Learning Error Refinement in Stochastic Gradient Descent-Based Latent Factor Analysis via Diversified PID Controllers

In Big Data-based applications, high-dimensional and incomplete (HDI) data are frequently used to represent the complicated interactions among numerous nodes. A stochastic gradient descent (SGD)-based latent factor analysis (LFA) model can process such data efficiently. Unfortunately, a standard SGD...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on emerging topics in computational intelligence Vol. 9; no. 5; pp. 3582 - 3597
Main Authors Li, Jinli, Yuan, Ye, Luo, Xin
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2471-285X
2471-285X
DOI10.1109/TETCI.2025.3547854

Cover

Abstract In Big Data-based applications, high-dimensional and incomplete (HDI) data are frequently used to represent the complicated interactions among numerous nodes. A stochastic gradient descent (SGD)-based latent factor analysis (LFA) model can process such data efficiently. Unfortunately, a standard SGD algorithm trains a single latent factor relying on the stochastic gradient related to the current learning error only, leading to a slow convergence rate. To break through this bottleneck, this study establishes an SGD-based LFA model as the backbone, and proposes six proportional-integral-derivative (PID)-incorporated LFA models with diversified PID-controllers with the following two-fold ideas: a) refining the instant learning error in stochastic gradient by the principle of six PID-variants, i.e., a standard PID, an integral separated PID, a gearshift integral PID, a dead zone PID, an anti-windup PID, and an incomplete differential PID, to assimilate historical update information into the learning scheme in an efficient way; b) making the hyper-parameters adaptation by utilizing the mechanism of particle swarm optimization for acquiring high practicality. In addition, considering the diversified PID-variants, an effective ensemble is implemented for the six PID-incorporated LFA models. Experimental results on industrial HDI datasets illustrate that in comparison with state-of-the-art models, the proposed models obtain superior computational efficiency while maintaining competitive accuracy in predicting missing data within an HDI matrix. Moreover, their ensemble further improves performance in terms of prediction accuracy.
AbstractList In Big Data-based applications, high-dimensional and incomplete (HDI) data are frequently used to represent the complicated interactions among numerous nodes. A stochastic gradient descent (SGD)-based latent factor analysis (LFA) model can process such data efficiently. Unfortunately, a standard SGD algorithm trains a single latent factor relying on the stochastic gradient related to the current learning error only, leading to a slow convergence rate. To break through this bottleneck, this study establishes an SGD-based LFA model as the backbone, and proposes six proportional-integral-derivative (PID)-incorporated LFA models with diversified PID-controllers with the following two-fold ideas: a) refining the instant learning error in stochastic gradient by the principle of six PID-variants, i.e., a standard PID, an integral separated PID, a gearshift integral PID, a dead zone PID, an anti-windup PID, and an incomplete differential PID, to assimilate historical update information into the learning scheme in an efficient way; b) making the hyper-parameters adaptation by utilizing the mechanism of particle swarm optimization for acquiring high practicality. In addition, considering the diversified PID-variants, an effective ensemble is implemented for the six PID-incorporated LFA models. Experimental results on industrial HDI datasets illustrate that in comparison with state-of-the-art models, the proposed models obtain superior computational efficiency while maintaining competitive accuracy in predicting missing data within an HDI matrix. Moreover, their ensemble further improves performance in terms of prediction accuracy.
Author Li, Jinli
Yuan, Ye
Luo, Xin
Author_xml – sequence: 1
  givenname: Jinli
  orcidid: 0009-0000-2177-5209
  surname: Li
  fullname: Li, Jinli
  email: appleli_li@163.com
  organization: School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 2
  givenname: Ye
  orcidid: 0000-0002-1274-2285
  surname: Yuan
  fullname: Yuan, Ye
  email: yuanyekl@swu.edu.cn
  organization: College of Computer and Information Science, Southwest University, Chongqing, China
– sequence: 3
  givenname: Xin
  orcidid: 0000-0002-1348-5305
  surname: Luo
  fullname: Luo, Xin
  email: luoxin@swu.edu.cn
  organization: College of Computer and Information Science, Southwest University, Chongqing, China
BookMark eNpNkEtPAjEUhRuDiYj8AeOiievBPqbMzBJ5STKJRjFx15Q-tAQ62BYS_r0dYcHq3Jycc3Pvdws6rnEagHuMBhij6mk5XY4XA4IIG1CWFyXLr0CX5AXOSMm-OhfzDeiHsEYIkYrhlO2Cfa2Fd9Z9w6n3jYfv2lint9pFaB38iI38ESFaCedeKNvaEx1k0uxZBK1gLWJrzoSMqT1yYnMMNsCDFXBiD9oHa2yKvS0mcNy46JvNJpl34NqITdD9s_bA5yw98ZLVr_PFeFRnkuRVzBgxQ7UaFoxJWqFSFlgwpUtTGa2KvBSMSpMrRRUZFgKrCuGVNCXNaRKMVEF74PG0d-eb370Oka-bvU9HBk4JSzspSxx6gJxS0jcheG34ztut8EeOEW8J83_CvCXMz4RT6eFUslrri0JFS0Qp_QPOW3q_
CODEN ITETCU
Cites_doi 10.1109/TSMC.2019.2930525
10.1109/ICDM.2016.0042
10.1109/TMC.2019.2929388
10.1109/CVPR.2018.00889
10.1016/j.neucom.2017.10.040
10.1016/j.neucom.2020.11.029
10.1109/TPEL.2021.3098723
10.1051/matecconf/201713900199
10.1137/15M1009597
10.1109/ICDM50108.2020.00076
10.1109/cac48633.2019.8996486
10.1109/TCYB.2015.2475174
10.1109/TIP.2022.3150294
10.1109/TETCI.2018.2806934
10.1109/tcc.2020.2973623
10.1109/TIE.2022.3192687
10.1109/TPEL.2020.2982746
10.1109/TPAMI.2021.3132503
10.1016/S0893-6080(98)00116-6
10.1109/tevc.2021.3064835
10.1109/TPDS.2020.2975189
10.1109/tsmc.2019.2931468
10.1109/TII.2019.2947112
10.1109/PSC49016.2019.9081468
10.1109/TII.2015.2443723
10.1109/TMECH.2013.2280986
10.1109/tim.2023.3291742
10.1109/TCSII.2021.3062639
10.1109/TETCI.2021.3079966
10.5555/1248547.1248548
10.1609/aaai.v35i11.17204
10.1109/icassp43922.2022.9746279
10.1109/TKDE.2012.153
10.1109/ICNSC.2018.8361355
10.1109/ICIEA.2009.5138538
10.4028/www.scientific.net/AMR.1044-1045.885
10.1016/j.ifacol.2018.06.170
10.1145/3178876.3186150
10.1109/tie.2023.3262858
10.1109/TCYB.2022.3189684
10.1109/TEVC.2011.2173577
10.1109/TITS.2021.3106042
10.1109/AQTR.2010.5520914
10.1109/tkde.2020.3033324
10.1109/TNNLS.2019.2963066
10.1016/j.knosys.2015.12.018
10.1109/ACCESS.2019.2915531
10.1109/icectt.2019.00032
10.1109/CEC.2001.934374
10.1609/aaai.v32i1.11251
10.1016/j.enconman.2005.07.009
10.1109/TCSII.2021.3100704
10.1109/TSMC.2018.2872842
10.1016/j.neucom.2015.11.024
10.1109/tase.2023.3284819
10.1109/TETCI.2017.2739128
10.1109/ICDM50108.2020.00034
10.1109/TIE.2007.909047
10.1109/TETCI.2017.2743219
10.1109/ICME46284.2020.9102970
10.1109/tase.2023.3240335
10.1109/TSMC.2018.2884191
10.1109/tmm.2021.3071243
10.1145/3397271.3401063
10.1109/icip.2019.8803138
10.1109/ijcnn.2017.7966082
10.1109/tgrs.2023.3324481
10.1109/tetci.2023.3320553
10.1109/TETCI.2019.2899604
10.1109/JPROC.2015.2494218
10.1109/TEVC.2010.2052054
10.1145/245108.245121
10.1145/1935826.1935877
10.1109/TKDE.2022.3162161
10.5772/56697
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TETCI.2025.3547854
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2471-285X
EndPage 3597
ExternalDocumentID 10_1109_TETCI_2025_3547854
10938033
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Chongqing Municipality; Chongqing Natural Science Foundation
  grantid: CSTB2023NSCQ-LZX0069
  funderid: 10.13039/501100005230
– fundername: National Natural Science Foundation of China
  grantid: 62372385; 62272078
  funderid: 10.13039/501100001809
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c249t-52f6db6755c3908c71a5de8f9fed748a53cf4dd3d267a1d901bcf8343bcf10d73
IEDL.DBID RIE
ISSN 2471-285X
IngestDate Sat Sep 27 06:40:43 EDT 2025
Thu Oct 02 04:27:35 EDT 2025
Wed Oct 01 07:05:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-52f6db6755c3908c71a5de8f9fed748a53cf4dd3d267a1d901bcf8343bcf10d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1274-2285
0000-0002-1348-5305
0009-0000-2177-5209
PQID 3253903551
PQPubID 4437216
PageCount 16
ParticipantIDs ieee_primary_10938033
crossref_primary_10_1109_TETCI_2025_3547854
proquest_journals_3253903551
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on emerging topics in computational intelligence
PublicationTitleAbbrev TETCI
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref59
ref14
Kingma (ref43)
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
Recht (ref5) 2011; 24
ref40
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
Brozovsky (ref15) 2007
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref42
  doi: 10.1109/TSMC.2019.2930525
– ident: ref2
  doi: 10.1109/ICDM.2016.0042
– ident: ref57
  doi: 10.1109/TMC.2019.2929388
– ident: ref36
  doi: 10.1109/CVPR.2018.00889
– ident: ref13
  doi: 10.1016/j.neucom.2017.10.040
– ident: ref48
  doi: 10.1016/j.neucom.2020.11.029
– ident: ref68
  doi: 10.1109/TPEL.2021.3098723
– ident: ref20
  doi: 10.1051/matecconf/201713900199
– ident: ref65
  doi: 10.1137/15M1009597
– ident: ref34
  doi: 10.1109/ICDM50108.2020.00076
– ident: ref19
  doi: 10.1109/cac48633.2019.8996486
– ident: ref8
  doi: 10.1109/TCYB.2015.2475174
– ident: ref66
  doi: 10.1109/TIP.2022.3150294
– ident: ref26
  doi: 10.1109/TETCI.2018.2806934
– ident: ref55
  doi: 10.1109/tcc.2020.2973623
– ident: ref80
  doi: 10.1109/TIE.2022.3192687
– ident: ref38
  doi: 10.1109/TPEL.2020.2982746
– ident: ref64
  article-title: R2-yahoo music user ratings of songs with artist, album, and genre meta information v.1.0 (1.4 gbyte & 1.1 gbyte)
– ident: ref71
  doi: 10.1109/TPAMI.2021.3132503
– ident: ref4
  doi: 10.1016/S0893-6080(98)00116-6
– ident: ref39
  doi: 10.1109/tevc.2021.3064835
– ident: ref44
  doi: 10.1109/TPDS.2020.2975189
– ident: ref31
  doi: 10.1109/tsmc.2019.2931468
– ident: ref52
  doi: 10.1109/TII.2019.2947112
– start-page: 303
  volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref43
  article-title: Adam: A method for stochastic optimization
– ident: ref37
  doi: 10.1109/PSC49016.2019.9081468
– ident: ref1
  doi: 10.1109/TII.2015.2443723
– ident: ref21
  doi: 10.1109/TMECH.2013.2280986
– ident: ref78
  doi: 10.1109/tim.2023.3291742
– ident: ref75
  doi: 10.1109/TCSII.2021.3062639
– ident: ref29
  doi: 10.1109/TETCI.2021.3079966
– ident: ref76
  doi: 10.5555/1248547.1248548
– ident: ref63
  doi: 10.1609/aaai.v35i11.17204
– ident: ref54
  doi: 10.1109/icassp43922.2022.9746279
– ident: ref17
  doi: 10.1109/TKDE.2012.153
– ident: ref41
  doi: 10.1109/ICNSC.2018.8361355
– ident: ref12
  doi: 10.1109/ICIEA.2009.5138538
– ident: ref23
  doi: 10.4028/www.scientific.net/AMR.1044-1045.885
– ident: ref7
  doi: 10.1016/j.ifacol.2018.06.170
– volume: 24
  start-page: 693
  volume-title: Proc. 25th Int. Conf. Neural Inf. Process. Syst.
  year: 2011
  ident: ref5
  article-title: Hogwild: A lock-free approach to parallelizing stochastic gradient descent
– ident: ref49
  doi: 10.1145/3178876.3186150
– ident: ref22
  doi: 10.1109/tie.2023.3262858
– ident: ref74
  doi: 10.1109/TCYB.2022.3189684
– ident: ref11
  doi: 10.1109/TEVC.2011.2173577
– ident: ref79
  doi: 10.1109/TITS.2021.3106042
– ident: ref32
  doi: 10.1109/AQTR.2010.5520914
– ident: ref51
  doi: 10.1109/tkde.2020.3033324
– ident: ref67
  doi: 10.1109/TNNLS.2019.2963066
– ident: ref28
  doi: 10.1016/j.knosys.2015.12.018
– ident: ref30
  doi: 10.1109/ACCESS.2019.2915531
– ident: ref45
  doi: 10.1109/icectt.2019.00032
– ident: ref47
  doi: 10.1109/CEC.2001.934374
– ident: ref27
  doi: 10.1609/aaai.v32i1.11251
– ident: ref6
  doi: 10.1016/j.enconman.2005.07.009
– ident: ref62
  doi: 10.1109/TCSII.2021.3100704
– ident: ref35
  doi: 10.1109/TSMC.2018.2872842
– ident: ref33
  doi: 10.1016/j.neucom.2015.11.024
– ident: ref73
  doi: 10.1109/tase.2023.3284819
– ident: ref70
  doi: 10.1109/TETCI.2017.2739128
– ident: ref59
  doi: 10.1109/ICDM50108.2020.00034
– ident: ref69
  doi: 10.1109/TIE.2007.909047
– ident: ref25
  doi: 10.1109/TETCI.2017.2743219
– ident: ref53
  doi: 10.1109/ICME46284.2020.9102970
– ident: ref61
  doi: 10.1109/tase.2023.3240335
– ident: ref3
  doi: 10.1109/TSMC.2018.2884191
– ident: ref60
  doi: 10.1109/tmm.2021.3071243
– ident: ref50
  doi: 10.1145/3397271.3401063
– ident: ref18
  doi: 10.1109/icip.2019.8803138
– ident: ref46
  doi: 10.1109/ijcnn.2017.7966082
– ident: ref77
  doi: 10.1109/tgrs.2023.3324481
– ident: ref24
  doi: 10.1109/tetci.2023.3320553
– ident: ref40
  doi: 10.1109/TETCI.2019.2899604
– ident: ref56
  doi: 10.1109/JPROC.2015.2494218
– ident: ref10
  doi: 10.1109/TEVC.2010.2052054
– ident: ref16
  doi: 10.1145/245108.245121
– ident: ref14
  doi: 10.1145/1935826.1935877
– year: 2007
  ident: ref15
  article-title: Recommender system for online dating service
– ident: ref72
  doi: 10.1109/TKDE.2022.3162161
– ident: ref58
  doi: 10.1109/tsmc.2019.2931468
– ident: ref9
  doi: 10.5772/56697
SSID ssj0002951354
Score 2.398686
Snippet In Big Data-based applications, high-dimensional and incomplete (HDI) data are frequently used to represent the complicated interactions among numerous nodes....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 3582
SubjectTerms Accuracy
Adaptation models
Big Data
Computational modeling
Controllers
Discriminant analysis
ensemble
Factor analysis
Feedback control
High-dimensional and incomplete data
latent factor analysis
Learning
Machine learning algorithms
Missing data
Optimization
parameter adaptation
Particle swarm optimization
Prediction algorithms
Predictive models
Proportional integral derivative
Stochastic processes
Title Learning Error Refinement in Stochastic Gradient Descent-Based Latent Factor Analysis via Diversified PID Controllers
URI https://ieeexplore.ieee.org/document/10938033
https://www.proquest.com/docview/3253903551
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2471-285X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951354
  issn: 2471-285X
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4YJy48BIjxUg7cULu2Sfo4AmNsCCYEm7RblVcBgTZUWg78epykRTyExKlVlFSWndafU_szQkeU6EQFVHqZiqVHlUg8IYvY4yrWRNCERMQUCl-P4-GUXs7YrClWt7UwWmubfKZ9c2v_5auFrM1RWc9QH6UBIR3USdLYFWt9HqhEgBUIo21hTJD1JueTsxGEgBHziaGtYvSb87HdVH59gq1fGayhcSuRSyd58utK-PL9B1njv0VeR6sNwsQnbktsoCU930R1w6N6j8_LclHiW10AvDRr8eMc31UL-cANYzO-KG0OWIX7jufJOwU3p_AVQFIYHNjuPLhlMsFvjxz3XWZHAVgW34z6-Mwlvz_D4BaaDkA7Q6_puOBJCMMqiEqLWAmIIZgkWZDKJORM6bTICq0SmnJGZEGVIiqKEx4qwBJg2JRQApcwUAnZRsvzxVzvIBxyGWUKZpkKqZAJEbGIcZ2JDKI-EfMuOm5Nkb84Yo3cBiRBllvD5cZweWO4Ltoyuv0y06m1i_Zb8-XNy_eak4iB9ACkwt0_lu2hFfN0l5S3j5arstYHAC4qcWg31QeL7c5u
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhESDK6gM3lJLEdpYjtJQW2gpBkbhF3gIVqEUh5cDXM7YTxCIkToksWxnNOJk3zswbhI4o0bHyqfRSFUmPKhF7QuaRx1WkiaAxCYkpFB4Mo-4dvbxn91Wxuq2F0Vrb5DPdNLf2X76aypk5Kjsx1EeJT8g8WmSUUubKtT6PVEJAC4TRujTGT09G56NWD4LAkDWJIa5i9Jv7sf1Ufn2ErWfprKJhLZNLKHlqzkrRlO8_6Br_LfQaWqkwJj51m2IdzenJBppVTKoP-LwopgW-0TkATLMWjyf4tpzKR244m_FFYbPAStx2TE_eGTg6hfsASmGwY_vz4JrLBL-NOW673I4c0Cy-7rVxy6W_P8PgJrrrgHa6XtVzwZMQiJUQl-aREhBFMElSP5FxwJnSSZ7mWsU04YzInCpFVBjFPFCAJsC0CaEELoGvYrKFFibTid5GOOAyTBXMMjVSARMiZCHjOhUpxH0i4g10XJsie3HUGpkNSfw0s4bLjOGyynANtGl0-2WmU2sD7dXmy6rX7zUjIQPpAUoFO38sO0RL3dGgn_V7w6tdtGye5FL09tBCWcz0PkCNUhzYDfYBg9zRuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Error+Refinement+in+Stochastic+Gradient+Descent-Based+Latent+Factor+Analysis+via+Diversified+PID+Controllers&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Li%2C+Jinli&rft.au=Yuan%2C+Ye&rft.au=Luo%2C+Xin&rft.date=2025-10-01&rft.pub=IEEE&rft.eissn=2471-285X&rft.volume=9&rft.issue=5&rft.spage=3582&rft.epage=3597&rft_id=info:doi/10.1109%2FTETCI.2025.3547854&rft.externalDocID=10938033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon