Comparative Analysis of EMD and VMD Algorithm in Speech Enhancement
Signal enhancement is useful in many areas like social, medicine and engineering. It can be utilized in data mining approach for social and security aspects. Signal decomposition method is an alternative choice due to the elimination of noise and signal enhancement. In this paper, two different algo...
Saved in:
| Published in | International journal of natural computing research Vol. 6; no. 1; pp. 17 - 35 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Hershey
IGI Global
01.01.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1947-928X 1947-9298 |
| DOI | 10.4018/IJNCR.2017010102 |
Cover
| Abstract | Signal enhancement is useful in many areas like social, medicine and engineering. It can be utilized in data mining approach for social and security aspects. Signal decomposition method is an alternative choice due to the elimination of noise and signal enhancement. In this paper, two different algorithms such as Empirical Mode Decomposition (EMD) and Variational Mode Decomposition (VMD) are used. The bands are updated concurrently and adaptively in each mode. That performs better than the traditional methods for non-recursive signals. Further it has been investigated that VMD outperforms EMD due to its self-optimization methods as well as adaptively using Wiener filter. It is shown in the result section. Different noise levels as 0dB, 5dB, 10dB and 15dB are considered for input signal. |
|---|---|
| AbstractList | Signal enhancement is useful in many areas like social, medicine and engineering. It can be utilized in data mining approach for social and security aspects. Signal decomposition method is an alternative choice due to the elimination of noise and signal enhancement. In this paper, two different algorithms such as Empirical Mode Decomposition (EMD) and Variational Mode Decomposition (VMD) are used. The bands are updated concurrently and adaptively in each mode. That performs better than the traditional methods for non-recursive signals. Further it has been investigated that VMD outperforms EMD due to its self-optimization methods as well as adaptively using Wiener filter. It is shown in the result section. Different noise levels as 0dB, 5dB, 10dB and 15dB are considered for input signal. |
| Audience | Academic |
| Author | Mohanty, Mihir Narayan Ram, Rashmirekha |
| AuthorAffiliation | Department of Electronics and Communication Engineering, Siksha ‘O' Anusandhan University, Bhubaneswar, India |
| AuthorAffiliation_xml | – name: Department of Electronics and Communication Engineering, Siksha ‘O' Anusandhan University, Bhubaneswar, India |
| Author_xml | – sequence: 1 givenname: Rashmirekha surname: Ram fullname: Ram, Rashmirekha organization: Department of Electronics and Communication Engineering, Siksha ‘O' Anusandhan University, Bhubaneswar, India – sequence: 2 givenname: Mihir surname: Mohanty middlename: Narayan fullname: Mohanty, Mihir Narayan organization: Department of Electronics and Communication Engineering, Siksha ‘O' Anusandhan University, Bhubaneswar, India |
| BookMark | eNp9kUtPxCAUhYnRxNfsXTZx48KOUGgpy0kdXxk18RV3hLbQYjpQoWPivxedUROjXhIuCd-Bm3O2wbqxRgKwh-CYQJQfnV9cFTfjBCIKUVjJGthCjNCYJSxf_zrnj5tg5P0TDJUSStN0CxSFnffCiUG_yGhiRPfqtY-siqaXx5EwdfQQ-qRrrNNDO4-0iW57Kas2mppWmErOpRl2wYYSnZejVd8B9yfTu-Isnl2fnheTWVwlhNG4zFXNSixDYViTtC6RQrjCROSYCioJQ5LBitVM1VClSEBak3DPSJmJRGZ4B-wv3-2dfV5IP_Anu3BhZs8ThinFNMlpoA6XVCM6ycuF10b6sHndtINvxMJ7PqEZZASneRrwbIlXznrvpOKVHoId1gxO6I4jyN8t5h8W82-LgxD-EPZOz4V7_U9ysJToRn_P_hPjfa0CevILugqKfwbFreIhKC7--jLDb132oe4 |
| CitedBy_id | crossref_primary_10_1007_s11277_021_08899_x crossref_primary_10_3390_s24051642 crossref_primary_10_1016_j_rinp_2023_106727 crossref_primary_10_1016_j_bspc_2021_103009 crossref_primary_10_3390_e24070927 crossref_primary_10_1016_j_measurement_2020_108297 crossref_primary_10_3390_polym15122647 crossref_primary_10_1002_tee_23970 crossref_primary_10_1007_s10772_018_9515_8 crossref_primary_10_1107_S1600577523000528 crossref_primary_10_1109_ACCESS_2022_3202971 |
| Cites_doi | 10.1109/TSP.2013.2288675 10.1201/9781420015836 10.1109/89.709670 10.3390/jimaging1010060 10.1109/89.397090 10.1109/TASLP.2014.2312541 10.4236/jsip.2015.63023 10.1109/JSTARS.2016.2529702 10.1121/1.4837835 10.1109/ICIINFS.2014.7036515 10.1109/TASSP.1985.1164550 10.1098/rspa.1998.0193 10.1109/ISCAS.2014.6865634 10.1016/j.sigpro.2016.02.011 10.1049/el.2016.4439 10.1109/ICACCI.2016.7732196 10.1109/ICCSP.2015.7322720 10.1016/j.protcy.2015.10.048 10.1109/TASSP.1979.1163209 10.1007/978-3-319-44790-2 10.1109/TASL.2011.2172428 10.1201/9781315399744 10.1016/j.procs.2015.02.033 10.1109/SCOPES.2016.7955669 10.17485/ijst/2016/v9i44/102867 10.1155/2008/873204 10.1016/j.jfranklin.2015.04.001 10.1109/CSNDSP.2014.6923834 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2017 IGI Global Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. |
| Copyright_xml | – notice: COPYRIGHT 2017 IGI Global – notice: Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. |
| DBID | AAYXX CITATION N95 7SC 8FD 8FE 8FG 8FH ABJCF AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M LK8 L~C L~D M7P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.4018/IJNCR.2017010102 |
| DatabaseName | CrossRef Gale Business: Insights Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Materials Science & Engineering Collection ProQuest Central ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1947-9298 |
| EndPage | 35 |
| ExternalDocumentID | A760943585 10_4018_IJNCR_2017010102 arative_Analysis_of_EMD_a10_4018_IJNCR_20170101026 |
| GroupedDBID | ABEPT ADEKF ALMA_UNASSIGNED_HOLDINGS COVLG EBS EJD H13 JRD MV1 NEEBM RIF 0R~ 4.4 AAYVP AAYXX ABJCF ACOJC ADMLS AFKRA ARAPS BAAKF BBNVY BENPR BGLVJ BHPHI BYHXH CBWLS CCPQU CIGCI CITATION CKMBR CTSEY HCIFZ HZ~ IAO ICD ITC K7- M7P M7S N95 O9- PHGZM PHGZT PQGLB PTHSS PUEGO 7SC 8FD 8FE 8FG 8FH AZQEC DWQXO GNUQQ JQ2 L6V L7M LK8 L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c2497-b8fd9b3eeee30d45db1f13c34a837a7e491e90c9d9fd0f51a07d43c394b6a2e63 |
| IEDL.DBID | BENPR |
| ISSN | 1947-928X |
| IngestDate | Fri Jul 25 10:33:48 EDT 2025 Fri May 23 01:08:38 EDT 2025 Thu Apr 24 23:03:23 EDT 2025 Wed Oct 01 02:38:43 EDT 2025 Tue Jan 05 23:29:10 EST 2021 Thu May 09 18:42:39 EDT 2019 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2497-b8fd9b3eeee30d45db1f13c34a837a7e491e90c9d9fd0f51a07d43c394b6a2e63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2937737287 |
| PQPubID | 2045820 |
| PageCount | 19 |
| ParticipantIDs | crossref_primary_10_4018_IJNCR_2017010102 crossref_citationtrail_10_4018_IJNCR_2017010102 proquest_journals_2937737287 igi_journals_arative_Analysis_of_EMD_a10_4018_IJNCR_20170101026 gale_businessinsightsgauss_A760943585 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-01-01T00:00:00 2017-01-00 20170101 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01T00:00:00 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Hershey |
| PublicationPlace_xml | – name: Hershey |
| PublicationTitle | International journal of natural computing research |
| PublicationYear | 2017 |
| Publisher | IGI Global |
| Publisher_xml | – name: IGI Global |
| References | IJNCR.2017010102-16 IJNCR.2017010102-18 IJNCR.2017010102-19 IJNCR.2017010102-0 IJNCR.2017010102-2 IJNCR.2017010102-1 IJNCR.2017010102-30 IJNCR.2017010102-10 IJNCR.2017010102-11 IJNCR.2017010102-12 IJNCR.2017010102-13 IJNCR.2017010102-14 P.Loizou (IJNCR.2017010102-17) 2007 IJNCR.2017010102-27 IJNCR.2017010102-29 Y.Wang (IJNCR.2017010102-28) 2016; 120 IJNCR.2017010102-20 IJNCR.2017010102-21 IJNCR.2017010102-22 IJNCR.2017010102-23 IJNCR.2017010102-24 IJNCR.2017010102-25 S.Lahmiri (IJNCR.2017010102-15) 2015 IJNCR.2017010102-26 IJNCR.2017010102-4 IJNCR.2017010102-3 IJNCR.2017010102-6 IJNCR.2017010102-5 IJNCR.2017010102-8 IJNCR.2017010102-7 IJNCR.2017010102-9 |
| References_xml | – ident: IJNCR.2017010102-7 doi: 10.1109/TSP.2013.2288675 – year: 2007 ident: IJNCR.2017010102-17 publication-title: Speech enhancement theory and practice doi: 10.1201/9781420015836 – ident: IJNCR.2017010102-23 doi: 10.1109/89.709670 – ident: IJNCR.2017010102-5 doi: 10.3390/jimaging1010060 – ident: IJNCR.2017010102-9 doi: 10.1109/89.397090 – ident: IJNCR.2017010102-30 doi: 10.1109/TASLP.2014.2312541 – ident: IJNCR.2017010102-2 doi: 10.4236/jsip.2015.63023 – ident: IJNCR.2017010102-29 doi: 10.1109/JSTARS.2016.2529702 – ident: IJNCR.2017010102-14 doi: 10.1121/1.4837835 – ident: IJNCR.2017010102-18 doi: 10.1109/ICIINFS.2014.7036515 – ident: IJNCR.2017010102-8 doi: 10.1109/TASSP.1985.1164550 – ident: IJNCR.2017010102-19 – ident: IJNCR.2017010102-11 doi: 10.1098/rspa.1998.0193 – year: 2015 ident: IJNCR.2017010102-15 publication-title: Comparing Variational and Empirical Mode Decomposition in Forecasting Day-Ahead Energy Prices – ident: IJNCR.2017010102-24 doi: 10.1109/ISCAS.2014.6865634 – volume: 120 start-page: 509 year: 2016 ident: IJNCR.2017010102-28 article-title: Filter bank property of variational mode decomposition and its applications. Signal Processing – ident: IJNCR.2017010102-16 doi: 10.1016/j.sigpro.2016.02.011 – ident: IJNCR.2017010102-27 doi: 10.1049/el.2016.4439 – ident: IJNCR.2017010102-25 doi: 10.1109/ICACCI.2016.7732196 – ident: IJNCR.2017010102-1 doi: 10.1109/ICCSP.2015.7322720 – ident: IJNCR.2017010102-22 doi: 10.1016/j.protcy.2015.10.048 – ident: IJNCR.2017010102-3 doi: 10.1109/TASSP.1979.1163209 – ident: IJNCR.2017010102-6 doi: 10.1007/978-3-319-44790-2 – ident: IJNCR.2017010102-4 doi: 10.1109/TASL.2011.2172428 – ident: IJNCR.2017010102-12 doi: 10.1201/9781315399744 – ident: IJNCR.2017010102-0 doi: 10.1016/j.procs.2015.02.033 – ident: IJNCR.2017010102-21 doi: 10.1109/SCOPES.2016.7955669 – ident: IJNCR.2017010102-20 doi: 10.17485/ijst/2016/v9i44/102867 – ident: IJNCR.2017010102-13 doi: 10.1155/2008/873204 – ident: IJNCR.2017010102-26 doi: 10.1016/j.jfranklin.2015.04.001 – ident: IJNCR.2017010102-10 doi: 10.1109/CSNDSP.2014.6923834 |
| SSID | ssj0000547755 |
| Score | 1.9763169 |
| Snippet | Signal enhancement is useful in many areas like social, medicine and engineering. It can be utilized in data mining approach for social and security aspects.... |
| SourceID | proquest gale crossref igi |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 17 |
| SubjectTerms | Algorithms Communication Comparative analysis Data mining Empirical analysis Fourier transforms Mean square errors Methods Noise Noise levels Security aspects Speech Speech processing Support vector machines Wavelet transforms Wiener filtering |
| Title | Comparative Analysis of EMD and VMD Algorithm in Speech Enhancement |
| URI | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJNCR.2017010102 https://www.proquest.com/docview/2937737287 |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1947-9298 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000547755 issn: 1947-928X databaseCode: ADMLS dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1947-9298 dateEnd: 20220131 omitProxy: true ssIdentifier: ssj0000547755 issn: 1947-928X databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFH9a2wsXvhEZozISHDhEbRIntg9oKl3LmGiFNoZ6s_yVttJIC-n-f55TZxWaWA7Jwc6T87P9nt-z834A740Rxtncxk6LPKao_2JltYpzxrLEcFHwhnluNi_Or-nFIl8cwbz9F8Yfq2x1YqOo7cb4GPkAzRLzlCqcnW5_x541yu-uthQaKlAr2E9NirEO9FKfGasLvc-T-ffLu6gLLlAYa6hQ0XlnsUj5Yr93iW4GH3y9mI8v_XEv5jOvhUhLa6uCxu6sl-t7ersxRtOn8DisIslo3-3P4MhVz-FJy9BAwoR9AePxIbk3afOPkE1JJrMzoipLfuJzdLPED92tfpF1Ra62zpkVmVQrPxx86PAlXE8nP8bncaBNiA36UizWvLRCZw6vbGhpbnVSJpnJqEJnVDFHReLE0AgrSjss80QNmaVYLqguVOqK7BV0q03lXgNBg25Sww1Ko9QJp7WiGWepZoI5m4oIBi1A0oSc4p7a4kaib-EhlQ2k8gBpBB_v3tju82k8UPeDx1wGOk681T5gUS_VbV3LESv8qUh0dyJ4h50iw-Sr78mRW1tGcPpPnQC9bKGXm1Ii9FL9rzFFBCdtpx_EHEbl8cPFb-CRl7UP3pxAd_fn1r3F5cxO96HDp1_60Budzb5d9cOI_QtGwfDK |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH_augNc-EYEBhiJHThEbRInjg_TVLpO7bZWaGyoN89faSuNtJBOiH-Ov43n1FmFJnZbDsnByVP0s_2-bL8fwEetubYmNaFVPA0p6r9QGiXDlLEk0jnP8pp5bjTOBhf0eJJOtuBPcxbGbatsdGKtqM1Cuxx5G80Sc5QqOTtY_ggda5RbXW0oNKSnVjD7dYkxf7DjxP7-hSFctT88xP7ei-Oj_nlvEHqWgVBj6MFClReGq8TilXQMTY2KiijRCZUYu0lmKY8s72hueGE6RRrJDjMU2zlVmYxtlqDcbdihCQprwc7n_vjL2U2WBx0ixmrq1YgjDDzOJ-u1Ugxr8vbweNw7c9vLmKv05jM7jW30FmJ7Pp3fshO18Tt6Ao-810q662H2FLZs-QweN4wQxCuI59DrbYqJk6beCVkUpD86JLI05Bs-u1dTBHY1-07mJfm6tFbPSL-cueHnUpUv4OJeAHwJrXJR2ldA0IHQsc41SqPUcquUpEnOYsU4sybmAbQbgIT2NcwdlcaVwFjGQSpqSMUG0gA-3XyxXNfvuOPdPYe58PSfeKtcgqSayuuqEl2WuV2YGF4F8AE7RfjJXt2SI5amCODgn3c89KKBXiwKgdAL-b-fyQLYbTp9I2YzC17f3fweHgzOR6fidDg-eQMPndx14mgXWquf1_YtulIr9c6PVwKX9z1F_gJu7ywv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Analysis+of+EMD+and+VMD+Algorithm+in+Speech+Enhancement&rft.jtitle=International+journal+of+natural+computing+research&rft.au=Rashmirekha+Ram&rft.au=Mohanty%2C+Mihir&rft.date=2017-01-01&rft.pub=IGI+Global&rft.issn=1947-928X&rft.eissn=1947-9298&rft.volume=6&rft.issue=1&rft.spage=17&rft.epage=35&rft_id=info:doi/10.4018%2FIJNCR.2017010102 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-928X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-928X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-928X&client=summon |