Two-Stream Dynamic Heterogeneous Graph Recurrent Neural Network for Multi-Label Multi-Modal Emotion Recognition

The study of the relationship between emotions and physiological signals of subjects under multimedia stimulation is an emerging field, and many important advances are made. However, there are still some challenges: 1) How to effectively utilize the complementarity among spatial-spectral-temporal do...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on affective computing Vol. 16; no. 3; pp. 2396 - 2409
Main Authors Wang, Jing, Feng, Zhiyang, Ning, Xiaojun, Lin, Youfang, Chen, Badong, Jia, Ziyu
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1949-3045
1949-3045
DOI10.1109/TAFFC.2025.3561439

Cover

Abstract The study of the relationship between emotions and physiological signals of subjects under multimedia stimulation is an emerging field, and many important advances are made. However, there are still some challenges: 1) How to effectively utilize the complementarity among spatial-spectral-temporal domain information. 2) How to employ the heterogeneity and the correlation among multi-modal physiological signals simultaneously. 3) How to improve the robustness of the model dealing with missing channels. 4) How to model the dependency among different emotions. In this paper, we propose a novel two-stream Dynamic Heterogeneous Graph Recurrent Neural Network called DHGRNN. Specifically, DHGRNN consists of a spatial-temporal stream, a spatial-spectral stream, a fusion layer, and a multi-label classifier. Each stream is composed of a graph transformer network, evolved graph convolutional neural network, and gated recurrent units. We propose a graph-based two-stream structure to fuse the information of the spatial-spectral-temporal domain simultaneously. Graph transformer network and evolved graph convolutional neural network are used to model the heterogeneity and correlation of multi-modal physiological signals, respectively. To deal with the problem of robustness in the face of missing channel data, we transform it into the problem of dynamic graphs and use a dynamic graph neural network to improve the robustness. In addition, we propose a multi-label classifier to model the dependency among different emotion dimensions. Experiments on three public datasets demonstrate that our proposed model outperforms existing state-of-the-art methods.
AbstractList The study of the relationship between emotions and physiological signals of subjects under multimedia stimulation is an emerging field, and many important advances are made. However, there are still some challenges: 1) How to effectively utilize the complementarity among spatial-spectral-temporal domain information. 2) How to employ the heterogeneity and the correlation among multi-modal physiological signals simultaneously. 3) How to improve the robustness of the model dealing with missing channels. 4) How to model the dependency among different emotions. In this paper, we propose a novel two-stream Dynamic Heterogeneous Graph Recurrent Neural Network called DHGRNN. Specifically, DHGRNN consists of a spatial-temporal stream, a spatial-spectral stream, a fusion layer, and a multi-label classifier. Each stream is composed of a graph transformer network, evolved graph convolutional neural network, and gated recurrent units. We propose a graph-based two-stream structure to fuse the information of the spatial-spectral-temporal domain simultaneously. Graph transformer network and evolved graph convolutional neural network are used to model the heterogeneity and correlation of multi-modal physiological signals, respectively. To deal with the problem of robustness in the face of missing channel data, we transform it into the problem of dynamic graphs and use a dynamic graph neural network to improve the robustness. In addition, we propose a multi-label classifier to model the dependency among different emotion dimensions. Experiments on three public datasets demonstrate that our proposed model outperforms existing state-of-the-art methods.
Author Lin, Youfang
Ning, Xiaojun
Jia, Ziyu
Feng, Zhiyang
Chen, Badong
Wang, Jing
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0002-1017-2231
  surname: Wang
  fullname: Wang, Jing
  email: wj@bjtu.edu.cn
  organization: Beijing Key Laboratory of Traffic Data Mining and Embodied Intelligence, School of Computer Science and Technology, Beijing Jiaotong University, Beijing, China
– sequence: 2
  givenname: Zhiyang
  surname: Feng
  fullname: Feng, Zhiyang
  email: zhiyangfeng@bjtu.edu.cn
  organization: Beijing Key Laboratory of Traffic Data Mining and Embodied Intelligence, School of Computer Science and Technology, Beijing Jiaotong University, Beijing, China
– sequence: 3
  givenname: Xiaojun
  orcidid: 0000-0002-3668-2950
  surname: Ning
  fullname: Ning, Xiaojun
  email: ningxj@bjtu.edu.cn
  organization: Beijing Key Laboratory of Traffic Data Mining and Embodied Intelligence, School of Computer Science and Technology, Beijing Jiaotong University, Beijing, China
– sequence: 4
  givenname: Youfang
  orcidid: 0000-0002-1611-4323
  surname: Lin
  fullname: Lin, Youfang
  email: yflin@bjtu.edu.cn
  organization: Beijing Key Laboratory of Traffic Data Mining and Embodied Intelligence, School of Computer Science and Technology, Beijing Jiaotong University, Beijing, China
– sequence: 5
  givenname: Badong
  surname: Chen
  fullname: Chen, Badong
  email: chenbd@mail.xjtu.edu.cn
  organization: Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China
– sequence: 6
  givenname: Ziyu
  orcidid: 0000-0002-8523-1419
  surname: Jia
  fullname: Jia, Ziyu
  email: jia.ziyu@outlook.com
  organization: Beijing Key Laboratory of Brainnetome and Brain-Computer Interface, Institute of Automation, Chinese Academy of Sciences, Beijing, China
BookMark eNpNkE1PwkAQhjcGExH5A8ZDE8_F_W73SFDABDRRPG-2ZRaLdBe3bQj_3lY4MJd5D-8zkzy3qOe8A4TuCR4RgtXTajydTkYUUzFiQhLO1BXqE8VVzDAXvYt8g4ZVtcXtMMYkTfrIrw4-_qwDmDJ6PjpTFnk0hxqC34AD31TRLJj9d_QBeRMCuDp6gyaYXbvqgw8_kfUhWja7uogXJoPdOS_9uu28lL4uvOtgv3FFl-_QtTW7CobnPUBf05fVZB4v3mevk_EizilXdUzzXChDMTCeMgs2zTDg1KYMW2lxmq0TEFwamipBGAfJEp4LyjlkHINYUzZAj6e7--B_G6hqvfVNcO1LzShPBCc0lW2Lnlp58FUVwOp9KEoTjppg3bnV_25151af3bbQwwkqAOACUFJikrI_zs93gQ
CODEN ITACBQ
Cites_doi 10.1016/j.biopsycho.2010.03.010
10.1109/EMBC.2019.8857852
10.1109/TAMD.2015.2431497
10.1109/TAFFC.2020.3025777
10.1109/TAFFC.2017.2712143
10.1103/PhysRevE.69.066138
10.1007/978-3-030-04239-4_39
10.1016/j.neucom.2013.06.046
10.1109/ICMLC.2005.1527805
10.1145/3394171.3413577
10.1007/978-3-540-85099-1_4
10.1109/T-AFFC.2011.25
10.1109/taffc.2022.3169001
10.1109/EMBC44109.2020.9176738
10.1109/TASLP.2020.3001390
10.1109/EMBC.2019.8856666
10.1109/TNNLS.2020.3016666
10.1145/3442381.3449914
10.1007/978-3-319-71589-6_33
10.1609/aaai.v34i04.5984
10.1145/3366423.3380073
10.1007/BF02471106
10.1145/3394171.3413724
10.1109/TCYB.2018.2797176
10.1109/TNNLS.2020.3048385
10.1016/j.inffus.2019.06.019
10.1145/3474085.3475583
10.1145/3308558.3313562
10.1109/T-AFFC.2011.15
10.1109/IJCNN.2018.8489283
10.1007/978-3-319-46672-9_58
10.1109/TAFFC.2020.3034215
10.1016/j.patcog.2022.108833
10.1007/s40747-021-00336-7
10.1109/TAFFC.2020.2981440
10.21236/ADA164453
10.1145/3292500.3330961
10.1037/0033-295X.110.1.145
10.1109/TCYB.2017.2788081
10.1109/TPAMI.2020.3032189
10.1109/ICME.2014.6890166
10.1109/IJCNN.2018.8489331
10.1145/3343031.3350871
10.1109/EMBC.2018.8512865
10.1016/j.tics.2017.01.001
10.1609/aaai.v35i16.17686
10.1109/TAFFC.2018.2817622
10.1109/JBHI.2017.2688239
10.1609/aaai.v34i02.5492
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TAFFC.2025.3561439
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1949-3045
EndPage 2409
ExternalDocumentID 10_1109_TAFFC_2025_3561439
10966018
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62306317
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2023JBMC056
  funderid: 10.13039/501100012226
– fundername: Open Project of Key Laboratory of Biomedical Engineering of Hainan Province
  grantid: BME20240003
– fundername: Key Program of the National Natural Science Foundation of China
  grantid: 62436005
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNI
RZB
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c249t-2cc59a20e3483fef8b0e08f830f6f08bd7e546a2895134e6374c5244eb40e5d23
IEDL.DBID RIE
ISSN 1949-3045
IngestDate Sun Sep 07 23:59:53 EDT 2025
Wed Oct 01 05:27:00 EDT 2025
Wed Sep 17 06:32:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-2cc59a20e3483fef8b0e08f830f6f08bd7e546a2895134e6374c5244eb40e5d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1017-2231
0000-0002-3668-2950
0000-0002-8523-1419
0000-0002-1611-4323
PQID 3247541286
PQPubID 2040414
PageCount 14
ParticipantIDs ieee_primary_10966018
proquest_journals_3247541286
crossref_primary_10_1109_TAFFC_2025_3561439
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on affective computing
PublicationTitleAbbrev TAFFC
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref12
ref56
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
Kipf (ref48) 2016
ref19
ref18
Liu (ref13) 2019
ref51
ref50
Bahdanau (ref36) 2014
ref45
ref47
ref42
ref41
Simonyan (ref35) 2014
ref44
ref43
ref8
ref7
ref9
Lu (ref31)
ref4
ref3
ref6
ref5
Yun (ref46) 2019
ref40
ref34
ref37
ref30
James (ref1) 2013
ref33
ref32
ref2
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Chung (ref49) 2014
References_xml – start-page: 1170
  volume-title: Proc. Int. Joint Conf. Artif. Intell.
  ident: ref31
  article-title: Combining eye movements and eeg to enhance emotion recognition
– ident: ref11
  doi: 10.1016/j.biopsycho.2010.03.010
– ident: ref16
  doi: 10.1109/EMBC.2019.8857852
– ident: ref56
  doi: 10.1109/TAMD.2015.2431497
– ident: ref33
  doi: 10.1109/TAFFC.2020.3025777
– ident: ref34
  doi: 10.1109/TAFFC.2017.2712143
– volume-title: What is an Emotion? Simon and Schuster
  year: 2013
  ident: ref1
– ident: ref45
  doi: 10.1103/PhysRevE.69.066138
– ident: ref40
  doi: 10.1007/978-3-030-04239-4_39
– ident: ref55
  doi: 10.1016/j.neucom.2013.06.046
– year: 2019
  ident: ref13
  article-title: Multimodal emotion recognition using deep canonical correlation analysis
– ident: ref30
  doi: 10.1109/ICMLC.2005.1527805
– ident: ref25
  doi: 10.1145/3394171.3413577
– ident: ref10
  doi: 10.1007/978-3-540-85099-1_4
– year: 2014
  ident: ref35
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref52
  doi: 10.1109/T-AFFC.2011.25
– ident: ref54
  doi: 10.1109/taffc.2022.3169001
– ident: ref5
  doi: 10.1109/EMBC44109.2020.9176738
– year: 2016
  ident: ref48
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref23
  doi: 10.1109/TASLP.2020.3001390
– ident: ref7
  doi: 10.1109/EMBC.2019.8856666
– year: 2014
  ident: ref36
  article-title: Neural machine translation by jointly learning to align and translate
– ident: ref20
  doi: 10.1109/TNNLS.2020.3016666
– ident: ref57
  doi: 10.1145/3442381.3449914
– ident: ref15
  doi: 10.1007/978-3-319-71589-6_33
– ident: ref47
  doi: 10.1609/aaai.v34i04.5984
– ident: ref41
  doi: 10.1145/3366423.3380073
– year: 2019
  ident: ref46
  article-title: Graph transformer networks
– ident: ref2
  doi: 10.1007/BF02471106
– ident: ref8
  doi: 10.1145/3394171.3413724
– ident: ref29
  doi: 10.1109/TCYB.2018.2797176
– ident: ref4
  doi: 10.1109/TNNLS.2020.3048385
– year: 2014
  ident: ref49
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
– ident: ref9
  doi: 10.1016/j.inffus.2019.06.019
– ident: ref27
  doi: 10.1145/3474085.3475583
– ident: ref44
  doi: 10.1145/3308558.3313562
– ident: ref50
  doi: 10.1109/T-AFFC.2011.15
– ident: ref6
  doi: 10.1109/IJCNN.2018.8489283
– ident: ref17
  doi: 10.1007/978-3-319-46672-9_58
– ident: ref24
  doi: 10.1109/TAFFC.2020.3034215
– ident: ref3
  doi: 10.1016/j.patcog.2022.108833
– ident: ref21
  doi: 10.1007/s40747-021-00336-7
– ident: ref18
  doi: 10.1109/TAFFC.2020.2981440
– ident: ref53
  doi: 10.21236/ADA164453
– ident: ref43
  doi: 10.1145/3292500.3330961
– ident: ref26
  doi: 10.1037/0033-295X.110.1.145
– ident: ref38
  doi: 10.1109/TCYB.2017.2788081
– ident: ref42
  doi: 10.1109/TPAMI.2020.3032189
– ident: ref39
  doi: 10.1109/ICME.2014.6890166
– ident: ref37
  doi: 10.1109/IJCNN.2018.8489331
– ident: ref14
  doi: 10.1145/3343031.3350871
– ident: ref19
  doi: 10.1109/EMBC.2018.8512865
– ident: ref28
  doi: 10.1016/j.tics.2017.01.001
– ident: ref22
  doi: 10.1609/aaai.v35i16.17686
– ident: ref32
  doi: 10.1109/TAFFC.2018.2817622
– ident: ref51
  doi: 10.1109/JBHI.2017.2688239
– ident: ref12
  doi: 10.1609/aaai.v34i02.5492
SSID ssj0000333627
Score 2.3922112
Snippet The study of the relationship between emotions and physiological signals of subjects under multimedia stimulation is an emerging field, and many important...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2396
SubjectTerms Artificial neural networks
Brain modeling
Correlation
Data mining
Deep learning
dynamic graph
Electrocardiography
Electroencephalography
Emotion recognition
Emotions
Feature extraction
Graph neural networks
graph recurrent neural network
Heterogeneity
heterogeneous graph
Labels
Multi-modal emotion recognition
Neural networks
Physiology
Recurrent neural networks
Robustness
Title Two-Stream Dynamic Heterogeneous Graph Recurrent Neural Network for Multi-Label Multi-Modal Emotion Recognition
URI https://ieeexplore.ieee.org/document/10966018
https://www.proquest.com/docview/3247541286
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1949-3045
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000333627
  issn: 1949-3045
  databaseCode: RIE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7WkxfrE6tVcvAmqekm2c0eS20toj1Ihd6W3ezkonbFtgj-ejPJrhRF8JZDEkJmJvPIzDeEXIK10mldw-IoAiYlcKZ1YZnIpTTCcqs8SNLDNJ48ybu5mtfF6r4WBgB88hn0cOj_8svKrDFU5iQcsST7ukVaSZKGYq3vgAoXwj3GSVMYw9Pr2WA8HjoXMFI9gYCX2BB8Q_n4biq_nmCvV8ZtMm1OFNJJnnvrVdEznz_AGv995D2yW1uYdBBYYp9sweKAtJvuDbQW5kNSzT4qhp_S-Su9CX3p6QSTYyrHU1Ctl_QWwazpI0bkEcOJIpCH23kaMsepM3epr99l93kBL_X4oSrdnFHoDoSLQ35StTgiT-PRbDhhdfsFZpxPtmKRMSrNIw5CamHB6oID11YLbmPLdVEmoGScO49N9YWEWCTSKGctQCE5qDISx2R7US3ghFBrlCw1JGWuAS1EnSY8xh_YUkeGS-iQq4Yu2VtA2ci8d8LTzFMxQypmNRU75AgvemNmuOMO6Ta0zGpJXGbOYEyUdFo4Pv1j2RnZwd1DDm6XbK_e13DuLI1VceE57AuB_tFT
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT-swDLd4cOBdHt9ifObADWWEJmmzIwLGgG0HNCRuVZs6F2BFj01Pen89cdIiBELilkPSRrEd27H9M8AROqe81rU8TRLkSqHgxpSOy0IpK51wOoAkjcbp4F7dPOiHplg91MIgYkg-wy4NQyy_qu2cnsq8hBOW5Kn5BUvauxVZLNd6f1IRUvrrOGtLY0TvZHLW7597JzDRXUmQl9QS_IP6Cf1UvlzCQbP0V2Dc7ikmlDx257Oya_9_gmv88aZX4U9jY7KzyBRrsIDTdVhp-zewRpw3oJ78qzmFpYtndhE707MBpcfUnquwnr-yK4KzZnf0Jk8oToygPPyXxzF3nHmDl4UKXj4sSnxqxqO68nMuY38gWhwzlOrpJtz3LyfnA940YODWe2Uznlire0UiUCojHTpTChTGGSlc6oQpqwy1Sgvvs-lTqTCVmbLa2wtYKoG6SuQWLE7rKW4Dc1arymBWFQbJRjS9TKQUg61MYoXCDhy3dMlfIs5GHvwT0csDFXOiYt5QsQObdNAfZsYz7sBeS8u8kcXX3JuMmVZeD6c73yw7hOXBZDTMh9fj2134TX-KGbl7sDj7O8d9b3fMyoPAbW-qRdSk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Stream+Dynamic+Heterogeneous+Graph+Recurrent+Neural+Network+for+Multi-Label+Multi-Modal+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Wang%2C+Jing&rft.au=Feng%2C+Zhiyang&rft.au=Ning%2C+Xiaojun&rft.au=Lin%2C+Youfang&rft.date=2025-07-01&rft.issn=1949-3045&rft.eissn=1949-3045&rft.volume=16&rft.issue=3&rft.spage=2396&rft.epage=2409&rft_id=info:doi/10.1109%2FTAFFC.2025.3561439&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAFFC_2025_3561439
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon