Energy-Efficient UAV-Driven Multi-Access Edge Computing: A Distributed Many-Agent Perspective
In this paper, the problem of energy-efficient uncrewed aerial vehicle (UAV)-assisted multi-access task offloading is investigated. In the studied system, several UAVs are deployed as edge servers to cooperatively aid task executions for several energy-limited computation-scarce terrestrial user equ...
Saved in:
| Published in | IEEE transactions on communications Vol. 73; no. 9; pp. 8405 - 8420 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0090-6778 1558-0857 |
| DOI | 10.1109/TCOMM.2025.3552746 |
Cover
| Abstract | In this paper, the problem of energy-efficient uncrewed aerial vehicle (UAV)-assisted multi-access task offloading is investigated. In the studied system, several UAVs are deployed as edge servers to cooperatively aid task executions for several energy-limited computation-scarce terrestrial user equipments (UEs). An expected energy efficiency maximization problem is then formulated to jointly optimize UAV trajectories, UE local central processing unit (CPU) clock speeds, UAV-UE associations, time slot slicing, and UE offloading powers. This optimization is subject to practical constraints, including UAV mobility, local computing capabilities, mixed-integer UAV-UE pairing indicators, time slot division, UE transmit power, UAV computational capacities, and information causality. To tackle the multi-dimensional optimization problem under consideration, the duo-staggered perturbed actor-critic with modular networks (DSPAC-MN) solution in a multi-agent deep reinforcement learning (MADRL) setup, is proposed and tailored, after mapping the original problem into a stochastic (Markov) game. Time complexity and communication overhead are analyzed, while convergence performance is discussed. Compared to representative benchmarks, e.g., multi-agent deep deterministic policy gradient (MADDPG) and multi-agent twin-delayed DDPG (MATD3), the proposed DSPAC-MN is validated to be able to achieve the optimal performance of average energy efficiency, while ensuring 100% safe flights. |
|---|---|
| AbstractList | In this paper, the problem of energy-efficient uncrewed aerial vehicle (UAV)-assisted multi-access task offloading is investigated. In the studied system, several UAVs are deployed as edge servers to cooperatively aid task executions for several energy-limited computation-scarce terrestrial user equipments (UEs). An expected energy efficiency maximization problem is then formulated to jointly optimize UAV trajectories, UE local central processing unit (CPU) clock speeds, UAV-UE associations, time slot slicing, and UE offloading powers. This optimization is subject to practical constraints, including UAV mobility, local computing capabilities, mixed-integer UAV-UE pairing indicators, time slot division, UE transmit power, UAV computational capacities, and information causality. To tackle the multi-dimensional optimization problem under consideration, the duo-staggered perturbed actor-critic with modular networks (DSPAC-MN) solution in a multi-agent deep reinforcement learning (MADRL) setup, is proposed and tailored, after mapping the original problem into a stochastic (Markov) game. Time complexity and communication overhead are analyzed, while convergence performance is discussed. Compared to representative benchmarks, e.g., multi-agent deep deterministic policy gradient (MADDPG) and multi-agent twin-delayed DDPG (MATD3), the proposed DSPAC-MN is validated to be able to achieve the optimal performance of average energy efficiency, while ensuring 100% safe flights. |
| Author | Madhukumar, A. S. Hamid Aghvami, A. Zheng, Gan Li, Yuanjian Saad, Walid Zheng Hui Ernest, Tan |
| Author_xml | – sequence: 1 givenname: Yuanjian orcidid: 0000-0001-8663-1644 surname: Li fullname: Li, Yuanjian email: yuanjian.li@ntu.edu.sg organization: School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, China – sequence: 2 givenname: A. S. orcidid: 0000-0002-8740-634X surname: Madhukumar fullname: Madhukumar, A. S. email: asmadhukumar@ntu.edu.sg organization: College of Computing and Data Science, Nanyang Technological University, Jurong West, Singapore – sequence: 3 givenname: Tan orcidid: 0000-0001-8978-8989 surname: Zheng Hui Ernest fullname: Zheng Hui Ernest, Tan email: ernest.tan@singaporetech.edu.sg organization: Infocomm Technology Cluster, Singapore Institute of Technology, 10 Dover Dr, Singapore – sequence: 4 givenname: Gan orcidid: 0000-0001-8457-6477 surname: Zheng fullname: Zheng, Gan email: gan.zheng@warwick.ac.uk organization: School of Engineering, University of Warwick, Coventry, U.K – sequence: 5 givenname: Walid orcidid: 0000-0003-2247-2458 surname: Saad fullname: Saad, Walid email: walids@vt.edu organization: Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA – sequence: 6 givenname: A. orcidid: 0000-0002-9935-0435 surname: Hamid Aghvami fullname: Hamid Aghvami, A. email: hamid.aghvami@kcl.ac.uk organization: Centre for Telecommunications Research (CTR), King's College London, London, U.K |
| BookMark | eNpNkEtLw0AURgdRsFb_gLgIuJ5655XMuAs1PqClLlp3EjLJTZnSJnUmEfrvTa0LV3fznXPhXJHzpm2QkFsGE8bAPCyni_l8woGriVCKJzI-IyOmlKagVXJORgAGaJwk-pJchbABAAlCjMhn1qBfH2hW16502HTRKv2gT959YxPN-23naFqWGEKUVWuMpu1u33euWT9GafTkQued7TusonnRHGi6Pgre0Yc9lt2guCYXdbENePN3x2T1nC2nr3S2eHmbpjNacmk6qopYWS2lYZVBU4BShmkloWZaVtZKbmPUwla2QhHXDBhYgVazghe8VLURY3J_8u59-9Vj6PJN2_tmeJkLroTWBuJkWPHTqvRtCB7rfO_drvCHnEF-zJj_ZsyPGfO_jAN0d4IcIv4DjJAwFPwBZCVvvQ |
| CODEN | IECMBT |
| Cites_doi | 10.1109/JIOT.2023.3303491 10.1109/TWC.2017.2789293 10.1109/COMST.2017.2705720 10.1109/TWC.2022.3184953 10.1109/TWC.2023.3291692 10.1109/GLOBECOM52923.2024.10901463 10.1109/COMST.2018.2849509 10.1109/TMC.2021.3069911 10.1109/COMST.2017.2745201 10.1109/TCOMM.2022.3222460 10.1109/TVT.2020.2968343 10.1109/JSTSP.2022.3222910 10.1109/TII.2023.3256375 10.1109/TWC.2019.2900035 10.1109/MWC.003.2100690 10.1109/LWC.2022.3206587 10.1109/COMST.2020.3009103 10.1109/TWC.2019.2927313 10.1109/JSAC.2020.3036962 10.1109/TCOMM.2020.3025910 10.1109/TWC.2019.2902559 10.1109/TCOMM.2018.2865922 10.1109/TWC.2022.3230407 10.1109/TWC.2022.3153316 10.1109/TCOMM.2021.3065135 10.1109/TWC.2023.3267330 10.1109/TVT.2023.3311537 10.1109/JSAC.2021.3088681 10.1109/LCOMM.2020.3026033 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TCOMM.2025.3552746 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0857 |
| EndPage | 8420 |
| ExternalDocumentID | 10_1109_TCOMM_2025_3552746 10934003 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: US National Science Foundation grantid: CNS-2114267 funderid: 10.13039/100000001 – fundername: National Research Foundation, Singapore and Infocomm Media Development Authority under its Future Communications Research & Development Programme. funderid: 10.13039/501100001381 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 ZCA ZCG AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c249t-5a65b84491d9e9a055918540f184dbb42b6e83bdbde36f1010b3eb81a2a2c5f93 |
| IEDL.DBID | RIE |
| ISSN | 0090-6778 |
| IngestDate | Thu Sep 25 01:40:52 EDT 2025 Thu Oct 02 04:29:43 EDT 2025 Wed Oct 01 07:05:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c249t-5a65b84491d9e9a055918540f184dbb42b6e83bdbde36f1010b3eb81a2a2c5f93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8978-8989 0000-0001-8663-1644 0000-0003-2247-2458 0000-0001-8457-6477 0000-0002-9935-0435 0000-0002-8740-634X |
| PQID | 3253889067 |
| PQPubID | 85472 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1109_TCOMM_2025_3552746 ieee_primary_10934003 proquest_journals_3253889067 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on communications |
| PublicationTitleAbbrev | TCOMM |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 Series (ref26) 2013 ref31 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 Saxe (ref28) 2013 ref24 ref23 Ackermann (ref33) 2019 ref25 ref20 ref22 ref21 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Lowe (ref32); 30 |
| References_xml | – ident: ref18 doi: 10.1109/JIOT.2023.3303491 – ident: ref15 doi: 10.1109/TWC.2017.2789293 – ident: ref3 doi: 10.1109/COMST.2017.2705720 – ident: ref11 doi: 10.1109/TWC.2022.3184953 – ident: ref19 doi: 10.1109/TWC.2023.3291692 – ident: ref1 doi: 10.1109/GLOBECOM52923.2024.10901463 – ident: ref4 doi: 10.1109/COMST.2018.2849509 – ident: ref6 doi: 10.1109/TMC.2021.3069911 – ident: ref2 doi: 10.1109/COMST.2017.2745201 – ident: ref30 doi: 10.1109/TCOMM.2022.3222460 – ident: ref22 doi: 10.1109/TVT.2020.2968343 – year: 2019 ident: ref33 article-title: Reducing overestimation bias in multi-agent domains using double centralized critics publication-title: arXiv:1910.01465 – ident: ref10 doi: 10.1109/JSTSP.2022.3222910 – year: 2013 ident: ref28 article-title: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks publication-title: arXiv:1312.6120 – ident: ref7 doi: 10.1109/TII.2023.3256375 – ident: ref31 doi: 10.1109/TWC.2019.2900035 – ident: ref16 doi: 10.1109/MWC.003.2100690 – ident: ref24 doi: 10.1109/LWC.2022.3206587 – ident: ref5 doi: 10.1109/COMST.2020.3009103 – ident: ref12 doi: 10.1109/TWC.2019.2927313 – ident: ref8 doi: 10.1109/JSAC.2020.3036962 – ident: ref23 doi: 10.1109/TCOMM.2020.3025910 – ident: ref27 doi: 10.1109/TWC.2019.2902559 – ident: ref13 doi: 10.1109/TCOMM.2018.2865922 – ident: ref21 doi: 10.1109/TWC.2022.3230407 – volume: 30 start-page: 6382 volume-title: Proc. Adv. Neural Inf. Process. ident: ref32 article-title: Multi-agent actor-critic for mixed cooperative-competitive environments – ident: ref9 doi: 10.1109/TWC.2022.3153316 – ident: ref29 doi: 10.1109/TCOMM.2021.3065135 – ident: ref17 doi: 10.1109/TWC.2023.3267330 – ident: ref25 doi: 10.1109/TVT.2023.3311537 – ident: ref14 doi: 10.1109/JSAC.2021.3088681 – volume-title: Propagation Data and Prediction Methods Required for the Design of Terrestrial Broadband Radio Access Systems Operating in a Frequency Range From 3 to 60 GHz year: 2013 ident: ref26 – ident: ref20 doi: 10.1109/LCOMM.2020.3026033 |
| SSID | ssj0004033 |
| Score | 2.509327 |
| Snippet | In this paper, the problem of energy-efficient uncrewed aerial vehicle (UAV)-assisted multi-access task offloading is investigated. In the studied system,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 8405 |
| SubjectTerms | Autonomous aerial vehicles Central processing units Computation offloading Costs CPUs Edge computing Energy efficiency energy efficiency maximization Energy limitation Mixed integer Mobile computing Multi-access edge computing Multi-access edge computing (MEC) multi-agent deep reinforcement learning (MADRL) Multiagent systems Optimization path planning Processor scheduling Resource management Servers Training Trajectory Trajectory optimization uncrewed aerial vehicle (UAV) Unmanned aerial vehicles |
| Title | Energy-Efficient UAV-Driven Multi-Access Edge Computing: A Distributed Many-Agent Perspective |
| URI | https://ieeexplore.ieee.org/document/10934003 https://www.proquest.com/docview/3253889067 |
| Volume | 73 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0857 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004033 issn: 0090-6778 databaseCode: RIE dateStart: 19720101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kx78OXE6JQdvkq5r0rTxVraOIXR62GQXKfnpQdhkdhf_epO0Y0MRvLXQhJAveS-ved_3ALgzUkYKC4r6gilE4lAixg1BGGvORaIi6euQFRM6npHHeTxvyOqeC6O19slnOnCP_i5fLeXa_SrrOekj4rU995OU1mStLQkyxI3kpMtnT9INQyZkvengqShsLBjFAXaKY-60u-OFfFmVX7bYO5jRMZhshlbnlbwH60oE8uuHauO_x34CjpqjJszqtXEK9vTiDBzuCBCeg9fcU_9Q7oUkbAdwlr2g4cqZQOi5uSjzFRVhrt40rEtA2JYPMINDJ7nrqmVpBQtrUlDmWFrwecvebIPZKJ8OxqgpuICkjcIqFHMai5QQ1ldMMx7aaMO6cxIaGwYqIUgkqE6xUEJpTI3dzKHAWqR9HnGLqWH4ArQWy4W-BFCahHNmGGUyIYYZHtsXlqoIc8pUwjrgfgNA-VHrapQ-HglZ6eEqHVxlA1cHtN2M7nxZT2YHdDeglc3e-yxxZI14yqwbvvqj2TU4cL3XqWJd0KpWa31jzxaVuPVr6hup2MrW |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8MHtSDnxhR1B68mY6xdh_1tsAIKkMPYLiYpZ8eTMAgXPzrbbsRiMbE25asW9Nf-15f936_B8CNFiKQmEeozalEJPQFokwThLFijMcyEK4OWT6M-mPyMAknFVndcWGUUi75THn20v3LlzOxtEdlLSt9RJy253ZICAlLutaaBunjSnTSZrTHyYoj49PWqPOU5yYaDEIPW80xu9_d8EOusMova-xcTO8ADFedKzNL3r3lgnvi64du4797fwj2q80mTMvZcQS21PQY7G1IEJ6A18yR_1DmpCTMC-A4fUHduTWC0LFzUepqKsJMvilYFoEwLe9gCrtWdNfWy1IS5saooNTytODzmr9ZB-NeNur0UVVyAQkThy1QyKKQJ4TQtqSKMt_EG8ahE1-bQFByTgIeqQRzyaXCkTbL2edY8aTNAmZQ1RSfgtp0NlVnAAodM0Y1jaiIiaaaheaGJjLALKIypg1wuwKg-CiVNQoXkfi0cHAVFq6igqsB6nZEN54sB7MBmivQimr1fRY4MGY8ocYRn__R7Brs9Ef5oBjcDx8vwK79Upk41gS1xXypLs1OY8Gv3Pz6BnYcziM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Efficient+UAV-Driven+Multi-Access+Edge+Computing%3A+A+Distributed+Many-Agent+Perspective&rft.jtitle=IEEE+transactions+on+communications&rft.au=Li%2C+Yuanjian&rft.au=Madhukumar%2C+A.+S.&rft.au=Zheng+Hui+Ernest%2C+Tan&rft.au=Zheng%2C+Gan&rft.date=2025-09-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=73&rft.issue=9&rft.spage=8405&rft.epage=8420&rft_id=info:doi/10.1109%2FTCOMM.2025.3552746&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2025_3552746 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |