Two-Stream Dynamic Heterogeneous Graph Recurrent Neural Network for Multi-Label Multi-Modal Emotion Recognition
The study of the relationship between emotions and physiological signals of subjects under multimedia stimulation is an emerging field, and many important advances are made. However, there are still some challenges: 1) How to effectively utilize the complementarity among spatial-spectral-temporal do...
Saved in:
Published in | IEEE transactions on affective computing Vol. 16; no. 3; pp. 2396 - 2409 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1949-3045 1949-3045 |
DOI | 10.1109/TAFFC.2025.3561439 |
Cover
Abstract | The study of the relationship between emotions and physiological signals of subjects under multimedia stimulation is an emerging field, and many important advances are made. However, there are still some challenges: 1) How to effectively utilize the complementarity among spatial-spectral-temporal domain information. 2) How to employ the heterogeneity and the correlation among multi-modal physiological signals simultaneously. 3) How to improve the robustness of the model dealing with missing channels. 4) How to model the dependency among different emotions. In this paper, we propose a novel two-stream Dynamic Heterogeneous Graph Recurrent Neural Network called DHGRNN. Specifically, DHGRNN consists of a spatial-temporal stream, a spatial-spectral stream, a fusion layer, and a multi-label classifier. Each stream is composed of a graph transformer network, evolved graph convolutional neural network, and gated recurrent units. We propose a graph-based two-stream structure to fuse the information of the spatial-spectral-temporal domain simultaneously. Graph transformer network and evolved graph convolutional neural network are used to model the heterogeneity and correlation of multi-modal physiological signals, respectively. To deal with the problem of robustness in the face of missing channel data, we transform it into the problem of dynamic graphs and use a dynamic graph neural network to improve the robustness. In addition, we propose a multi-label classifier to model the dependency among different emotion dimensions. Experiments on three public datasets demonstrate that our proposed model outperforms existing state-of-the-art methods. |
---|---|
AbstractList | The study of the relationship between emotions and physiological signals of subjects under multimedia stimulation is an emerging field, and many important advances are made. However, there are still some challenges: 1) How to effectively utilize the complementarity among spatial-spectral-temporal domain information. 2) How to employ the heterogeneity and the correlation among multi-modal physiological signals simultaneously. 3) How to improve the robustness of the model dealing with missing channels. 4) How to model the dependency among different emotions. In this paper, we propose a novel two-stream Dynamic Heterogeneous Graph Recurrent Neural Network called DHGRNN. Specifically, DHGRNN consists of a spatial-temporal stream, a spatial-spectral stream, a fusion layer, and a multi-label classifier. Each stream is composed of a graph transformer network, evolved graph convolutional neural network, and gated recurrent units. We propose a graph-based two-stream structure to fuse the information of the spatial-spectral-temporal domain simultaneously. Graph transformer network and evolved graph convolutional neural network are used to model the heterogeneity and correlation of multi-modal physiological signals, respectively. To deal with the problem of robustness in the face of missing channel data, we transform it into the problem of dynamic graphs and use a dynamic graph neural network to improve the robustness. In addition, we propose a multi-label classifier to model the dependency among different emotion dimensions. Experiments on three public datasets demonstrate that our proposed model outperforms existing state-of-the-art methods. |
Author | Lin, Youfang Ning, Xiaojun Jia, Ziyu Feng, Zhiyang Chen, Badong Wang, Jing |
Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0002-1017-2231 surname: Wang fullname: Wang, Jing email: wj@bjtu.edu.cn organization: Beijing Key Laboratory of Traffic Data Mining and Embodied Intelligence, School of Computer Science and Technology, Beijing Jiaotong University, Beijing, China – sequence: 2 givenname: Zhiyang surname: Feng fullname: Feng, Zhiyang email: zhiyangfeng@bjtu.edu.cn organization: Beijing Key Laboratory of Traffic Data Mining and Embodied Intelligence, School of Computer Science and Technology, Beijing Jiaotong University, Beijing, China – sequence: 3 givenname: Xiaojun orcidid: 0000-0002-3668-2950 surname: Ning fullname: Ning, Xiaojun email: ningxj@bjtu.edu.cn organization: Beijing Key Laboratory of Traffic Data Mining and Embodied Intelligence, School of Computer Science and Technology, Beijing Jiaotong University, Beijing, China – sequence: 4 givenname: Youfang orcidid: 0000-0002-1611-4323 surname: Lin fullname: Lin, Youfang email: yflin@bjtu.edu.cn organization: Beijing Key Laboratory of Traffic Data Mining and Embodied Intelligence, School of Computer Science and Technology, Beijing Jiaotong University, Beijing, China – sequence: 5 givenname: Badong surname: Chen fullname: Chen, Badong email: chenbd@mail.xjtu.edu.cn organization: Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China – sequence: 6 givenname: Ziyu orcidid: 0000-0002-8523-1419 surname: Jia fullname: Jia, Ziyu email: jia.ziyu@outlook.com organization: Beijing Key Laboratory of Brainnetome and Brain-Computer Interface, Institute of Automation, Chinese Academy of Sciences, Beijing, China |
BookMark | eNpNkE1PwkAQhjcGExH5A8ZDE8_F_W73SFDABDRRPG-2ZRaLdBe3bQj_3lY4MJd5D-8zkzy3qOe8A4TuCR4RgtXTajydTkYUUzFiQhLO1BXqE8VVzDAXvYt8g4ZVtcXtMMYkTfrIrw4-_qwDmDJ6PjpTFnk0hxqC34AD31TRLJj9d_QBeRMCuDp6gyaYXbvqgw8_kfUhWja7uogXJoPdOS_9uu28lL4uvOtgv3FFl-_QtTW7CobnPUBf05fVZB4v3mevk_EizilXdUzzXChDMTCeMgs2zTDg1KYMW2lxmq0TEFwamipBGAfJEp4LyjlkHINYUzZAj6e7--B_G6hqvfVNcO1LzShPBCc0lW2Lnlp58FUVwOp9KEoTjppg3bnV_25151af3bbQwwkqAOACUFJikrI_zs93gQ |
CODEN | ITACBQ |
Cites_doi | 10.1016/j.biopsycho.2010.03.010 10.1109/EMBC.2019.8857852 10.1109/TAMD.2015.2431497 10.1109/TAFFC.2020.3025777 10.1109/TAFFC.2017.2712143 10.1103/PhysRevE.69.066138 10.1007/978-3-030-04239-4_39 10.1016/j.neucom.2013.06.046 10.1109/ICMLC.2005.1527805 10.1145/3394171.3413577 10.1007/978-3-540-85099-1_4 10.1109/T-AFFC.2011.25 10.1109/taffc.2022.3169001 10.1109/EMBC44109.2020.9176738 10.1109/TASLP.2020.3001390 10.1109/EMBC.2019.8856666 10.1109/TNNLS.2020.3016666 10.1145/3442381.3449914 10.1007/978-3-319-71589-6_33 10.1609/aaai.v34i04.5984 10.1145/3366423.3380073 10.1007/BF02471106 10.1145/3394171.3413724 10.1109/TCYB.2018.2797176 10.1109/TNNLS.2020.3048385 10.1016/j.inffus.2019.06.019 10.1145/3474085.3475583 10.1145/3308558.3313562 10.1109/T-AFFC.2011.15 10.1109/IJCNN.2018.8489283 10.1007/978-3-319-46672-9_58 10.1109/TAFFC.2020.3034215 10.1016/j.patcog.2022.108833 10.1007/s40747-021-00336-7 10.1109/TAFFC.2020.2981440 10.21236/ADA164453 10.1145/3292500.3330961 10.1037/0033-295X.110.1.145 10.1109/TCYB.2017.2788081 10.1109/TPAMI.2020.3032189 10.1109/ICME.2014.6890166 10.1109/IJCNN.2018.8489331 10.1145/3343031.3350871 10.1109/EMBC.2018.8512865 10.1016/j.tics.2017.01.001 10.1609/aaai.v35i16.17686 10.1109/TAFFC.2018.2817622 10.1109/JBHI.2017.2688239 10.1609/aaai.v34i02.5492 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TAFFC.2025.3561439 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1949-3045 |
EndPage | 2409 |
ExternalDocumentID | 10_1109_TAFFC_2025_3561439 10966018 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62306317 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 2023JBMC056 funderid: 10.13039/501100012226 – fundername: Open Project of Key Laboratory of Biomedical Engineering of Hainan Province grantid: BME20240003 – fundername: Key Program of the National Natural Science Foundation of China grantid: 62436005 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNI RZB AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c249t-2cc59a20e3483fef8b0e08f830f6f08bd7e546a2895134e6374c5244eb40e5d23 |
IEDL.DBID | RIE |
ISSN | 1949-3045 |
IngestDate | Sun Sep 07 23:59:53 EDT 2025 Wed Oct 01 05:27:00 EDT 2025 Wed Sep 17 06:32:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-2cc59a20e3483fef8b0e08f830f6f08bd7e546a2895134e6374c5244eb40e5d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1017-2231 0000-0002-3668-2950 0000-0002-8523-1419 0000-0002-1611-4323 |
PQID | 3247541286 |
PQPubID | 2040414 |
PageCount | 14 |
ParticipantIDs | ieee_primary_10966018 proquest_journals_3247541286 crossref_primary_10_1109_TAFFC_2025_3561439 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on affective computing |
PublicationTitleAbbrev | TAFFC |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref12 ref56 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 Kipf (ref48) 2016 ref19 ref18 Liu (ref13) 2019 ref51 ref50 Bahdanau (ref36) 2014 ref45 ref47 ref42 ref41 Simonyan (ref35) 2014 ref44 ref43 ref8 ref7 ref9 Lu (ref31) ref4 ref3 ref6 ref5 Yun (ref46) 2019 ref40 ref34 ref37 ref30 James (ref1) 2013 ref33 ref32 ref2 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Chung (ref49) 2014 |
References_xml | – start-page: 1170 volume-title: Proc. Int. Joint Conf. Artif. Intell. ident: ref31 article-title: Combining eye movements and eeg to enhance emotion recognition – ident: ref11 doi: 10.1016/j.biopsycho.2010.03.010 – ident: ref16 doi: 10.1109/EMBC.2019.8857852 – ident: ref56 doi: 10.1109/TAMD.2015.2431497 – ident: ref33 doi: 10.1109/TAFFC.2020.3025777 – ident: ref34 doi: 10.1109/TAFFC.2017.2712143 – volume-title: What is an Emotion? Simon and Schuster year: 2013 ident: ref1 – ident: ref45 doi: 10.1103/PhysRevE.69.066138 – ident: ref40 doi: 10.1007/978-3-030-04239-4_39 – ident: ref55 doi: 10.1016/j.neucom.2013.06.046 – year: 2019 ident: ref13 article-title: Multimodal emotion recognition using deep canonical correlation analysis – ident: ref30 doi: 10.1109/ICMLC.2005.1527805 – ident: ref25 doi: 10.1145/3394171.3413577 – ident: ref10 doi: 10.1007/978-3-540-85099-1_4 – year: 2014 ident: ref35 article-title: Very deep convolutional networks for large-scale image recognition – ident: ref52 doi: 10.1109/T-AFFC.2011.25 – ident: ref54 doi: 10.1109/taffc.2022.3169001 – ident: ref5 doi: 10.1109/EMBC44109.2020.9176738 – year: 2016 ident: ref48 article-title: Semi-supervised classification with graph convolutional networks – ident: ref23 doi: 10.1109/TASLP.2020.3001390 – ident: ref7 doi: 10.1109/EMBC.2019.8856666 – year: 2014 ident: ref36 article-title: Neural machine translation by jointly learning to align and translate – ident: ref20 doi: 10.1109/TNNLS.2020.3016666 – ident: ref57 doi: 10.1145/3442381.3449914 – ident: ref15 doi: 10.1007/978-3-319-71589-6_33 – ident: ref47 doi: 10.1609/aaai.v34i04.5984 – ident: ref41 doi: 10.1145/3366423.3380073 – year: 2019 ident: ref46 article-title: Graph transformer networks – ident: ref2 doi: 10.1007/BF02471106 – ident: ref8 doi: 10.1145/3394171.3413724 – ident: ref29 doi: 10.1109/TCYB.2018.2797176 – ident: ref4 doi: 10.1109/TNNLS.2020.3048385 – year: 2014 ident: ref49 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling – ident: ref9 doi: 10.1016/j.inffus.2019.06.019 – ident: ref27 doi: 10.1145/3474085.3475583 – ident: ref44 doi: 10.1145/3308558.3313562 – ident: ref50 doi: 10.1109/T-AFFC.2011.15 – ident: ref6 doi: 10.1109/IJCNN.2018.8489283 – ident: ref17 doi: 10.1007/978-3-319-46672-9_58 – ident: ref24 doi: 10.1109/TAFFC.2020.3034215 – ident: ref3 doi: 10.1016/j.patcog.2022.108833 – ident: ref21 doi: 10.1007/s40747-021-00336-7 – ident: ref18 doi: 10.1109/TAFFC.2020.2981440 – ident: ref53 doi: 10.21236/ADA164453 – ident: ref43 doi: 10.1145/3292500.3330961 – ident: ref26 doi: 10.1037/0033-295X.110.1.145 – ident: ref38 doi: 10.1109/TCYB.2017.2788081 – ident: ref42 doi: 10.1109/TPAMI.2020.3032189 – ident: ref39 doi: 10.1109/ICME.2014.6890166 – ident: ref37 doi: 10.1109/IJCNN.2018.8489331 – ident: ref14 doi: 10.1145/3343031.3350871 – ident: ref19 doi: 10.1109/EMBC.2018.8512865 – ident: ref28 doi: 10.1016/j.tics.2017.01.001 – ident: ref22 doi: 10.1609/aaai.v35i16.17686 – ident: ref32 doi: 10.1109/TAFFC.2018.2817622 – ident: ref51 doi: 10.1109/JBHI.2017.2688239 – ident: ref12 doi: 10.1609/aaai.v34i02.5492 |
SSID | ssj0000333627 |
Score | 2.3922112 |
Snippet | The study of the relationship between emotions and physiological signals of subjects under multimedia stimulation is an emerging field, and many important... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2396 |
SubjectTerms | Artificial neural networks Brain modeling Correlation Data mining Deep learning dynamic graph Electrocardiography Electroencephalography Emotion recognition Emotions Feature extraction Graph neural networks graph recurrent neural network Heterogeneity heterogeneous graph Labels Multi-modal emotion recognition Neural networks Physiology Recurrent neural networks Robustness |
Title | Two-Stream Dynamic Heterogeneous Graph Recurrent Neural Network for Multi-Label Multi-Modal Emotion Recognition |
URI | https://ieeexplore.ieee.org/document/10966018 https://www.proquest.com/docview/3247541286 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1949-3045 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000333627 issn: 1949-3045 databaseCode: RIE dateStart: 20100101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7WkxfrE6tVcvAmqekm2c0eS20toj1Ihd6W3ezkonbFtgj-ejPJrhRF8JZDEkJmJvPIzDeEXIK10mldw-IoAiYlcKZ1YZnIpTTCcqs8SNLDNJ48ybu5mtfF6r4WBgB88hn0cOj_8svKrDFU5iQcsST7ukVaSZKGYq3vgAoXwj3GSVMYw9Pr2WA8HjoXMFI9gYCX2BB8Q_n4biq_nmCvV8ZtMm1OFNJJnnvrVdEznz_AGv995D2yW1uYdBBYYp9sweKAtJvuDbQW5kNSzT4qhp_S-Su9CX3p6QSTYyrHU1Ctl_QWwazpI0bkEcOJIpCH23kaMsepM3epr99l93kBL_X4oSrdnFHoDoSLQ35StTgiT-PRbDhhdfsFZpxPtmKRMSrNIw5CamHB6oID11YLbmPLdVEmoGScO49N9YWEWCTSKGctQCE5qDISx2R7US3ghFBrlCw1JGWuAS1EnSY8xh_YUkeGS-iQq4Yu2VtA2ci8d8LTzFMxQypmNRU75AgvemNmuOMO6Ta0zGpJXGbOYEyUdFo4Pv1j2RnZwd1DDm6XbK_e13DuLI1VceE57AuB_tFT |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT-swDLd4cOBdHt9ifObADWWEJmmzIwLGgG0HNCRuVZs6F2BFj01Pen89cdIiBELilkPSRrEd27H9M8AROqe81rU8TRLkSqHgxpSOy0IpK51wOoAkjcbp4F7dPOiHplg91MIgYkg-wy4NQyy_qu2cnsq8hBOW5Kn5BUvauxVZLNd6f1IRUvrrOGtLY0TvZHLW7597JzDRXUmQl9QS_IP6Cf1UvlzCQbP0V2Dc7ikmlDx257Oya_9_gmv88aZX4U9jY7KzyBRrsIDTdVhp-zewRpw3oJ78qzmFpYtndhE707MBpcfUnquwnr-yK4KzZnf0Jk8oToygPPyXxzF3nHmDl4UKXj4sSnxqxqO68nMuY38gWhwzlOrpJtz3LyfnA940YODWe2Uznlire0UiUCojHTpTChTGGSlc6oQpqwy1Sgvvs-lTqTCVmbLa2wtYKoG6SuQWLE7rKW4Dc1arymBWFQbJRjS9TKQUg61MYoXCDhy3dMlfIs5GHvwT0csDFXOiYt5QsQObdNAfZsYz7sBeS8u8kcXX3JuMmVZeD6c73yw7hOXBZDTMh9fj2134TX-KGbl7sDj7O8d9b3fMyoPAbW-qRdSk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Stream+Dynamic+Heterogeneous+Graph+Recurrent+Neural+Network+for+Multi-Label+Multi-Modal+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Wang%2C+Jing&rft.au=Feng%2C+Zhiyang&rft.au=Ning%2C+Xiaojun&rft.au=Lin%2C+Youfang&rft.date=2025-07-01&rft.issn=1949-3045&rft.eissn=1949-3045&rft.volume=16&rft.issue=3&rft.spage=2396&rft.epage=2409&rft_id=info:doi/10.1109%2FTAFFC.2025.3561439&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAFFC_2025_3561439 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon |