Energy-Efficient UAV-Driven Multi-Access Edge Computing: A Distributed Many-Agent Perspective

In this paper, the problem of energy-efficient uncrewed aerial vehicle (UAV)-assisted multi-access task offloading is investigated. In the studied system, several UAVs are deployed as edge servers to cooperatively aid task executions for several energy-limited computation-scarce terrestrial user equ...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 73; no. 9; pp. 8405 - 8420
Main Authors Li, Yuanjian, Madhukumar, A. S., Zheng Hui Ernest, Tan, Zheng, Gan, Saad, Walid, Hamid Aghvami, A.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0090-6778
1558-0857
DOI10.1109/TCOMM.2025.3552746

Cover

Abstract In this paper, the problem of energy-efficient uncrewed aerial vehicle (UAV)-assisted multi-access task offloading is investigated. In the studied system, several UAVs are deployed as edge servers to cooperatively aid task executions for several energy-limited computation-scarce terrestrial user equipments (UEs). An expected energy efficiency maximization problem is then formulated to jointly optimize UAV trajectories, UE local central processing unit (CPU) clock speeds, UAV-UE associations, time slot slicing, and UE offloading powers. This optimization is subject to practical constraints, including UAV mobility, local computing capabilities, mixed-integer UAV-UE pairing indicators, time slot division, UE transmit power, UAV computational capacities, and information causality. To tackle the multi-dimensional optimization problem under consideration, the duo-staggered perturbed actor-critic with modular networks (DSPAC-MN) solution in a multi-agent deep reinforcement learning (MADRL) setup, is proposed and tailored, after mapping the original problem into a stochastic (Markov) game. Time complexity and communication overhead are analyzed, while convergence performance is discussed. Compared to representative benchmarks, e.g., multi-agent deep deterministic policy gradient (MADDPG) and multi-agent twin-delayed DDPG (MATD3), the proposed DSPAC-MN is validated to be able to achieve the optimal performance of average energy efficiency, while ensuring 100% safe flights.
AbstractList In this paper, the problem of energy-efficient uncrewed aerial vehicle (UAV)-assisted multi-access task offloading is investigated. In the studied system, several UAVs are deployed as edge servers to cooperatively aid task executions for several energy-limited computation-scarce terrestrial user equipments (UEs). An expected energy efficiency maximization problem is then formulated to jointly optimize UAV trajectories, UE local central processing unit (CPU) clock speeds, UAV-UE associations, time slot slicing, and UE offloading powers. This optimization is subject to practical constraints, including UAV mobility, local computing capabilities, mixed-integer UAV-UE pairing indicators, time slot division, UE transmit power, UAV computational capacities, and information causality. To tackle the multi-dimensional optimization problem under consideration, the duo-staggered perturbed actor-critic with modular networks (DSPAC-MN) solution in a multi-agent deep reinforcement learning (MADRL) setup, is proposed and tailored, after mapping the original problem into a stochastic (Markov) game. Time complexity and communication overhead are analyzed, while convergence performance is discussed. Compared to representative benchmarks, e.g., multi-agent deep deterministic policy gradient (MADDPG) and multi-agent twin-delayed DDPG (MATD3), the proposed DSPAC-MN is validated to be able to achieve the optimal performance of average energy efficiency, while ensuring 100% safe flights.
Author Madhukumar, A. S.
Hamid Aghvami, A.
Zheng, Gan
Li, Yuanjian
Saad, Walid
Zheng Hui Ernest, Tan
Author_xml – sequence: 1
  givenname: Yuanjian
  orcidid: 0000-0001-8663-1644
  surname: Li
  fullname: Li, Yuanjian
  email: yuanjian.li@ntu.edu.sg
  organization: School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, China
– sequence: 2
  givenname: A. S.
  orcidid: 0000-0002-8740-634X
  surname: Madhukumar
  fullname: Madhukumar, A. S.
  email: asmadhukumar@ntu.edu.sg
  organization: College of Computing and Data Science, Nanyang Technological University, Jurong West, Singapore
– sequence: 3
  givenname: Tan
  orcidid: 0000-0001-8978-8989
  surname: Zheng Hui Ernest
  fullname: Zheng Hui Ernest, Tan
  email: ernest.tan@singaporetech.edu.sg
  organization: Infocomm Technology Cluster, Singapore Institute of Technology, 10 Dover Dr, Singapore
– sequence: 4
  givenname: Gan
  orcidid: 0000-0001-8457-6477
  surname: Zheng
  fullname: Zheng, Gan
  email: gan.zheng@warwick.ac.uk
  organization: School of Engineering, University of Warwick, Coventry, U.K
– sequence: 5
  givenname: Walid
  orcidid: 0000-0003-2247-2458
  surname: Saad
  fullname: Saad, Walid
  email: walids@vt.edu
  organization: Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
– sequence: 6
  givenname: A.
  orcidid: 0000-0002-9935-0435
  surname: Hamid Aghvami
  fullname: Hamid Aghvami, A.
  email: hamid.aghvami@kcl.ac.uk
  organization: Centre for Telecommunications Research (CTR), King's College London, London, U.K
BookMark eNpNkEtLw0AURgdRsFb_gLgIuJ5655XMuAs1PqClLlp3EjLJTZnSJnUmEfrvTa0LV3fznXPhXJHzpm2QkFsGE8bAPCyni_l8woGriVCKJzI-IyOmlKagVXJORgAGaJwk-pJchbABAAlCjMhn1qBfH2hW16502HTRKv2gT959YxPN-23naFqWGEKUVWuMpu1u33euWT9GafTkQued7TusonnRHGi6Pgre0Yc9lt2guCYXdbENePN3x2T1nC2nr3S2eHmbpjNacmk6qopYWS2lYZVBU4BShmkloWZaVtZKbmPUwla2QhHXDBhYgVazghe8VLURY3J_8u59-9Vj6PJN2_tmeJkLroTWBuJkWPHTqvRtCB7rfO_drvCHnEF-zJj_ZsyPGfO_jAN0d4IcIv4DjJAwFPwBZCVvvQ
CODEN IECMBT
Cites_doi 10.1109/JIOT.2023.3303491
10.1109/TWC.2017.2789293
10.1109/COMST.2017.2705720
10.1109/TWC.2022.3184953
10.1109/TWC.2023.3291692
10.1109/GLOBECOM52923.2024.10901463
10.1109/COMST.2018.2849509
10.1109/TMC.2021.3069911
10.1109/COMST.2017.2745201
10.1109/TCOMM.2022.3222460
10.1109/TVT.2020.2968343
10.1109/JSTSP.2022.3222910
10.1109/TII.2023.3256375
10.1109/TWC.2019.2900035
10.1109/MWC.003.2100690
10.1109/LWC.2022.3206587
10.1109/COMST.2020.3009103
10.1109/TWC.2019.2927313
10.1109/JSAC.2020.3036962
10.1109/TCOMM.2020.3025910
10.1109/TWC.2019.2902559
10.1109/TCOMM.2018.2865922
10.1109/TWC.2022.3230407
10.1109/TWC.2022.3153316
10.1109/TCOMM.2021.3065135
10.1109/TWC.2023.3267330
10.1109/TVT.2023.3311537
10.1109/JSAC.2021.3088681
10.1109/LCOMM.2020.3026033
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCOMM.2025.3552746
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0857
EndPage 8420
ExternalDocumentID 10_1109_TCOMM_2025_3552746
10934003
Genre orig-research
GrantInformation_xml – fundername: US National Science Foundation
  grantid: CNS-2114267
  funderid: 10.13039/100000001
– fundername: National Research Foundation, Singapore and Infocomm Media Development Authority under its Future Communications Research & Development Programme.
  funderid: 10.13039/501100001381
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c249t-5a65b84491d9e9a055918540f184dbb42b6e83bdbde36f1010b3eb81a2a2c5f93
IEDL.DBID RIE
ISSN 0090-6778
IngestDate Thu Sep 25 01:40:52 EDT 2025
Thu Oct 02 04:29:43 EDT 2025
Wed Oct 01 07:05:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-5a65b84491d9e9a055918540f184dbb42b6e83bdbde36f1010b3eb81a2a2c5f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8978-8989
0000-0001-8663-1644
0000-0003-2247-2458
0000-0001-8457-6477
0000-0002-9935-0435
0000-0002-8740-634X
PQID 3253889067
PQPubID 85472
PageCount 16
ParticipantIDs crossref_primary_10_1109_TCOMM_2025_3552746
ieee_primary_10934003
proquest_journals_3253889067
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
Series (ref26) 2013
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
Saxe (ref28) 2013
ref24
ref23
Ackermann (ref33) 2019
ref25
ref20
ref22
ref21
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Lowe (ref32); 30
References_xml – ident: ref18
  doi: 10.1109/JIOT.2023.3303491
– ident: ref15
  doi: 10.1109/TWC.2017.2789293
– ident: ref3
  doi: 10.1109/COMST.2017.2705720
– ident: ref11
  doi: 10.1109/TWC.2022.3184953
– ident: ref19
  doi: 10.1109/TWC.2023.3291692
– ident: ref1
  doi: 10.1109/GLOBECOM52923.2024.10901463
– ident: ref4
  doi: 10.1109/COMST.2018.2849509
– ident: ref6
  doi: 10.1109/TMC.2021.3069911
– ident: ref2
  doi: 10.1109/COMST.2017.2745201
– ident: ref30
  doi: 10.1109/TCOMM.2022.3222460
– ident: ref22
  doi: 10.1109/TVT.2020.2968343
– year: 2019
  ident: ref33
  article-title: Reducing overestimation bias in multi-agent domains using double centralized critics
  publication-title: arXiv:1910.01465
– ident: ref10
  doi: 10.1109/JSTSP.2022.3222910
– year: 2013
  ident: ref28
  article-title: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
  publication-title: arXiv:1312.6120
– ident: ref7
  doi: 10.1109/TII.2023.3256375
– ident: ref31
  doi: 10.1109/TWC.2019.2900035
– ident: ref16
  doi: 10.1109/MWC.003.2100690
– ident: ref24
  doi: 10.1109/LWC.2022.3206587
– ident: ref5
  doi: 10.1109/COMST.2020.3009103
– ident: ref12
  doi: 10.1109/TWC.2019.2927313
– ident: ref8
  doi: 10.1109/JSAC.2020.3036962
– ident: ref23
  doi: 10.1109/TCOMM.2020.3025910
– ident: ref27
  doi: 10.1109/TWC.2019.2902559
– ident: ref13
  doi: 10.1109/TCOMM.2018.2865922
– ident: ref21
  doi: 10.1109/TWC.2022.3230407
– volume: 30
  start-page: 6382
  volume-title: Proc. Adv. Neural Inf. Process.
  ident: ref32
  article-title: Multi-agent actor-critic for mixed cooperative-competitive environments
– ident: ref9
  doi: 10.1109/TWC.2022.3153316
– ident: ref29
  doi: 10.1109/TCOMM.2021.3065135
– ident: ref17
  doi: 10.1109/TWC.2023.3267330
– ident: ref25
  doi: 10.1109/TVT.2023.3311537
– ident: ref14
  doi: 10.1109/JSAC.2021.3088681
– volume-title: Propagation Data and Prediction Methods Required for the Design of Terrestrial Broadband Radio Access Systems Operating in a Frequency Range From 3 to 60 GHz
  year: 2013
  ident: ref26
– ident: ref20
  doi: 10.1109/LCOMM.2020.3026033
SSID ssj0004033
Score 2.509327
Snippet In this paper, the problem of energy-efficient uncrewed aerial vehicle (UAV)-assisted multi-access task offloading is investigated. In the studied system,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 8405
SubjectTerms Autonomous aerial vehicles
Central processing units
Computation offloading
Costs
CPUs
Edge computing
Energy efficiency
energy efficiency maximization
Energy limitation
Mixed integer
Mobile computing
Multi-access edge computing
Multi-access edge computing (MEC)
multi-agent deep reinforcement learning (MADRL)
Multiagent systems
Optimization
path planning
Processor scheduling
Resource management
Servers
Training
Trajectory
Trajectory optimization
uncrewed aerial vehicle (UAV)
Unmanned aerial vehicles
Title Energy-Efficient UAV-Driven Multi-Access Edge Computing: A Distributed Many-Agent Perspective
URI https://ieeexplore.ieee.org/document/10934003
https://www.proquest.com/docview/3253889067
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0857
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004033
  issn: 0090-6778
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kx78OXE6JQdvkq5r0rTxVraOIXR62GQXKfnpQdhkdhf_epO0Y0MRvLXQhJAveS-ved_3ALgzUkYKC4r6gilE4lAixg1BGGvORaIi6euQFRM6npHHeTxvyOqeC6O19slnOnCP_i5fLeXa_SrrOekj4rU995OU1mStLQkyxI3kpMtnT9INQyZkvengqShsLBjFAXaKY-60u-OFfFmVX7bYO5jRMZhshlbnlbwH60oE8uuHauO_x34CjpqjJszqtXEK9vTiDBzuCBCeg9fcU_9Q7oUkbAdwlr2g4cqZQOi5uSjzFRVhrt40rEtA2JYPMINDJ7nrqmVpBQtrUlDmWFrwecvebIPZKJ8OxqgpuICkjcIqFHMai5QQ1ldMMx7aaMO6cxIaGwYqIUgkqE6xUEJpTI3dzKHAWqR9HnGLqWH4ArQWy4W-BFCahHNmGGUyIYYZHtsXlqoIc8pUwjrgfgNA-VHrapQ-HglZ6eEqHVxlA1cHtN2M7nxZT2YHdDeglc3e-yxxZI14yqwbvvqj2TU4cL3XqWJd0KpWa31jzxaVuPVr6hup2MrW
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8MHtSDnxhR1B68mY6xdh_1tsAIKkMPYLiYpZ8eTMAgXPzrbbsRiMbE25asW9Nf-15f936_B8CNFiKQmEeozalEJPQFokwThLFijMcyEK4OWT6M-mPyMAknFVndcWGUUi75THn20v3LlzOxtEdlLSt9RJy253ZICAlLutaaBunjSnTSZrTHyYoj49PWqPOU5yYaDEIPW80xu9_d8EOusMova-xcTO8ADFedKzNL3r3lgnvi64du4797fwj2q80mTMvZcQS21PQY7G1IEJ6A18yR_1DmpCTMC-A4fUHduTWC0LFzUepqKsJMvilYFoEwLe9gCrtWdNfWy1IS5saooNTytODzmr9ZB-NeNur0UVVyAQkThy1QyKKQJ4TQtqSKMt_EG8ahE1-bQFByTgIeqQRzyaXCkTbL2edY8aTNAmZQ1RSfgtp0NlVnAAodM0Y1jaiIiaaaheaGJjLALKIypg1wuwKg-CiVNQoXkfi0cHAVFq6igqsB6nZEN54sB7MBmivQimr1fRY4MGY8ocYRn__R7Brs9Ef5oBjcDx8vwK79Upk41gS1xXypLs1OY8Gv3Pz6BnYcziM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Efficient+UAV-Driven+Multi-Access+Edge+Computing%3A+A+Distributed+Many-Agent+Perspective&rft.jtitle=IEEE+transactions+on+communications&rft.au=Li%2C+Yuanjian&rft.au=Madhukumar%2C+A.+S.&rft.au=Zheng+Hui+Ernest%2C+Tan&rft.au=Zheng%2C+Gan&rft.date=2025-09-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=73&rft.issue=9&rft.spage=8405&rft.epage=8420&rft_id=info:doi/10.1109%2FTCOMM.2025.3552746&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2025_3552746
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon