Algorithms for path optimizations: a short survey

Path finding is used to solve the problem of finding a traversable path through an environment with obstacles. This problem can be seen in many different fields of study and these areas rely on fast and efficient path finding algorithms. This paper aims to describe and review state of the art optimi...

Full description

Saved in:
Bibliographic Details
Published inComputing Vol. 105; no. 2; pp. 293 - 319
Main Authors De Sirisuriya, S C M S, Fernando, T G I, Ariyaratne, M K A
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.02.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0010-485X
1436-5057
DOI10.1007/s00607-022-01126-w

Cover

Abstract Path finding is used to solve the problem of finding a traversable path through an environment with obstacles. This problem can be seen in many different fields of study and these areas rely on fast and efficient path finding algorithms. This paper aims to describe and review state of the art optimization techniques that are used on optimized path finding and compare their performances. Moreover, a special attention is paid on the proposed approaches to identify how they are tested on different test cases; whether the test cases are automatically generated or benchmark instances. The review opens avenues about the importance of automatic test case generation to test the different path finding algorithms.
AbstractList Path finding is used to solve the problem of finding a traversable path through an environment with obstacles. This problem can be seen in many different fields of study and these areas rely on fast and efficient path finding algorithms. This paper aims to describe and review state of the art optimization techniques that are used on optimized path finding and compare their performances. Moreover, a special attention is paid on the proposed approaches to identify how they are tested on different test cases; whether the test cases are automatically generated or benchmark instances. The review opens avenues about the importance of automatic test case generation to test the different path finding algorithms.
Author Ariyaratne, M K A
Fernando, T G I
De Sirisuriya, S C M S
Author_xml – sequence: 1
  givenname: S C M S
  orcidid: 0000-0002-0360-3814
  surname: De Sirisuriya
  fullname: De Sirisuriya, S C M S
  email: mihiri@kdu.ac.lk
  organization: Department of Computer Science, Faculty of Computing, General Sir John Kotelawala Defence University, Faculty of Graduate Studies, University of Sri Jayewardenepura
– sequence: 2
  givenname: T G I
  surname: Fernando
  fullname: Fernando, T G I
  organization: Department of Computer Science, Faculty of Applied Sciences, University of Sri Jayewardenepura
– sequence: 3
  givenname: M K A
  surname: Ariyaratne
  fullname: Ariyaratne, M K A
  organization: Department of Computer Science, Faculty of Applied Sciences, University of Sri Jayewardenepura
BookMark eNp9kE1LAzEQQINUsK3-AU8LnqOTj02y3krRKhS8KHgLaXbTbmk3a5Ja6q937QqCh57m8t7M8EZo0PimQuiawC0BkHcRQIDEQCkGQqjA-zM0JJwJnEMuB2gIQABzlb9foFGMawCgTBVDRCabpQ91Wm1j5nzIWpNWmW9Tva2_TKp9E-8zk8WVDymLu_BZHS7RuTObWF39zjF6e3x4nT7h-cvseTqZY0t5kTBzyhpalsCkU2CVKNxC5NYqZyQXwoESHaKMykvLhDG8LBwjhZPc8XKhHBujm35vG_zHropJr_0uNN1JTaUkRBHGaUepnrLBxxgqp22djo-nYOqNJqB_Auk-kO4C6WMgve9U-k9tQ7014XBaYr0UO7hZVuHvqxPWN9lyewQ
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3365734
crossref_primary_10_1016_j_chaos_2024_114712
crossref_primary_10_3390_app13137439
Cites_doi 10.5220/0002881100800085
10.1109/MCDM.2007.369110
10.1007/978-0-387-34827-8_9
10.1016/j.eswa.2011.04.163
10.1115/1.4045044
10.1145/2593069.2593088
10.1109/AiDAS47888.2019.8970890
10.1016/j.ejor.2008.02.028
10.1109/iCCECOME.2018.8659266
10.1109/TCE.2018.2859629
10.1109/IVS.2019.8814173
10.1109/ICIIS47346.2019.9063353
10.1109/CYBConf.2017.7985805
10.1109/LARS-SBR.2016.9
10.1007/11816102_4
10.1016/j.procs.2018.07.036
10.1177/1729881419831587
10.1162/EVCO_r_00180
10.1002/scj.10250
10.3390/app9153057
10.1016/j.jocs.2017.04.003
10.2478/ama-2018-0024
10.1109/CEC.2006.1688289
10.1007/978-3-540-68830-3
10.1016/j.ipl.2007.03.010
10.1109/CIMSim.2011.21
10.1007/s00521-013-1402-2
10.1504/IJSI.2017.082398
10.1016/S1474-6670(17)32030-X
10.1007/978-3-319-03753-0_36
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s00607-022-01126-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1436-5057
EndPage 319
ExternalDocumentID 10_1007_s00607_022_01126_w
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BKOMP
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAS
LLZTM
M0C
M0N
M2O
M4Y
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZL0
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFKWF
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c249t-3f8ca2dd037f80c869fb65cc8fa7466f0863f88a85dc36aa4d9f319f74f4db8f3
IEDL.DBID U2A
ISSN 0010-485X
IngestDate Sat Aug 23 13:57:49 EDT 2025
Thu Apr 24 23:04:20 EDT 2025
Wed Oct 01 03:16:58 EDT 2025
Fri Feb 21 02:44:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Swarm Intelligence Algorithms
Evolutionary Algorithms
Machine Learning Algorithms
68T07
Robotic Path Planing
Path Optimization
Vehicle Routing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-3f8ca2dd037f80c869fb65cc8fa7466f0863f88a85dc36aa4d9f319f74f4db8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0360-3814
PQID 2771181342
PQPubID 48322
PageCount 27
ParticipantIDs proquest_journals_2771181342
crossref_citationtrail_10_1007_s00607_022_01126_w
crossref_primary_10_1007_s00607_022_01126_w
springer_journals_10_1007_s00607_022_01126_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230200
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 2
  year: 2023
  text: 20230200
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Computing
PublicationTitleAbbrev Computing
PublicationYear 2023
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References Vanneste S, Bellekens B, Weyn M (2014) 3dvfh+: real-time three-dimensional obstacle avoidance using an octomap, 1319, 07
ShiXLiangYLeeHLuCWangQParticle swarm optimization-based algorithms for tsp and generalized tspInfor Process Lett2007103516917610.1016/j.ipl.2007.03.0101187.90238
Laghmara H, Boudali M.-T, Laurain T, Ledy J, Orjuela R, Lauffenburger J.-P, Basset M (2019) Obstacle avoidance, path planning and control for autonomous vehicles, pp. 529–534, 06
ThantulageGKalganovaTWilsonMGrid based and random based ant colony algorithms for automatic hose routing in 3d spaceInt J Comp Info Eng200822510516
YuBYangZ-ZYaoBAn improved ant colony optimization for vehicle routing problemEur J Operat Res2009196117117610.1016/j.ejor.2008.02.0281156.90434
Bello I, Pham H, Le Q. V, Norouzi M, Bengio S (2016) Neural combinatorial optimization with reinforcement learning, arXiv:abs/1611.09940
BrandMMasudaMWehnerNYuX-HAnt colony optimization algorithm for robot path planningInt Conf Comp Design Appl20103V3436
XieDXuYWangRObstacle detection and tracking method for autonomous vehicle based on three-dimensional lidarInt J Adv Robot Sys2019160317298814198315810.1177/1729881419831587
Yusof Z, Hong T, Zainal AAF, Salam M, Adam A, Khalil K, Mukred J, Husin N. Shaikh, Ibrahim Z (2011) A two-step binary particle swarm optimization approach for routing in VLSI with iterative RLC delay model, 09
Maire BL, Mladenov V (2012) Comparison of neural networks for solving the travelling salesman problem, 09
BaeHGidongKKimJQianDLeeSMulti-robot path planning method using reinforcement learningAppl Sci2019907305710.3390/app9153057
KhanMKhiyalSObstacle avoidance and self-localization system for autonomous vehiclesIFAC Proceed Vol2004370751952410.1016/S1474-6670(17)32030-X
TanXZhuoXZhangJHuangDSLiKIrwinGWAnt colony system for optimizing vehicle routing problem with time windows (vrptw)Computational intelligence and bioinformatics2006Berlin and HeidelbergSpringer333810.1007/11816102_4
ThantulageGKalganovaTWilsonMGrid based and random based ant colony algorithms for automatic hose routing in 3d spaceTrans Eng, Comp Technol, Int J Appl Sci20081402
Ariyaratne MKA, Pemarathne WPJ (2015) A review of recent advancements of firefly algorithm; a modern nature inspired algorithm
Gaya J, Gonçalves L, Duarte A, Zanchetta B, Drews-Jr P, Botelho S (2016) Vision-based obstacle avoidance using deep learning. In 2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR) pp. 7–12. https://doi.org/10.1109/LARS-SBR.2016.9
Liao H, Zhang W, Dong X, Póczos B, Shimada K, Kara L (2019) A deep reinforcement learning approach for global routing, arXiv.abs/1906.08809
Pemarathne WPJ, Fernando TGI (2019) Optimizing the electrical wire routing through multiple points using multi-objective ant colony algorithms for electrical wire routing (moacs-ewr), In: 2019 14th Conference on industrial and information systems (ICIIS), pp. 494–499
KwaśniewskiKGosiewskiZGenetic algorithm for mobile robot route planning with obstacle avoidanceActa Mechanica et Automatica2018120615115910.2478/ama-2018-0024
Omar R, Gu DW (2010) 3d path planning for unmanned aerial vehicles using visibility line based method. 1(01), pp. 80–85
RegoCRoucairolCA parallel tabu search algorithm using ejection chains for the vehicle routing problem1996Boston, MASpringer6616750877.90034
Lin CW, Rao L, Giusto P, D’Ambrosio J, Vincentelli A (2014) An efficient wire routing and wire sizing algorithm for weight minimization of automotive systems, 06
Bonyadi MR, Michalewicz Z (2017) Particle swarm optimization for single objective continuous space problems: a review
Honglin Y, Jijun Y (2002) An improved genetic algorithm for the vehicle routing problem
Alwis P, Premarathna A, Fonseka Y, Samarasinghe S, Wijayakulasooriya J (2014) Automated printed circuit board (pcb) drilling machine with efficient path planning, 01
Angus D (2007) Crowding population-based ant colony optimisation for the multi-objective travelling salesman problem, 2007 IEEE Symposium on computational intelligence in multi-criteria decision-making, pp. 333–340
CordónGarcía OHerreraTriguero FStützleTA review on the ant colony optimization metaheuristic: basis, models and new trendsMathw Soft Comput20029231175.90426
PintoDBaránBGaitiDMultiobjective multicast routing with ant colony optimizationNetwork control and engineering for Qos Security and Mobility2006BostonSpringer10111510.1007/978-0-387-34827-8_9
Kumar KA, Verma S, Paul T, Yoshida T (2019) Rl solver pro: reinforcement learning for solving vehicle routing problem, 09, pp. 94–99. https://doi.org/10.1109/AiDAS47888.2019.8970890
Paulinas M, Ušinskas A (2007) A survey of genetic algorithms applications for image enhancement and segmentation. Info Technol Contr 36:278–284
Abiyev R, Arslan M, Gunsel I, Cagman A (2017) Robot pathfinding using vision based obstacle detection. pp. 1–6, 06
SandurkarSChenWGaprus - genetic algorithms based pipe routing using tessellated objectsComp Ind20003808209223
Miki S, Yamamoto D, Ebara H (2018) Applying deep learning and reinforcement learning to traveling salesman problem, pp. 65–70, 08
maXIidaKXieMNishinoJOdakaTOguraHA genetic algorithm for the optimization of cable routing,Sys Comp Japan20063706617110.1002/scj.10250
BaiJLianSLiuZWangKLiuDDeep learning based robot for automatically picking up garbage on the grassIEEE Trans Cons Electr20186438238910.1109/TCE.2018.2859629
ChakrabortyUKAdvances in differential evolution2008BerlinSpringer10.1007/978-3-540-68830-31153.68510
Nazari M, Oroojlooy A, Snyder LV, Takáč M (2018) Reinforcement learning for solving the vehicle routing problem. Adv Neural Inf Proc Sys 31
Abdel-Moetty S (2010) Traveling salesman problem using neural network techniques, pp. 1–6, 04
Mohammed MA, Ghani M K Abd, Hamed RI, Mostafa SA, Ahmad MS, Ibrahim DA (2017) Solving vehicle routing problem by using improved genetic algorithm for optimal solution. J Computat Sci 21:255–262
Thantulage G, Kalganova T, Fernando WAC(2006) A grid-based ant colony algorithm for automatic 3d hose routing, In: 2006 IEEE International conference on evolutionary computation, pp. 48–55
GangulySDasSPanigrahiBKSuganthanPNDasSDashSSA novel ant colony optimization algorithm for the vehicle routing problemSwarm, evolutionary and memetic computing2013ChamSpringer40141210.1007/978-3-319-03753-0_36
OuaarabAAhiodBYangX-SDiscrete cuckoo search algorithm for the travelling salesman problemNeur Comp Appl2013241659166910.1007/s00521-013-1402-2
AriyasinghaIFernandoTRandom weight-based ant colony optimisation algorithm for the multi-objective optimisation problemsInt J Swarm Intell20173017710.1504/IJSI.2017.082398
ChenSMChienC-YSolving the traveling salesman problem based on the genetic simulated annealing ant colony system with particle swarm optimization techniquesExp Sys Appl20113812144391445010.1016/j.eswa.2011.04.163
DewangHMohantyPKunduSA robust path planning for mobile robot using smart particle swarm optimizationProcedia Comp Sci20181330129029710.1016/j.procs.2018.07.036
1126_CR22
1126_CR44
1126_CR23
1126_CR20
1126_CR42
G Thantulage (1126_CR6) 2008; 14
1126_CR21
SM Chen (1126_CR40) 2011; 38
1126_CR24
H Dewang (1126_CR16) 2018; 133
X Tan (1126_CR38) 2006
D Pinto (1126_CR39) 2006
S Ganguly (1126_CR26) 2013
UK Chakraborty (1126_CR10) 2008
A Ouaarab (1126_CR28) 2013; 24
C Rego (1126_CR45) 1996
1126_CR29
M Brand (1126_CR27) 2010; 3
G Thantulage (1126_CR33) 2008; 2
X ma (1126_CR34) 2006; 37
J Bai (1126_CR5) 2018; 64
1126_CR31
X Shi (1126_CR41) 2007; 103
I Ariyasingha (1126_CR12) 2017; 3
1126_CR32
1126_CR37
1126_CR1
1126_CR13
1126_CR14
1126_CR4
M Khan (1126_CR36) 2004; 37
1126_CR2
1126_CR3
S Sandurkar (1126_CR35) 2000; 38
1126_CR8
1126_CR9
D Xie (1126_CR25) 2019; 16
1126_CR30
K Kwaśniewski (1126_CR15) 2018; 12
1126_CR7
B Yu (1126_CR43) 2009; 196
H Bae (1126_CR19) 2019; 9
1126_CR17
1126_CR18
García O Cordón (1126_CR11) 2002; 9
References_xml – reference: Angus D (2007) Crowding population-based ant colony optimisation for the multi-objective travelling salesman problem, 2007 IEEE Symposium on computational intelligence in multi-criteria decision-making, pp. 333–340
– reference: Bello I, Pham H, Le Q. V, Norouzi M, Bengio S (2016) Neural combinatorial optimization with reinforcement learning, arXiv:abs/1611.09940
– reference: ShiXLiangYLeeHLuCWangQParticle swarm optimization-based algorithms for tsp and generalized tspInfor Process Lett2007103516917610.1016/j.ipl.2007.03.0101187.90238
– reference: Vanneste S, Bellekens B, Weyn M (2014) 3dvfh+: real-time three-dimensional obstacle avoidance using an octomap, 1319, 07
– reference: maXIidaKXieMNishinoJOdakaTOguraHA genetic algorithm for the optimization of cable routing,Sys Comp Japan20063706617110.1002/scj.10250
– reference: Nazari M, Oroojlooy A, Snyder LV, Takáč M (2018) Reinforcement learning for solving the vehicle routing problem. Adv Neural Inf Proc Sys 31
– reference: KhanMKhiyalSObstacle avoidance and self-localization system for autonomous vehiclesIFAC Proceed Vol2004370751952410.1016/S1474-6670(17)32030-X
– reference: ThantulageGKalganovaTWilsonMGrid based and random based ant colony algorithms for automatic hose routing in 3d spaceInt J Comp Info Eng200822510516
– reference: Abdel-Moetty S (2010) Traveling salesman problem using neural network techniques, pp. 1–6, 04
– reference: Mohammed MA, Ghani M K Abd, Hamed RI, Mostafa SA, Ahmad MS, Ibrahim DA (2017) Solving vehicle routing problem by using improved genetic algorithm for optimal solution. J Computat Sci 21:255–262
– reference: Alwis P, Premarathna A, Fonseka Y, Samarasinghe S, Wijayakulasooriya J (2014) Automated printed circuit board (pcb) drilling machine with efficient path planning, 01
– reference: Liao H, Zhang W, Dong X, Póczos B, Shimada K, Kara L (2019) A deep reinforcement learning approach for global routing, arXiv.abs/1906.08809,
– reference: Ariyaratne MKA, Pemarathne WPJ (2015) A review of recent advancements of firefly algorithm; a modern nature inspired algorithm
– reference: Yusof Z, Hong T, Zainal AAF, Salam M, Adam A, Khalil K, Mukred J, Husin N. Shaikh, Ibrahim Z (2011) A two-step binary particle swarm optimization approach for routing in VLSI with iterative RLC delay model, 09
– reference: ChenSMChienC-YSolving the traveling salesman problem based on the genetic simulated annealing ant colony system with particle swarm optimization techniquesExp Sys Appl20113812144391445010.1016/j.eswa.2011.04.163
– reference: TanXZhuoXZhangJHuangDSLiKIrwinGWAnt colony system for optimizing vehicle routing problem with time windows (vrptw)Computational intelligence and bioinformatics2006Berlin and HeidelbergSpringer333810.1007/11816102_4
– reference: DewangHMohantyPKunduSA robust path planning for mobile robot using smart particle swarm optimizationProcedia Comp Sci20181330129029710.1016/j.procs.2018.07.036
– reference: SandurkarSChenWGaprus - genetic algorithms based pipe routing using tessellated objectsComp Ind20003808209223
– reference: Omar R, Gu DW (2010) 3d path planning for unmanned aerial vehicles using visibility line based method. 1(01), pp. 80–85,
– reference: Kumar KA, Verma S, Paul T, Yoshida T (2019) Rl solver pro: reinforcement learning for solving vehicle routing problem, 09, pp. 94–99. https://doi.org/10.1109/AiDAS47888.2019.8970890
– reference: Miki S, Yamamoto D, Ebara H (2018) Applying deep learning and reinforcement learning to traveling salesman problem, pp. 65–70, 08
– reference: Honglin Y, Jijun Y (2002) An improved genetic algorithm for the vehicle routing problem
– reference: CordónGarcía OHerreraTriguero FStützleTA review on the ant colony optimization metaheuristic: basis, models and new trendsMathw Soft Comput20029231175.90426
– reference: Laghmara H, Boudali M.-T, Laurain T, Ledy J, Orjuela R, Lauffenburger J.-P, Basset M (2019) Obstacle avoidance, path planning and control for autonomous vehicles, pp. 529–534, 06
– reference: Bonyadi MR, Michalewicz Z (2017) Particle swarm optimization for single objective continuous space problems: a review
– reference: Pemarathne WPJ, Fernando TGI (2019) Optimizing the electrical wire routing through multiple points using multi-objective ant colony algorithms for electrical wire routing (moacs-ewr), In: 2019 14th Conference on industrial and information systems (ICIIS), pp. 494–499
– reference: Gaya J, Gonçalves L, Duarte A, Zanchetta B, Drews-Jr P, Botelho S (2016) Vision-based obstacle avoidance using deep learning. In 2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR) pp. 7–12. https://doi.org/10.1109/LARS-SBR.2016.9
– reference: YuBYangZ-ZYaoBAn improved ant colony optimization for vehicle routing problemEur J Operat Res2009196117117610.1016/j.ejor.2008.02.0281156.90434
– reference: BaiJLianSLiuZWangKLiuDDeep learning based robot for automatically picking up garbage on the grassIEEE Trans Cons Electr20186438238910.1109/TCE.2018.2859629
– reference: Lin CW, Rao L, Giusto P, D’Ambrosio J, Vincentelli A (2014) An efficient wire routing and wire sizing algorithm for weight minimization of automotive systems, 06
– reference: Paulinas M, Ušinskas A (2007) A survey of genetic algorithms applications for image enhancement and segmentation. Info Technol Contr 36:278–284
– reference: BaeHGidongKKimJQianDLeeSMulti-robot path planning method using reinforcement learningAppl Sci2019907305710.3390/app9153057
– reference: Thantulage G, Kalganova T, Fernando WAC(2006) A grid-based ant colony algorithm for automatic 3d hose routing, In: 2006 IEEE International conference on evolutionary computation, pp. 48–55,
– reference: AriyasinghaIFernandoTRandom weight-based ant colony optimisation algorithm for the multi-objective optimisation problemsInt J Swarm Intell20173017710.1504/IJSI.2017.082398
– reference: PintoDBaránBGaitiDMultiobjective multicast routing with ant colony optimizationNetwork control and engineering for Qos Security and Mobility2006BostonSpringer10111510.1007/978-0-387-34827-8_9
– reference: RegoCRoucairolCA parallel tabu search algorithm using ejection chains for the vehicle routing problem1996Boston, MASpringer6616750877.90034
– reference: KwaśniewskiKGosiewskiZGenetic algorithm for mobile robot route planning with obstacle avoidanceActa Mechanica et Automatica2018120615115910.2478/ama-2018-0024
– reference: GangulySDasSPanigrahiBKSuganthanPNDasSDashSSA novel ant colony optimization algorithm for the vehicle routing problemSwarm, evolutionary and memetic computing2013ChamSpringer40141210.1007/978-3-319-03753-0_36
– reference: BrandMMasudaMWehnerNYuX-HAnt colony optimization algorithm for robot path planningInt Conf Comp Design Appl20103V3436
– reference: ChakrabortyUKAdvances in differential evolution2008BerlinSpringer10.1007/978-3-540-68830-31153.68510
– reference: XieDXuYWangRObstacle detection and tracking method for autonomous vehicle based on three-dimensional lidarInt J Adv Robot Sys2019160317298814198315810.1177/1729881419831587
– reference: ThantulageGKalganovaTWilsonMGrid based and random based ant colony algorithms for automatic hose routing in 3d spaceTrans Eng, Comp Technol, Int J Appl Sci20081402
– reference: Abiyev R, Arslan M, Gunsel I, Cagman A (2017) Robot pathfinding using vision based obstacle detection. pp. 1–6, 06
– reference: Maire BL, Mladenov V (2012) Comparison of neural networks for solving the travelling salesman problem, 09
– reference: OuaarabAAhiodBYangX-SDiscrete cuckoo search algorithm for the travelling salesman problemNeur Comp Appl2013241659166910.1007/s00521-013-1402-2
– ident: 1126_CR4
  doi: 10.5220/0002881100800085
– ident: 1126_CR8
– ident: 1126_CR37
  doi: 10.1109/MCDM.2007.369110
– start-page: 101
  volume-title: Network control and engineering for Qos Security and Mobility
  year: 2006
  ident: 1126_CR39
  doi: 10.1007/978-0-387-34827-8_9
– volume: 38
  start-page: 14439
  issue: 12
  year: 2011
  ident: 1126_CR40
  publication-title: Exp Sys Appl
  doi: 10.1016/j.eswa.2011.04.163
– ident: 1126_CR23
  doi: 10.1115/1.4045044
– ident: 1126_CR42
– ident: 1126_CR3
  doi: 10.1145/2593069.2593088
– volume: 38
  start-page: 209
  issue: 08
  year: 2000
  ident: 1126_CR35
  publication-title: Comp Ind
– ident: 1126_CR44
– volume: 14
  start-page: 02
  year: 2008
  ident: 1126_CR6
  publication-title: Trans Eng, Comp Technol, Int J Appl Sci
– ident: 1126_CR18
  doi: 10.1109/AiDAS47888.2019.8970890
– volume: 196
  start-page: 171
  issue: 1
  year: 2009
  ident: 1126_CR43
  publication-title: Eur J Operat Res
  doi: 10.1016/j.ejor.2008.02.028
– ident: 1126_CR20
  doi: 10.1109/iCCECOME.2018.8659266
– volume: 64
  start-page: 382
  year: 2018
  ident: 1126_CR5
  publication-title: IEEE Trans Cons Electr
  doi: 10.1109/TCE.2018.2859629
– ident: 1126_CR24
  doi: 10.1109/IVS.2019.8814173
– ident: 1126_CR13
  doi: 10.1109/ICIIS47346.2019.9063353
– ident: 1126_CR21
  doi: 10.1109/CYBConf.2017.7985805
– ident: 1126_CR31
– ident: 1126_CR22
  doi: 10.1109/LARS-SBR.2016.9
– start-page: 33
  volume-title: Computational intelligence and bioinformatics
  year: 2006
  ident: 1126_CR38
  doi: 10.1007/11816102_4
– volume: 133
  start-page: 290
  issue: 01
  year: 2018
  ident: 1126_CR16
  publication-title: Procedia Comp Sci
  doi: 10.1016/j.procs.2018.07.036
– start-page: 661
  volume-title: A parallel tabu search algorithm using ejection chains for the vehicle routing problem
  year: 1996
  ident: 1126_CR45
– volume: 16
  start-page: 172988141983158
  issue: 03
  year: 2019
  ident: 1126_CR25
  publication-title: Int J Adv Robot Sys
  doi: 10.1177/1729881419831587
– ident: 1126_CR9
– ident: 1126_CR7
  doi: 10.1162/EVCO_r_00180
– volume: 37
  start-page: 61
  issue: 06
  year: 2006
  ident: 1126_CR34
  publication-title: Sys Comp Japan
  doi: 10.1002/scj.10250
– volume: 9
  start-page: 3057
  issue: 07
  year: 2019
  ident: 1126_CR19
  publication-title: Appl Sci
  doi: 10.3390/app9153057
– ident: 1126_CR14
  doi: 10.1016/j.jocs.2017.04.003
– volume: 12
  start-page: 151
  issue: 06
  year: 2018
  ident: 1126_CR15
  publication-title: Acta Mechanica et Automatica
  doi: 10.2478/ama-2018-0024
– ident: 1126_CR1
  doi: 10.1109/CEC.2006.1688289
– volume-title: Advances in differential evolution
  year: 2008
  ident: 1126_CR10
  doi: 10.1007/978-3-540-68830-3
– volume: 9
  start-page: 2
  year: 2002
  ident: 1126_CR11
  publication-title: Mathw Soft Comput
– volume: 103
  start-page: 169
  issue: 5
  year: 2007
  ident: 1126_CR41
  publication-title: Infor Process Lett
  doi: 10.1016/j.ipl.2007.03.010
– ident: 1126_CR29
  doi: 10.1109/CIMSim.2011.21
– volume: 3
  start-page: V3
  year: 2010
  ident: 1126_CR27
  publication-title: Int Conf Comp Design Appl
– volume: 24
  start-page: 1659
  year: 2013
  ident: 1126_CR28
  publication-title: Neur Comp Appl
  doi: 10.1007/s00521-013-1402-2
– volume: 3
  start-page: 77
  issue: 01
  year: 2017
  ident: 1126_CR12
  publication-title: Int J Swarm Intell
  doi: 10.1504/IJSI.2017.082398
– ident: 1126_CR30
– volume: 2
  start-page: 510
  issue: 2
  year: 2008
  ident: 1126_CR33
  publication-title: Int J Comp Info Eng
– ident: 1126_CR17
– ident: 1126_CR32
– ident: 1126_CR2
– volume: 37
  start-page: 519
  issue: 07
  year: 2004
  ident: 1126_CR36
  publication-title: IFAC Proceed Vol
  doi: 10.1016/S1474-6670(17)32030-X
– start-page: 401
  volume-title: Swarm, evolutionary and memetic computing
  year: 2013
  ident: 1126_CR26
  doi: 10.1007/978-3-319-03753-0_36
SSID ssj0002389
Score 2.3326848
Snippet Path finding is used to solve the problem of finding a traversable path through an environment with obstacles. This problem can be seen in many different...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 293
SubjectTerms Academic disciplines
Algorithms
Artificial Intelligence
Computer Appl. in Administrative Data Processing
Computer Communication Networks
Computer Science
Generators
Genetic algorithms
Information Systems Applications (incl.Internet)
Machine learning
Nature
Optimization
Optimization algorithms
Optimization techniques
Regular Paper
Robotics
Route optimization
Software Engineering
State-of-the-art reviews
Traveling salesman problem
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwGP2Y24s-eJmK0yl58E2DvaRNKohM2RjChoiDvZVcGvewm-vm8N-bdO2GgntuGuiX5PtOmpxzAK7dRDgu4wJLjzqYKE0wN7gVB6Y6C7vlUo7lO3e6YbtHXvpBvwTdggtjr1UWOTFL1Goi7T_yO49Sy5H0ifc4_cTWNcqerhYWGjy3VlAPmcTYDlQ8q4xVhspTs_v6ts7NpkCtALHJPoQF_ZxGk5HprDQJxfZ2u2N5NXj5u1Rt8OefI9OsErUOYT-HkKixGvMjKCXjKhwU9gwoX61V2OusJVnTY3Abww_zPfPBKEUGqCJrRYwmJmGMCibmPeIoHRg4jtLF7Cv5PoFeq_n-3Ma5X4IJNInm2NdMck8px6eaOZKFkRZhICXTnJIw1Gb3YpowzgIl_ZBzoiJtVqCmRBMlmPZPoTyejJMzQBHRIRUOk5F2idkjChI5QlNKwyjhEZE1cIvQxDIXE7eeFsN4LYOchTM24YyzcMbLGtys35mupDS2tq4XEY_zZZXGm0lQg9tiFDaP_-_tfHtvF7BrbeRXt7HrUJ7PFsmlARtzcZXPoB9Kv875
  priority: 102
  providerName: ProQuest
Title Algorithms for path optimizations: a short survey
URI https://link.springer.com/article/10.1007/s00607-022-01126-w
https://www.proquest.com/docview/2771181342
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1436-5057
  dateEnd: 20241104
  omitProxy: true
  ssIdentifier: ssj0002389
  issn: 0010-485X
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1436-5057
  dateEnd: 20241104
  omitProxy: false
  ssIdentifier: ssj0002389
  issn: 0010-485X
  databaseCode: AMVHM
  dateStart: 19660301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1436-5057
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002389
  issn: 0010-485X
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1436-5057
  dateEnd: 20241104
  omitProxy: true
  ssIdentifier: ssj0002389
  issn: 0010-485X
  databaseCode: 8FG
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1436-5057
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002389
  issn: 0010-485X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1436-5057
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002389
  issn: 0010-485X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXODAGzEYUw7coFIfaZNyK2hjAg0hxNA4VUnasMPYEN2Y-Pc4fSEQIHHKoW4OTmx_VvzZAMdOKm2HC2kpl9kWTTS1BOJWy8foLE3KldiG79y_CXoDejX0hyUpLKuq3asnydxT12Q30zqEWab63Da8F2uxDCu-aeeFt3jgRrX_xSBUgF70MJT7w5Iq8_MeX8PRJ8b89iyaR5vuJqyXMJFExbluwVI62YaNagQDKS1yG9b6ddvVbAecaPw0xWx_9JwRBKPEjBsmU3QKzxXb8owIko0QcpNs_vqWvu_CoNu5v-hZ5UwEVCYNZ5anuRJuktge09xWPAi1DHyluBaMBoHGDAVFuOB-orxACJqEGq1MM6ppIrn29qAxmU7SfSAh1QGTNlehdijmgZKGttSMsSBMRUhVE5xKNbEqG4abuRXjuG51nKszRnXGuTrjRRNO6n9einYZf0q3Ko3HpelkscuYIcN61G3CaXUKn59_3-3gf-KHsGpGxxcV2C1ozF7n6RECjJlswzLvXrZhJbp8vO6Ytf_Q6-N63rm5vWvnt-0DyEvLgw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5RONAe2kKpGkqLD3CiFvvwru1KqKItKDwSVQik3BY_1uUACbBJo_y5_raON95ERYIb5_Vaq_F45pu1v_kAtuJSR7FQmpqER5RZx6hC3EozzM7al1w28nznTjdvX7DjXtZbgL8NF8Zfq2xiYh2o7cD4f-S7CeeeI5my5NvtHfWqUf50tZHQUEFawe7VLcYCseOknIyxhKv2jn7iem8nyeHB-Y82DSoD-HlMDmnqhFGJtVHKnYiMyKXTeWaMcIqzPHeI-XGIUCKzJs2VYlY69FvHmWNWC5fivC9giaVMYvG39P2g--tslgswIU4BOEY7JrJeoO3U5D3fCoVTf5s-8jweOv4_Nc7x7oMj2jrzHb6F1wGykv2pj63AQtlfhTeNHAQJ0WEVXnVmLWCrdxDvX_9G-w2vbiqCwJh46WMywAB10zA_vxJFqiuE_6Qa3f8pJ2tw8SyWew-L_UG__ABEMpdzHQkjXcywJtVMRtpxznNZKslMC-LGNIUJzcu9hsZ1MWu7XJuzQHMWtTmLcQt2Zu_cTlt3PDl6o7F4EbZxVcydrgVfmlWYP358tvWnZ9uE5fZ557Q4PeqefISXXsJ-ehN8AxaH96PyEwKdof4cvInA5XM78D_FtA1C
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BkRAc2BFl9QFOYJHFiR0khBBQdsQBpN6C7cT0AG0hhYpf4-sYZ2kFEtw4x7Gi8XjmOZ43D2DTTZXjCqmo9rhDWWIYlYhbaYDZWdkjV-JYvvP1TXh2zy6aQXMEPisujC2rrGJiHqiTjrb_yHc9zi1H0mferinLIm6PGwfdF2oVpOxNayWnUbjIZfrRx-Nbtn9-jGu95XmNk7ujM1oqDOCnsahHfSO09JLE8bkRjhZhZFQYaC2M5CwMDeJ9HCKkCBLth1KyJDLos4YzwxIljI_zjsIYt13cLUu9cTrIApgKC-iNcY6JoFkSdnLanm2Cwqmto3csg4f2vyfFIdL9cTmb57zGDEyVYJUcFt41CyNpew6mKyEIUsaFOZi8HjR_zebBPXx6RGv1Ws8ZQUhMrOgx6WBoeq44n3tEkqyFwJ9kb6_v6ccC3P-L3Rah1u600yUgETMhV47QkXEZnkYVixxlOOdhlMqI6Tq4lWliXbYtt-oZT_Gg4XJuzhjNGefmjPt12B680y2advw5erWyeFxu4CweulsddqpVGD7-fbblv2fbgHF02_jq_OZyBSasdn1RAr4Ktd7rW7qGCKen1nNXIvDw3777BV81Ctw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithms+for+path+optimizations%3A+a+short+survey&rft.jtitle=Computing&rft.au=De+Sirisuriya%2C+S+C+M+S&rft.au=Fernando%2C+T+G+I&rft.au=Ariyaratne%2C+M+K+A&rft.date=2023-02-01&rft.pub=Springer+Vienna&rft.issn=0010-485X&rft.eissn=1436-5057&rft.volume=105&rft.issue=2&rft.spage=293&rft.epage=319&rft_id=info:doi/10.1007%2Fs00607-022-01126-w&rft.externalDocID=10_1007_s00607_022_01126_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-485X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-485X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-485X&client=summon