Learning Error Refinement in Stochastic Gradient Descent-Based Latent Factor Analysis via Diversified PID Controllers
In Big Data-based applications, high-dimensional and incomplete (HDI) data are frequently used to represent the complicated interactions among numerous nodes. A stochastic gradient descent (SGD)-based latent factor analysis (LFA) model can process such data efficiently. Unfortunately, a standard SGD...
Saved in:
| Published in | IEEE transactions on emerging topics in computational intelligence Vol. 9; no. 5; pp. 3582 - 3597 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.10.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2471-285X 2471-285X |
| DOI | 10.1109/TETCI.2025.3547854 |
Cover
| Abstract | In Big Data-based applications, high-dimensional and incomplete (HDI) data are frequently used to represent the complicated interactions among numerous nodes. A stochastic gradient descent (SGD)-based latent factor analysis (LFA) model can process such data efficiently. Unfortunately, a standard SGD algorithm trains a single latent factor relying on the stochastic gradient related to the current learning error only, leading to a slow convergence rate. To break through this bottleneck, this study establishes an SGD-based LFA model as the backbone, and proposes six proportional-integral-derivative (PID)-incorporated LFA models with diversified PID-controllers with the following two-fold ideas: a) refining the instant learning error in stochastic gradient by the principle of six PID-variants, i.e., a standard PID, an integral separated PID, a gearshift integral PID, a dead zone PID, an anti-windup PID, and an incomplete differential PID, to assimilate historical update information into the learning scheme in an efficient way; b) making the hyper-parameters adaptation by utilizing the mechanism of particle swarm optimization for acquiring high practicality. In addition, considering the diversified PID-variants, an effective ensemble is implemented for the six PID-incorporated LFA models. Experimental results on industrial HDI datasets illustrate that in comparison with state-of-the-art models, the proposed models obtain superior computational efficiency while maintaining competitive accuracy in predicting missing data within an HDI matrix. Moreover, their ensemble further improves performance in terms of prediction accuracy. |
|---|---|
| AbstractList | In Big Data-based applications, high-dimensional and incomplete (HDI) data are frequently used to represent the complicated interactions among numerous nodes. A stochastic gradient descent (SGD)-based latent factor analysis (LFA) model can process such data efficiently. Unfortunately, a standard SGD algorithm trains a single latent factor relying on the stochastic gradient related to the current learning error only, leading to a slow convergence rate. To break through this bottleneck, this study establishes an SGD-based LFA model as the backbone, and proposes six proportional-integral-derivative (PID)-incorporated LFA models with diversified PID-controllers with the following two-fold ideas: a) refining the instant learning error in stochastic gradient by the principle of six PID-variants, i.e., a standard PID, an integral separated PID, a gearshift integral PID, a dead zone PID, an anti-windup PID, and an incomplete differential PID, to assimilate historical update information into the learning scheme in an efficient way; b) making the hyper-parameters adaptation by utilizing the mechanism of particle swarm optimization for acquiring high practicality. In addition, considering the diversified PID-variants, an effective ensemble is implemented for the six PID-incorporated LFA models. Experimental results on industrial HDI datasets illustrate that in comparison with state-of-the-art models, the proposed models obtain superior computational efficiency while maintaining competitive accuracy in predicting missing data within an HDI matrix. Moreover, their ensemble further improves performance in terms of prediction accuracy. |
| Author | Li, Jinli Yuan, Ye Luo, Xin |
| Author_xml | – sequence: 1 givenname: Jinli orcidid: 0009-0000-2177-5209 surname: Li fullname: Li, Jinli email: appleli_li@163.com organization: School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 2 givenname: Ye orcidid: 0000-0002-1274-2285 surname: Yuan fullname: Yuan, Ye email: yuanyekl@swu.edu.cn organization: College of Computer and Information Science, Southwest University, Chongqing, China – sequence: 3 givenname: Xin orcidid: 0000-0002-1348-5305 surname: Luo fullname: Luo, Xin email: luoxin@swu.edu.cn organization: College of Computer and Information Science, Southwest University, Chongqing, China |
| BookMark | eNpNkEtPAjEUhRuDiYj8AeOiievBPqbMzBJ5STKJRjFx15Q-tAQ62BYS_r0dYcHq3Jycc3Pvdws6rnEagHuMBhij6mk5XY4XA4IIG1CWFyXLr0CX5AXOSMm-OhfzDeiHsEYIkYrhlO2Cfa2Fd9Z9w6n3jYfv2lint9pFaB38iI38ESFaCedeKNvaEx1k0uxZBK1gLWJrzoSMqT1yYnMMNsCDFXBiD9oHa2yKvS0mcNy46JvNJpl34NqITdD9s_bA5yw98ZLVr_PFeFRnkuRVzBgxQ7UaFoxJWqFSFlgwpUtTGa2KvBSMSpMrRRUZFgKrCuGVNCXNaRKMVEF74PG0d-eb370Oka-bvU9HBk4JSzspSxx6gJxS0jcheG34ztut8EeOEW8J83_CvCXMz4RT6eFUslrri0JFS0Qp_QPOW3q_ |
| CODEN | ITETCU |
| Cites_doi | 10.1109/TSMC.2019.2930525 10.1109/ICDM.2016.0042 10.1109/TMC.2019.2929388 10.1109/CVPR.2018.00889 10.1016/j.neucom.2017.10.040 10.1016/j.neucom.2020.11.029 10.1109/TPEL.2021.3098723 10.1051/matecconf/201713900199 10.1137/15M1009597 10.1109/ICDM50108.2020.00076 10.1109/cac48633.2019.8996486 10.1109/TCYB.2015.2475174 10.1109/TIP.2022.3150294 10.1109/TETCI.2018.2806934 10.1109/tcc.2020.2973623 10.1109/TIE.2022.3192687 10.1109/TPEL.2020.2982746 10.1109/TPAMI.2021.3132503 10.1016/S0893-6080(98)00116-6 10.1109/tevc.2021.3064835 10.1109/TPDS.2020.2975189 10.1109/tsmc.2019.2931468 10.1109/TII.2019.2947112 10.1109/PSC49016.2019.9081468 10.1109/TII.2015.2443723 10.1109/TMECH.2013.2280986 10.1109/tim.2023.3291742 10.1109/TCSII.2021.3062639 10.1109/TETCI.2021.3079966 10.5555/1248547.1248548 10.1609/aaai.v35i11.17204 10.1109/icassp43922.2022.9746279 10.1109/TKDE.2012.153 10.1109/ICNSC.2018.8361355 10.1109/ICIEA.2009.5138538 10.4028/www.scientific.net/AMR.1044-1045.885 10.1016/j.ifacol.2018.06.170 10.1145/3178876.3186150 10.1109/tie.2023.3262858 10.1109/TCYB.2022.3189684 10.1109/TEVC.2011.2173577 10.1109/TITS.2021.3106042 10.1109/AQTR.2010.5520914 10.1109/tkde.2020.3033324 10.1109/TNNLS.2019.2963066 10.1016/j.knosys.2015.12.018 10.1109/ACCESS.2019.2915531 10.1109/icectt.2019.00032 10.1109/CEC.2001.934374 10.1609/aaai.v32i1.11251 10.1016/j.enconman.2005.07.009 10.1109/TCSII.2021.3100704 10.1109/TSMC.2018.2872842 10.1016/j.neucom.2015.11.024 10.1109/tase.2023.3284819 10.1109/TETCI.2017.2739128 10.1109/ICDM50108.2020.00034 10.1109/TIE.2007.909047 10.1109/TETCI.2017.2743219 10.1109/ICME46284.2020.9102970 10.1109/tase.2023.3240335 10.1109/TSMC.2018.2884191 10.1109/tmm.2021.3071243 10.1145/3397271.3401063 10.1109/icip.2019.8803138 10.1109/ijcnn.2017.7966082 10.1109/tgrs.2023.3324481 10.1109/tetci.2023.3320553 10.1109/TETCI.2019.2899604 10.1109/JPROC.2015.2494218 10.1109/TEVC.2010.2052054 10.1145/245108.245121 10.1145/1935826.1935877 10.1109/TKDE.2022.3162161 10.5772/56697 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TETCI.2025.3547854 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2471-285X |
| EndPage | 3597 |
| ExternalDocumentID | 10_1109_TETCI_2025_3547854 10938033 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Chongqing Municipality; Chongqing Natural Science Foundation grantid: CSTB2023NSCQ-LZX0069 funderid: 10.13039/501100005230 – fundername: National Natural Science Foundation of China grantid: 62372385; 62272078 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE JAVBF OCL RIA RIE AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c249t-52f6db6755c3908c71a5de8f9fed748a53cf4dd3d267a1d901bcf8343bcf10d73 |
| IEDL.DBID | RIE |
| ISSN | 2471-285X |
| IngestDate | Sat Sep 27 06:40:43 EDT 2025 Thu Oct 02 04:27:35 EDT 2025 Wed Oct 01 07:05:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c249t-52f6db6755c3908c71a5de8f9fed748a53cf4dd3d267a1d901bcf8343bcf10d73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1274-2285 0000-0002-1348-5305 0009-0000-2177-5209 |
| PQID | 3253903551 |
| PQPubID | 4437216 |
| PageCount | 16 |
| ParticipantIDs | ieee_primary_10938033 crossref_primary_10_1109_TETCI_2025_3547854 proquest_journals_3253903551 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on emerging topics in computational intelligence |
| PublicationTitleAbbrev | TETCI |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref59 ref14 Kingma (ref43) ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref49 ref8 ref7 ref9 ref4 ref3 ref6 Recht (ref5) 2011; 24 ref40 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 Brozovsky (ref15) 2007 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref42 doi: 10.1109/TSMC.2019.2930525 – ident: ref2 doi: 10.1109/ICDM.2016.0042 – ident: ref57 doi: 10.1109/TMC.2019.2929388 – ident: ref36 doi: 10.1109/CVPR.2018.00889 – ident: ref13 doi: 10.1016/j.neucom.2017.10.040 – ident: ref48 doi: 10.1016/j.neucom.2020.11.029 – ident: ref68 doi: 10.1109/TPEL.2021.3098723 – ident: ref20 doi: 10.1051/matecconf/201713900199 – ident: ref65 doi: 10.1137/15M1009597 – ident: ref34 doi: 10.1109/ICDM50108.2020.00076 – ident: ref19 doi: 10.1109/cac48633.2019.8996486 – ident: ref8 doi: 10.1109/TCYB.2015.2475174 – ident: ref66 doi: 10.1109/TIP.2022.3150294 – ident: ref26 doi: 10.1109/TETCI.2018.2806934 – ident: ref55 doi: 10.1109/tcc.2020.2973623 – ident: ref80 doi: 10.1109/TIE.2022.3192687 – ident: ref38 doi: 10.1109/TPEL.2020.2982746 – ident: ref64 article-title: R2-yahoo music user ratings of songs with artist, album, and genre meta information v.1.0 (1.4 gbyte & 1.1 gbyte) – ident: ref71 doi: 10.1109/TPAMI.2021.3132503 – ident: ref4 doi: 10.1016/S0893-6080(98)00116-6 – ident: ref39 doi: 10.1109/tevc.2021.3064835 – ident: ref44 doi: 10.1109/TPDS.2020.2975189 – ident: ref31 doi: 10.1109/tsmc.2019.2931468 – ident: ref52 doi: 10.1109/TII.2019.2947112 – start-page: 303 volume-title: Proc. Int. Conf. Learn. Representations ident: ref43 article-title: Adam: A method for stochastic optimization – ident: ref37 doi: 10.1109/PSC49016.2019.9081468 – ident: ref1 doi: 10.1109/TII.2015.2443723 – ident: ref21 doi: 10.1109/TMECH.2013.2280986 – ident: ref78 doi: 10.1109/tim.2023.3291742 – ident: ref75 doi: 10.1109/TCSII.2021.3062639 – ident: ref29 doi: 10.1109/TETCI.2021.3079966 – ident: ref76 doi: 10.5555/1248547.1248548 – ident: ref63 doi: 10.1609/aaai.v35i11.17204 – ident: ref54 doi: 10.1109/icassp43922.2022.9746279 – ident: ref17 doi: 10.1109/TKDE.2012.153 – ident: ref41 doi: 10.1109/ICNSC.2018.8361355 – ident: ref12 doi: 10.1109/ICIEA.2009.5138538 – ident: ref23 doi: 10.4028/www.scientific.net/AMR.1044-1045.885 – ident: ref7 doi: 10.1016/j.ifacol.2018.06.170 – volume: 24 start-page: 693 volume-title: Proc. 25th Int. Conf. Neural Inf. Process. Syst. year: 2011 ident: ref5 article-title: Hogwild: A lock-free approach to parallelizing stochastic gradient descent – ident: ref49 doi: 10.1145/3178876.3186150 – ident: ref22 doi: 10.1109/tie.2023.3262858 – ident: ref74 doi: 10.1109/TCYB.2022.3189684 – ident: ref11 doi: 10.1109/TEVC.2011.2173577 – ident: ref79 doi: 10.1109/TITS.2021.3106042 – ident: ref32 doi: 10.1109/AQTR.2010.5520914 – ident: ref51 doi: 10.1109/tkde.2020.3033324 – ident: ref67 doi: 10.1109/TNNLS.2019.2963066 – ident: ref28 doi: 10.1016/j.knosys.2015.12.018 – ident: ref30 doi: 10.1109/ACCESS.2019.2915531 – ident: ref45 doi: 10.1109/icectt.2019.00032 – ident: ref47 doi: 10.1109/CEC.2001.934374 – ident: ref27 doi: 10.1609/aaai.v32i1.11251 – ident: ref6 doi: 10.1016/j.enconman.2005.07.009 – ident: ref62 doi: 10.1109/TCSII.2021.3100704 – ident: ref35 doi: 10.1109/TSMC.2018.2872842 – ident: ref33 doi: 10.1016/j.neucom.2015.11.024 – ident: ref73 doi: 10.1109/tase.2023.3284819 – ident: ref70 doi: 10.1109/TETCI.2017.2739128 – ident: ref59 doi: 10.1109/ICDM50108.2020.00034 – ident: ref69 doi: 10.1109/TIE.2007.909047 – ident: ref25 doi: 10.1109/TETCI.2017.2743219 – ident: ref53 doi: 10.1109/ICME46284.2020.9102970 – ident: ref61 doi: 10.1109/tase.2023.3240335 – ident: ref3 doi: 10.1109/TSMC.2018.2884191 – ident: ref60 doi: 10.1109/tmm.2021.3071243 – ident: ref50 doi: 10.1145/3397271.3401063 – ident: ref18 doi: 10.1109/icip.2019.8803138 – ident: ref46 doi: 10.1109/ijcnn.2017.7966082 – ident: ref77 doi: 10.1109/tgrs.2023.3324481 – ident: ref24 doi: 10.1109/tetci.2023.3320553 – ident: ref40 doi: 10.1109/TETCI.2019.2899604 – ident: ref56 doi: 10.1109/JPROC.2015.2494218 – ident: ref10 doi: 10.1109/TEVC.2010.2052054 – ident: ref16 doi: 10.1145/245108.245121 – ident: ref14 doi: 10.1145/1935826.1935877 – year: 2007 ident: ref15 article-title: Recommender system for online dating service – ident: ref72 doi: 10.1109/TKDE.2022.3162161 – ident: ref58 doi: 10.1109/tsmc.2019.2931468 – ident: ref9 doi: 10.5772/56697 |
| SSID | ssj0002951354 |
| Score | 2.398686 |
| Snippet | In Big Data-based applications, high-dimensional and incomplete (HDI) data are frequently used to represent the complicated interactions among numerous nodes.... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 3582 |
| SubjectTerms | Accuracy Adaptation models Big Data Computational modeling Controllers Discriminant analysis ensemble Factor analysis Feedback control High-dimensional and incomplete data latent factor analysis Learning Machine learning algorithms Missing data Optimization parameter adaptation Particle swarm optimization Prediction algorithms Predictive models Proportional integral derivative Stochastic processes |
| Title | Learning Error Refinement in Stochastic Gradient Descent-Based Latent Factor Analysis via Diversified PID Controllers |
| URI | https://ieeexplore.ieee.org/document/10938033 https://www.proquest.com/docview/3253903551 |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2471-285X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002951354 issn: 2471-285X databaseCode: RIE dateStart: 20170101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4YJy48BIjxUg7cULu2Sfo4AmNsCCYEm7RblVcBgTZUWg78epykRTyExKlVlFSWndafU_szQkeU6EQFVHqZiqVHlUg8IYvY4yrWRNCERMQUCl-P4-GUXs7YrClWt7UwWmubfKZ9c2v_5auFrM1RWc9QH6UBIR3USdLYFWt9HqhEgBUIo21hTJD1JueTsxGEgBHziaGtYvSb87HdVH59gq1fGayhcSuRSyd58utK-PL9B1njv0VeR6sNwsQnbktsoCU930R1w6N6j8_LclHiW10AvDRr8eMc31UL-cANYzO-KG0OWIX7jufJOwU3p_AVQFIYHNjuPLhlMsFvjxz3XWZHAVgW34z6-Mwlvz_D4BaaDkA7Q6_puOBJCMMqiEqLWAmIIZgkWZDKJORM6bTICq0SmnJGZEGVIiqKEx4qwBJg2JRQApcwUAnZRsvzxVzvIBxyGWUKZpkKqZAJEbGIcZ2JDKI-EfMuOm5Nkb84Yo3cBiRBllvD5cZweWO4Ltoyuv0y06m1i_Zb8-XNy_eak4iB9ACkwt0_lu2hFfN0l5S3j5arstYHAC4qcWg31QeL7c5u |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhESDK6gM3lJLEdpYjtJQW2gpBkbhF3gIVqEUh5cDXM7YTxCIkToksWxnNOJk3zswbhI4o0bHyqfRSFUmPKhF7QuaRx1WkiaAxCYkpFB4Mo-4dvbxn91Wxuq2F0Vrb5DPdNLf2X76aypk5Kjsx1EeJT8g8WmSUUubKtT6PVEJAC4TRujTGT09G56NWD4LAkDWJIa5i9Jv7sf1Ufn2ErWfprKJhLZNLKHlqzkrRlO8_6Br_LfQaWqkwJj51m2IdzenJBppVTKoP-LwopgW-0TkATLMWjyf4tpzKR244m_FFYbPAStx2TE_eGTg6hfsASmGwY_vz4JrLBL-NOW673I4c0Cy-7rVxy6W_P8PgJrrrgHa6XtVzwZMQiJUQl-aREhBFMElSP5FxwJnSSZ7mWsU04YzInCpFVBjFPFCAJsC0CaEELoGvYrKFFibTid5GOOAyTBXMMjVSARMiZCHjOhUpxH0i4g10XJsie3HUGpkNSfw0s4bLjOGyynANtGl0-2WmU2sD7dXmy6rX7zUjIQPpAUoFO38sO0RL3dGgn_V7w6tdtGye5FL09tBCWcz0PkCNUhzYDfYBg9zRuw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Error+Refinement+in+Stochastic+Gradient+Descent-Based+Latent+Factor+Analysis+via+Diversified+PID+Controllers&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Li%2C+Jinli&rft.au=Yuan%2C+Ye&rft.au=Luo%2C+Xin&rft.date=2025-10-01&rft.pub=IEEE&rft.eissn=2471-285X&rft.volume=9&rft.issue=5&rft.spage=3582&rft.epage=3597&rft_id=info:doi/10.1109%2FTETCI.2025.3547854&rft.externalDocID=10938033 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon |