Comparative Analysis of EMD and VMD Algorithm in Speech Enhancement

Signal enhancement is useful in many areas like social, medicine and engineering. It can be utilized in data mining approach for social and security aspects. Signal decomposition method is an alternative choice due to the elimination of noise and signal enhancement. In this paper, two different algo...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of natural computing research Vol. 6; no. 1; pp. 17 - 35
Main Authors Ram, Rashmirekha, Mohanty, Mihir Narayan
Format Journal Article
LanguageEnglish
Published Hershey IGI Global 01.01.2017
Subjects
Online AccessGet full text
ISSN1947-928X
1947-9298
DOI10.4018/IJNCR.2017010102

Cover

Abstract Signal enhancement is useful in many areas like social, medicine and engineering. It can be utilized in data mining approach for social and security aspects. Signal decomposition method is an alternative choice due to the elimination of noise and signal enhancement. In this paper, two different algorithms such as Empirical Mode Decomposition (EMD) and Variational Mode Decomposition (VMD) are used. The bands are updated concurrently and adaptively in each mode. That performs better than the traditional methods for non-recursive signals. Further it has been investigated that VMD outperforms EMD due to its self-optimization methods as well as adaptively using Wiener filter. It is shown in the result section. Different noise levels as 0dB, 5dB, 10dB and 15dB are considered for input signal.
AbstractList Signal enhancement is useful in many areas like social, medicine and engineering. It can be utilized in data mining approach for social and security aspects. Signal decomposition method is an alternative choice due to the elimination of noise and signal enhancement. In this paper, two different algorithms such as Empirical Mode Decomposition (EMD) and Variational Mode Decomposition (VMD) are used. The bands are updated concurrently and adaptively in each mode. That performs better than the traditional methods for non-recursive signals. Further it has been investigated that VMD outperforms EMD due to its self-optimization methods as well as adaptively using Wiener filter. It is shown in the result section. Different noise levels as 0dB, 5dB, 10dB and 15dB are considered for input signal.
Audience Academic
Author Mohanty, Mihir Narayan
Ram, Rashmirekha
AuthorAffiliation Department of Electronics and Communication Engineering, Siksha ‘O' Anusandhan University, Bhubaneswar, India
AuthorAffiliation_xml – name: Department of Electronics and Communication Engineering, Siksha ‘O' Anusandhan University, Bhubaneswar, India
Author_xml – sequence: 1
  givenname: Rashmirekha
  surname: Ram
  fullname: Ram, Rashmirekha
  organization: Department of Electronics and Communication Engineering, Siksha ‘O' Anusandhan University, Bhubaneswar, India
– sequence: 2
  givenname: Mihir
  surname: Mohanty
  middlename: Narayan
  fullname: Mohanty, Mihir Narayan
  organization: Department of Electronics and Communication Engineering, Siksha ‘O' Anusandhan University, Bhubaneswar, India
BookMark eNp9kUtPxCAUhYnRxNfsXTZx48KOUGgpy0kdXxk18RV3hLbQYjpQoWPivxedUROjXhIuCd-Bm3O2wbqxRgKwh-CYQJQfnV9cFTfjBCIKUVjJGthCjNCYJSxf_zrnj5tg5P0TDJUSStN0CxSFnffCiUG_yGhiRPfqtY-siqaXx5EwdfQQ-qRrrNNDO4-0iW57Kas2mppWmErOpRl2wYYSnZejVd8B9yfTu-Isnl2fnheTWVwlhNG4zFXNSixDYViTtC6RQrjCROSYCioJQ5LBitVM1VClSEBak3DPSJmJRGZ4B-wv3-2dfV5IP_Anu3BhZs8ThinFNMlpoA6XVCM6ycuF10b6sHndtINvxMJ7PqEZZASneRrwbIlXznrvpOKVHoId1gxO6I4jyN8t5h8W82-LgxD-EPZOz4V7_U9ysJToRn_P_hPjfa0CevILugqKfwbFreIhKC7--jLDb132oe4
CitedBy_id crossref_primary_10_1007_s11277_021_08899_x
crossref_primary_10_3390_s24051642
crossref_primary_10_1016_j_rinp_2023_106727
crossref_primary_10_1016_j_bspc_2021_103009
crossref_primary_10_3390_e24070927
crossref_primary_10_1016_j_measurement_2020_108297
crossref_primary_10_3390_polym15122647
crossref_primary_10_1002_tee_23970
crossref_primary_10_1007_s10772_018_9515_8
crossref_primary_10_1107_S1600577523000528
crossref_primary_10_1109_ACCESS_2022_3202971
Cites_doi 10.1109/TSP.2013.2288675
10.1201/9781420015836
10.1109/89.709670
10.3390/jimaging1010060
10.1109/89.397090
10.1109/TASLP.2014.2312541
10.4236/jsip.2015.63023
10.1109/JSTARS.2016.2529702
10.1121/1.4837835
10.1109/ICIINFS.2014.7036515
10.1109/TASSP.1985.1164550
10.1098/rspa.1998.0193
10.1109/ISCAS.2014.6865634
10.1016/j.sigpro.2016.02.011
10.1049/el.2016.4439
10.1109/ICACCI.2016.7732196
10.1109/ICCSP.2015.7322720
10.1016/j.protcy.2015.10.048
10.1109/TASSP.1979.1163209
10.1007/978-3-319-44790-2
10.1109/TASL.2011.2172428
10.1201/9781315399744
10.1016/j.procs.2015.02.033
10.1109/SCOPES.2016.7955669
10.17485/ijst/2016/v9i44/102867
10.1155/2008/873204
10.1016/j.jfranklin.2015.04.001
10.1109/CSNDSP.2014.6923834
ContentType Journal Article
Copyright COPYRIGHT 2017 IGI Global
Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
Copyright_xml – notice: COPYRIGHT 2017 IGI Global
– notice: Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
DBID AAYXX
CITATION
N95
7SC
8FD
8FE
8FG
8FH
ABJCF
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
LK8
L~C
L~D
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.4018/IJNCR.2017010102
DatabaseName CrossRef
Gale Business: Insights
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Materials Science & Engineering Collection
ProQuest Central
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1947-9298
EndPage 35
ExternalDocumentID A760943585
10_4018_IJNCR_2017010102
arative_Analysis_of_EMD_a10_4018_IJNCR_20170101026
GroupedDBID ABEPT
ADEKF
ALMA_UNASSIGNED_HOLDINGS
COVLG
EBS
EJD
H13
JRD
MV1
NEEBM
RIF
0R~
4.4
AAYVP
AAYXX
ABJCF
ACOJC
ADMLS
AFKRA
ARAPS
BAAKF
BBNVY
BENPR
BGLVJ
BHPHI
BYHXH
CBWLS
CCPQU
CIGCI
CITATION
CKMBR
CTSEY
HCIFZ
HZ~
IAO
ICD
ITC
K7-
M7P
M7S
N95
O9-
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
7SC
8FD
8FE
8FG
8FH
AZQEC
DWQXO
GNUQQ
JQ2
L6V
L7M
LK8
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2497-b8fd9b3eeee30d45db1f13c34a837a7e491e90c9d9fd0f51a07d43c394b6a2e63
IEDL.DBID BENPR
ISSN 1947-928X
IngestDate Fri Jul 25 10:33:48 EDT 2025
Fri May 23 01:08:38 EDT 2025
Thu Apr 24 23:03:23 EDT 2025
Wed Oct 01 02:38:43 EDT 2025
Tue Jan 05 23:29:10 EST 2021
Thu May 09 18:42:39 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2497-b8fd9b3eeee30d45db1f13c34a837a7e491e90c9d9fd0f51a07d43c394b6a2e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2937737287
PQPubID 2045820
PageCount 19
ParticipantIDs crossref_primary_10_4018_IJNCR_2017010102
crossref_citationtrail_10_4018_IJNCR_2017010102
proquest_journals_2937737287
igi_journals_arative_Analysis_of_EMD_a10_4018_IJNCR_20170101026
gale_businessinsightsgauss_A760943585
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01T00:00:00
2017-01-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01T00:00:00
  day: 01
PublicationDecade 2010
PublicationPlace Hershey
PublicationPlace_xml – name: Hershey
PublicationTitle International journal of natural computing research
PublicationYear 2017
Publisher IGI Global
Publisher_xml – name: IGI Global
References IJNCR.2017010102-16
IJNCR.2017010102-18
IJNCR.2017010102-19
IJNCR.2017010102-0
IJNCR.2017010102-2
IJNCR.2017010102-1
IJNCR.2017010102-30
IJNCR.2017010102-10
IJNCR.2017010102-11
IJNCR.2017010102-12
IJNCR.2017010102-13
IJNCR.2017010102-14
P.Loizou (IJNCR.2017010102-17) 2007
IJNCR.2017010102-27
IJNCR.2017010102-29
Y.Wang (IJNCR.2017010102-28) 2016; 120
IJNCR.2017010102-20
IJNCR.2017010102-21
IJNCR.2017010102-22
IJNCR.2017010102-23
IJNCR.2017010102-24
IJNCR.2017010102-25
S.Lahmiri (IJNCR.2017010102-15) 2015
IJNCR.2017010102-26
IJNCR.2017010102-4
IJNCR.2017010102-3
IJNCR.2017010102-6
IJNCR.2017010102-5
IJNCR.2017010102-8
IJNCR.2017010102-7
IJNCR.2017010102-9
References_xml – ident: IJNCR.2017010102-7
  doi: 10.1109/TSP.2013.2288675
– year: 2007
  ident: IJNCR.2017010102-17
  publication-title: Speech enhancement theory and practice
  doi: 10.1201/9781420015836
– ident: IJNCR.2017010102-23
  doi: 10.1109/89.709670
– ident: IJNCR.2017010102-5
  doi: 10.3390/jimaging1010060
– ident: IJNCR.2017010102-9
  doi: 10.1109/89.397090
– ident: IJNCR.2017010102-30
  doi: 10.1109/TASLP.2014.2312541
– ident: IJNCR.2017010102-2
  doi: 10.4236/jsip.2015.63023
– ident: IJNCR.2017010102-29
  doi: 10.1109/JSTARS.2016.2529702
– ident: IJNCR.2017010102-14
  doi: 10.1121/1.4837835
– ident: IJNCR.2017010102-18
  doi: 10.1109/ICIINFS.2014.7036515
– ident: IJNCR.2017010102-8
  doi: 10.1109/TASSP.1985.1164550
– ident: IJNCR.2017010102-19
– ident: IJNCR.2017010102-11
  doi: 10.1098/rspa.1998.0193
– year: 2015
  ident: IJNCR.2017010102-15
  publication-title: Comparing Variational and Empirical Mode Decomposition in Forecasting Day-Ahead Energy Prices
– ident: IJNCR.2017010102-24
  doi: 10.1109/ISCAS.2014.6865634
– volume: 120
  start-page: 509
  year: 2016
  ident: IJNCR.2017010102-28
  article-title: Filter bank property of variational mode decomposition and its applications. Signal Processing
– ident: IJNCR.2017010102-16
  doi: 10.1016/j.sigpro.2016.02.011
– ident: IJNCR.2017010102-27
  doi: 10.1049/el.2016.4439
– ident: IJNCR.2017010102-25
  doi: 10.1109/ICACCI.2016.7732196
– ident: IJNCR.2017010102-1
  doi: 10.1109/ICCSP.2015.7322720
– ident: IJNCR.2017010102-22
  doi: 10.1016/j.protcy.2015.10.048
– ident: IJNCR.2017010102-3
  doi: 10.1109/TASSP.1979.1163209
– ident: IJNCR.2017010102-6
  doi: 10.1007/978-3-319-44790-2
– ident: IJNCR.2017010102-4
  doi: 10.1109/TASL.2011.2172428
– ident: IJNCR.2017010102-12
  doi: 10.1201/9781315399744
– ident: IJNCR.2017010102-0
  doi: 10.1016/j.procs.2015.02.033
– ident: IJNCR.2017010102-21
  doi: 10.1109/SCOPES.2016.7955669
– ident: IJNCR.2017010102-20
  doi: 10.17485/ijst/2016/v9i44/102867
– ident: IJNCR.2017010102-13
  doi: 10.1155/2008/873204
– ident: IJNCR.2017010102-26
  doi: 10.1016/j.jfranklin.2015.04.001
– ident: IJNCR.2017010102-10
  doi: 10.1109/CSNDSP.2014.6923834
SSID ssj0000547755
Score 1.9763169
Snippet Signal enhancement is useful in many areas like social, medicine and engineering. It can be utilized in data mining approach for social and security aspects....
SourceID proquest
gale
crossref
igi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17
SubjectTerms Algorithms
Communication
Comparative analysis
Data mining
Empirical analysis
Fourier transforms
Mean square errors
Methods
Noise
Noise levels
Security aspects
Speech
Speech processing
Support vector machines
Wavelet transforms
Wiener filtering
Title Comparative Analysis of EMD and VMD Algorithm in Speech Enhancement
URI http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJNCR.2017010102
https://www.proquest.com/docview/2937737287
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1947-9298
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000547755
  issn: 1947-928X
  databaseCode: ADMLS
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1947-9298
  dateEnd: 20220131
  omitProxy: true
  ssIdentifier: ssj0000547755
  issn: 1947-928X
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFH9a2wsXvhEZozISHDhEbRIntg9oKl3LmGiFNoZ6s_yVttJIC-n-f55TZxWaWA7Jwc6T87P9nt-z834A740Rxtncxk6LPKao_2JltYpzxrLEcFHwhnluNi_Or-nFIl8cwbz9F8Yfq2x1YqOo7cb4GPkAzRLzlCqcnW5_x541yu-uthQaKlAr2E9NirEO9FKfGasLvc-T-ffLu6gLLlAYa6hQ0XlnsUj5Yr93iW4GH3y9mI8v_XEv5jOvhUhLa6uCxu6sl-t7ersxRtOn8DisIslo3-3P4MhVz-FJy9BAwoR9AePxIbk3afOPkE1JJrMzoipLfuJzdLPED92tfpF1Ra62zpkVmVQrPxx86PAlXE8nP8bncaBNiA36UizWvLRCZw6vbGhpbnVSJpnJqEJnVDFHReLE0AgrSjss80QNmaVYLqguVOqK7BV0q03lXgNBg25Sww1Ko9QJp7WiGWepZoI5m4oIBi1A0oSc4p7a4kaib-EhlQ2k8gBpBB_v3tju82k8UPeDx1wGOk681T5gUS_VbV3LESv8qUh0dyJ4h50iw-Sr78mRW1tGcPpPnQC9bKGXm1Ii9FL9rzFFBCdtpx_EHEbl8cPFb-CRl7UP3pxAd_fn1r3F5cxO96HDp1_60Budzb5d9cOI_QtGwfDK
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH_augNc-EYEBhiJHThEbRInjg_TVLpO7bZWaGyoN89faSuNtJBOiH-Ov43n1FmFJnZbDsnByVP0s_2-bL8fwEetubYmNaFVPA0p6r9QGiXDlLEk0jnP8pp5bjTOBhf0eJJOtuBPcxbGbatsdGKtqM1Cuxx5G80Sc5QqOTtY_ggda5RbXW0oNKSnVjD7dYkxf7DjxP7-hSFctT88xP7ei-Oj_nlvEHqWgVBj6MFClReGq8TilXQMTY2KiijRCZUYu0lmKY8s72hueGE6RRrJDjMU2zlVmYxtlqDcbdihCQprwc7n_vjL2U2WBx0ixmrq1YgjDDzOJ-u1Ugxr8vbweNw7c9vLmKv05jM7jW30FmJ7Pp3fshO18Tt6Ao-810q662H2FLZs-QweN4wQxCuI59DrbYqJk6beCVkUpD86JLI05Bs-u1dTBHY1-07mJfm6tFbPSL-cueHnUpUv4OJeAHwJrXJR2ldA0IHQsc41SqPUcquUpEnOYsU4sybmAbQbgIT2NcwdlcaVwFjGQSpqSMUG0gA-3XyxXNfvuOPdPYe58PSfeKtcgqSayuuqEl2WuV2YGF4F8AE7RfjJXt2SI5amCODgn3c89KKBXiwKgdAL-b-fyQLYbTp9I2YzC17f3fweHgzOR6fidDg-eQMPndx14mgXWquf1_YtulIr9c6PVwKX9z1F_gJu7ywv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Analysis+of+EMD+and+VMD+Algorithm+in+Speech+Enhancement&rft.jtitle=International+journal+of+natural+computing+research&rft.au=Rashmirekha+Ram&rft.au=Mohanty%2C+Mihir&rft.date=2017-01-01&rft.pub=IGI+Global&rft.issn=1947-928X&rft.eissn=1947-9298&rft.volume=6&rft.issue=1&rft.spage=17&rft.epage=35&rft_id=info:doi/10.4018%2FIJNCR.2017010102
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-928X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-928X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-928X&client=summon