv3OozmcLvCDUMVeXlts-AO8z1DU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED-xIrTxMD7GRAdsfuBtSknbOG4eK0ZVGKlQCxJvUWxfpAhoEGkf6F-_Oydl3RASb1bixB939v3O92GAYxJpHfRtz0PZQS-IfOulSAtPIYlXw-eQLvF8PAqHN8HFrbytg9VdLAwiOuczbHHR2fJtYeZ8VHbSZvVEheEHWJekVqgqXOvFaECPXDARQRBPtaVaxsj40clFfBZPSBvsyFZXKlZ7_pFD7mKVV7uxEzGDLRgtO1d5lty15jPdMov_8ja-u_fb8LkGm6JfcccOrOF0FzZXUhDuwoZzATXlF3gYcxZXppMoMhEX1SGhGGPJEJN4Qzj3AnGV46Kobs_JjaDak_ye2GkqePDiV17eUYNP6XMpCA-L_oPmiEvRz6m8Yizfg5vB2fXp0KsvY_AMaWgzLzToM9bT6HfRhqkM2pHSOrM2Da22UdYLTDfTme4Zekeww1hjSVuyaWA0L_Ov0JgWU9wH0Q6UiazxM9vVgdQ6pb_RRmJUZiVn0GvCzyVpkscq50bidBU_ShwhEyZkUhOyCXs8139r1tPchMMlOZN6XZYJwUc2O_m96Nsbn_2Aj8Pr-DK5PB_9PoBP3FLl73cIjdnTHI8Ig8z0d8d5fwA9kdeG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduction+of+Motional+Resistance+Using+Piezoelectric+on+Silicon+MEMS+Disk+Arrays+for+Ambient+Air+Applications&rft.jtitle=Journal+of+microelectromechanical+systems&rft.au=Ali%2C+Abid&rft.au=Tariq+Balghari%2C+Suaid&rft.au=Wajih+Ullah+Siddiqi%2C+Muhammad&rft.au=Nabki%2C+Frederic&rft.date=2025-08-01&rft.issn=1057-7157&rft.eissn=1941-0158&rft.volume=34&rft.issue=4&rft.spage=459&rft.epage=471&rft_id=info:doi/10.1109%2FJMEMS.2025.3571721&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JMEMS_2025_3571721 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7157&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7157&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7157&client=summon |