Spatiotemporal Seamless Estimation of Global Surface Soil Moisture Using Triple Collocation, Machine Learning, and Data Assimilation

Accurate and spatiotemporal seamless soil moisture (SM) products are important for hydrological drought monitoring and agricultural water management. Currently, physically-based process models with data assimilation (DA) are widely used for global seamless SM generation, such as SM Active Passive Le...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 63; pp. 1 - 16
Main Authors Xu, Lei, Ye, Zhenni, Dai, Jin, Li, Qi, Hong, Youting, Tao, Yun, Yu, Hongchu, Zhang, Chong, Chen, Zeqiang, Chen, Nengcheng
Format Journal Article
LanguageEnglish
Published New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2025.3568034

Cover

Abstract Accurate and spatiotemporal seamless soil moisture (SM) products are important for hydrological drought monitoring and agricultural water management. Currently, physically-based process models with data assimilation (DA) are widely used for global seamless SM generation, such as SM Active Passive Level 4 (SMAP L4), the land component of the fifth generation of European Reanalysis (ERA5-land), and Global Land DA System Noah (GLDAS-Noah). These datasets are usually produced using high-performance computation platforms and may be subject to potential uncertainties from model structure and parameters, limiting their practical application capacity in a flexible way in local or global areas. Here, we proposed a data-driven artificial intelligence (AI)-based method to generate spatiotemporal seamless daily SM data using triple collocation (TC), machine learning (ML), and DA. Specifically, the TC correlation coefficients (TC-Rs) method is employed to combine different SM datasets in order to obtain high-accuracy label data for model training first. A light gradient boosting machine (LightGBM) ML model is constructed to simulate global daily SM at 0.25° in an autoregressive way, using ERA5 meteorological forcings and MSWEP precipitation data as inputs. In addition, the satellite-based SM SMAP Level 3 (SMAP L3) is assimilated into the developed ML model using the simple Newtonian nudging technique to update the SM simulation states. The incorporation of DA into ML mimics the idea of physical models and brings much room for adaptable SM simulations. The developed data-driven model is examined over global land areas from March 31, 2015 to May 31, 2023 with a ten-fold cross-validation scheme, evaluated using 1094 in situ SM stations from the International Soil Moisture Network (ISMN). The results indicate that the ML-based assimilated soil moisture dataset (ML-DA) demonstrates a median correlation (R) of 0.741 and an unbiased root mean square error (ubRMSE) of 0.0437 m3/m3, better than SMAP L4 (R = 0.717 and ubRMSE = 0.0452 m3/m3), ERA5-land (R = 0.706 and ubRMSE = 0.0452 m3/m3), and GLDAS (R = 0.633 and ubRMSE = 0.0501 m3/m3). Compared to the three model-based SM products, the ML-DA dataset exhibits superior performance in time and space, and also in dry-wet zones. Therefore, the developed ML-DA framework offers significant potential for accurate, spatiotemporal SM simulations globally.
AbstractList Accurate and spatiotemporal seamless soil moisture (SM) products are important for hydrological drought monitoring and agricultural water management. Currently, physically-based process models with data assimilation (DA) are widely used for global seamless SM generation, such as SM Active Passive Level 4 (SMAP L4), the land component of the fifth generation of European Reanalysis (ERA5-land), and Global Land DA System Noah (GLDAS-Noah). These datasets are usually produced using high-performance computation platforms and may be subject to potential uncertainties from model structure and parameters, limiting their practical application capacity in a flexible way in local or global areas. Here, we proposed a data-driven artificial intelligence (AI)-based method to generate spatiotemporal seamless daily SM data using triple collocation (TC), machine learning (ML), and DA. Specifically, the TC correlation coefficients (TC-Rs) method is employed to combine different SM datasets in order to obtain high-accuracy label data for model training first. A light gradient boosting machine (LightGBM) ML model is constructed to simulate global daily SM at 0.25° in an autoregressive way, using ERA5 meteorological forcings and MSWEP precipitation data as inputs. In addition, the satellite-based SM SMAP Level 3 (SMAP L3) is assimilated into the developed ML model using the simple Newtonian nudging technique to update the SM simulation states. The incorporation of DA into ML mimics the idea of physical models and brings much room for adaptable SM simulations. The developed data-driven model is examined over global land areas from March 31, 2015 to May 31, 2023 with a ten-fold cross-validation scheme, evaluated using 1094 in situ SM stations from the International Soil Moisture Network (ISMN). The results indicate that the ML-based assimilated soil moisture dataset (ML-DA) demonstrates a median correlation (R) of 0.741 and an unbiased root mean square error (ubRMSE) of 0.0437 m3/m3, better than SMAP L4 (R = 0.717 and ubRMSE = 0.0452 m3/m3), ERA5-land (R = 0.706 and ubRMSE = 0.0452 m3/m3), and GLDAS (R = 0.633 and ubRMSE = 0.0501 m3/m3). Compared to the three model-based SM products, the ML-DA dataset exhibits superior performance in time and space, and also in dry-wet zones. Therefore, the developed ML-DA framework offers significant potential for accurate, spatiotemporal SM simulations globally.
Author Ye, Zhenni
Yu, Hongchu
Li, Qi
Xu, Lei
Chen, Nengcheng
Tao, Yun
Dai, Jin
Zhang, Chong
Chen, Zeqiang
Hong, Youting
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0002-6454-2963
  surname: Xu
  fullname: Xu, Lei
  email: xulei10@cug.edu.cn
  organization: National Engineering Research Center for Geographic Information System, China University of Geosciences (Wuhan), Wuhan, China
– sequence: 2
  givenname: Zhenni
  orcidid: 0009-0005-3108-2939
  surname: Ye
  fullname: Ye, Zhenni
  email: yzn869409994@cug.edu.cn
  organization: National Engineering Research Center for Geographic Information System, China University of Geosciences (Wuhan), Wuhan, China
– sequence: 3
  givenname: Jin
  orcidid: 0009-0009-7429-9133
  surname: Dai
  fullname: Dai, Jin
  email: daijin1218@cug.edu.cn
  organization: National Engineering Research Center for Geographic Information System, China University of Geosciences (Wuhan), Wuhan, China
– sequence: 4
  givenname: Qi
  surname: Li
  fullname: Li, Qi
  email: 1202321962@cug.edu.cn
  organization: National Engineering Research Center for Geographic Information System, China University of Geosciences (Wuhan), Wuhan, China
– sequence: 5
  givenname: Youting
  orcidid: 0009-0002-0171-5043
  surname: Hong
  fullname: Hong, Youting
  email: hongyt@cug.edu.cn
  organization: National Engineering Research Center for Geographic Information System, China University of Geosciences (Wuhan), Wuhan, China
– sequence: 6
  givenname: Yun
  surname: Tao
  fullname: Tao, Yun
  email: taoyun@cug.edu.cn
  organization: National Engineering Research Center for Geographic Information System, China University of Geosciences (Wuhan), Wuhan, China
– sequence: 7
  givenname: Hongchu
  orcidid: 0000-0003-3858-9212
  surname: Yu
  fullname: Yu, Hongchu
  email: hcyu@whut.edu.cn
  organization: School of Navigation, Wuhan University of Technology, Wuhan, China
– sequence: 8
  givenname: Chong
  orcidid: 0000-0002-8931-9725
  surname: Zhang
  fullname: Zhang, Chong
  email: chongzhang@cnu.edu.cnn
  organization: College of Resource Environment and Tourism, Capital Normal University, Beijing, China
– sequence: 9
  givenname: Zeqiang
  orcidid: 0000-0001-6624-6693
  surname: Chen
  fullname: Chen, Zeqiang
  email: chenzeqiang@cug.edu.cn
  organization: National Engineering Research Center for Geographic Information System, China University of Geosciences (Wuhan), Wuhan, China
– sequence: 10
  givenname: Nengcheng
  orcidid: 0000-0002-3521-9972
  surname: Chen
  fullname: Chen, Nengcheng
  organization: National Engineering Research Center for Geographic Information System, China University of Geosciences (Wuhan), Wuhan, China
BookMark eNpNkDtPwzAUhS0EEuXxA5AYLLGS4lcce0SlFKRWSLSdI8e5ASM3DnY6sPPDSSgD0x3Od86VvjN03IYWELqiZEop0Xebxet6ygjLpzyXinBxhCY0z1VGpBDHaEKolhlTmp2is5Q-CKEip8UEfa8707vQw64L0Xi8BrPzkBKep97txqjFocELH6ox3cfGWMDr4DxeBZf6fQS8Ta59w5voOg94FrwP9rd4i1fGvrsW8BJMbAfoFpu2xg-mN_g-Jbdz_he8QCeN8Qku_-452j7ON7OnbPmyeJ7dLzPLhOozqGRDrJSmkIZUqq4ELyS1sskrplWtwbKa5kxUOSXUcMmkVIVSTPK6qSwU_BzdHHa7GD73kPryI-xjO7wsOaNMCaU1Gyh6oGwMKUVoyi4OKuJXSUk5yi5H2eUou_yTPXSuDx0HAP94rQUngv8A8nZ-Yg
CODEN IGRSD2
Cites_doi 10.1016/s0022-1694(01)00518-2
10.1109/jstars.2017.2651140
10.1109/jproc.2010.2043032
10.1016/s0309-1708(02)00099-4
10.1029/2006jd008033
10.1109/igarss.2007.4423287
10.1016/j.jag.2015.09.012
10.1029/2019ms001729
10.1214/aos/1013203451
10.1016/j.rse.2022.112921
10.1175/jhm-d-10-05000.1
10.1175/1520-0493(2001)129<0818:cnntid>2.0.co;2
10.1109/tgrs.2008.2010252
10.3390/rs9040387
10.1109/tgrs.2012.2184548
10.1016/j.rse.2017.10.016
10.1002/2017gl073904
10.1175/2009jhm1134.1
10.2136/vzj2012.0097
10.5194/essd-13-1385-2021
10.1175/bams-d-12-00203.1
10.1002/qj.3803
10.1016/j.rse.2022.113272
10.1016/j.patrec.2005.08.011
10.1127/0941-2948/2014/0585
10.1175/bams-85-3-381
10.1002/2015gl064981
10.1029/2005gl023623
10.1016/j.advwatres.2005.03.013
10.1111/nyas.13912
10.5194/hess-20-4191-2016
10.5194/hess-21-6201-2017
10.1016/j.rse.2011.08.003
10.1002/2014jd021489
10.1007/s10712-013-9221-7
10.5194/essd-13-1711-2021
10.1016/j.rse.2021.112377
10.1016/j.rse.2022.112891
10.1016/j.jocs.2020.101171
10.2136/sssaj2005.0117
10.1016/b978-0-12-803388-3.00001-2
10.1029/2019MS001729
10.1038/s41586-018-0848-x
10.1016/j.jhydrol.2024.131789
10.1016/j.rse.2022.113387
10.2166/nh.2007.029
10.5194/hess-15-2303-2011
10.1029/97jc03180
10.1016/j.jhydrol.2013.06.021
10.1002/vzj2.20026
10.5194/essd-13-4349-2021
10.1127/0941-2948/2013/0399
10.1109/jstars.2014.2321027
10.1109/jproc.2010.2043918
10.5194/hess-23-207-2019
10.1016/j.rse.2018.12.013
10.1109/jstars.2013.2256339
10.3390/s8052986
10.1029/2021gl095354
10.1016/j.rse.2020.112126
10.1016/j.rse.2021.112627
10.1109/jstars.2021.3124743
10.1016/j.jhydrol.2024.131581
10.1016/j.jhydrol.2023.129325
10.1029/2012wr011976
10.1002/2017gl075619
10.1016/j.rse.2017.10.026
10.3390/s16081308
10.1016/j.rse.2020.112248
10.1109/igarss53475.2024.10642287
10.1016/j.rse.2021.112324
10.1029/2004gl020938
10.1016/j.jag.2022.103016
10.5194/essd-13-1-2021
10.1029/2007gl031088
10.5194/hess-25-5749-2021
10.1046/j.1365-8711.1998.01841.x
10.1016/j.rse.2020.112028
10.5194/hess-25-17-2021
10.1175/jhm-d-17-0063.1
10.1175/jhm505.1
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2025.3568034
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 16
ExternalDocumentID 10_1109_TGRS_2025_3568034
10994304
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 42201509; 42101429; 42371415
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Hubei Province
  grantid: 2023AFB563
  funderid: 10.13039/501100003819
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c248t-eb6f0c66a76a0b8db43761c6f5b298d9ec2d1524b5101a362668788263dfbce73
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Tue Jul 22 18:41:13 EDT 2025
Wed Oct 01 06:05:39 EDT 2025
Wed Aug 27 01:50:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-eb6f0c66a76a0b8db43761c6f5b298d9ec2d1524b5101a362668788263dfbce73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6624-6693
0000-0002-6454-2963
0009-0002-0171-5043
0000-0003-3858-9212
0000-0002-3521-9972
0000-0002-8931-9725
0009-0005-3108-2939
0009-0009-7429-9133
PQID 3212848992
PQPubID 85465
PageCount 16
ParticipantIDs ieee_primary_10994304
crossref_primary_10_1109_TGRS_2025_3568034
proquest_journals_3212848992
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref59
ref58
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Ke (ref62); 30
ref51
ref50
ref46
ref45
ref89
ref48
ref47
ref42
ref41
ref85
ref44
ref88
ref43
ref87
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref82
ref81
ref40
ref84
(ref53) 2023
ref83
O’Neill (ref15) 2021
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
Cenci (ref67) 2016; 123
ref39
Beguería (ref86) 2024
ref38
(ref14) 2017
Rui (ref22) 2018
Mason (ref5) 1523
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref26
ref25
ref69
ref20
ref64
ref63
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref61
References_xml – ident: ref4
  doi: 10.1016/s0022-1694(01)00518-2
– ident: ref7
  doi: 10.1109/jstars.2017.2651140
– ident: ref12
  doi: 10.1109/jproc.2010.2043032
– ident: ref68
  doi: 10.1016/s0309-1708(02)00099-4
– ident: ref74
  doi: 10.1029/2006jd008033
– ident: ref78
  doi: 10.1109/igarss.2007.4423287
– ident: ref69
  doi: 10.1016/j.jag.2015.09.012
– ident: ref20
  doi: 10.1029/2019ms001729
– ident: ref63
  doi: 10.1214/aos/1013203451
– ident: ref42
  doi: 10.1016/j.rse.2022.112921
– ident: ref73
  doi: 10.1175/jhm-d-10-05000.1
– year: 2021
  ident: ref15
  article-title: SMAP enhanced L3 radiometer global and polar grid daily 9 km ease-grid soil moisture
– ident: ref34
  doi: 10.1175/1520-0493(2001)129<0818:cnntid>2.0.co;2
– ident: ref77
  doi: 10.1109/tgrs.2008.2010252
– ident: ref79
  doi: 10.3390/rs9040387
– ident: ref80
  doi: 10.1109/tgrs.2012.2184548
– ident: ref29
  doi: 10.1016/j.rse.2017.10.016
– ident: ref31
  doi: 10.1002/2017gl073904
– ident: ref72
  doi: 10.1175/2009jhm1134.1
– ident: ref54
  doi: 10.2136/vzj2012.0097
– ident: ref89
  doi: 10.5194/essd-13-1385-2021
– ident: ref84
  doi: 10.1175/bams-d-12-00203.1
– ident: ref19
  doi: 10.1002/qj.3803
– ident: ref56
  doi: 10.1016/j.rse.2022.113272
– ident: ref64
  doi: 10.1016/j.patrec.2005.08.011
– ident: ref66
  doi: 10.1127/0941-2948/2014/0585
– ident: ref50
  doi: 10.1175/bams-85-3-381
– ident: ref60
  doi: 10.1002/2015gl064981
– ident: ref71
  doi: 10.1029/2005gl023623
– ident: ref88
  doi: 10.1016/j.advwatres.2005.03.013
– ident: ref8
  doi: 10.1111/nyas.13912
– ident: ref21
  doi: 10.5194/hess-20-4191-2016
– ident: ref52
  doi: 10.5194/hess-21-6201-2017
– ident: ref46
  doi: 10.1016/j.rse.2011.08.003
– volume-title: Product User Guide Version 2.0
  year: 2017
  ident: ref14
– ident: ref6
  doi: 10.1002/2014jd021489
– ident: ref16
  doi: 10.1007/s10712-013-9221-7
– ident: ref26
  doi: 10.5194/essd-13-1711-2021
– ident: ref24
  doi: 10.1016/j.rse.2021.112377
– ident: ref43
  doi: 10.1016/j.rse.2022.112891
– ident: ref35
  doi: 10.1016/j.jocs.2020.101171
– ident: ref45
  doi: 10.2136/sssaj2005.0117
– ident: ref2
  doi: 10.1016/b978-0-12-803388-3.00001-2
– ident: ref23
  doi: 10.1029/2019MS001729
– ident: ref1
  doi: 10.1038/s41586-018-0848-x
– ident: ref30
  doi: 10.1016/j.jhydrol.2024.131789
– ident: ref76
  doi: 10.1016/j.rse.2022.113387
– ident: ref9
  doi: 10.2166/nh.2007.029
– ident: ref85
  doi: 10.5194/hess-15-2303-2011
– ident: ref61
  doi: 10.1029/97jc03180
– ident: ref3
  doi: 10.1016/j.jhydrol.2013.06.021
– ident: ref37
  doi: 10.1002/vzj2.20026
– ident: ref48
  doi: 10.5194/essd-13-4349-2021
– ident: ref44
  doi: 10.1127/0941-2948/2013/0399
– ident: ref82
  doi: 10.1109/jstars.2014.2321027
– ident: ref40
  doi: 10.1109/jproc.2010.2043918
– ident: ref51
  doi: 10.5194/hess-23-207-2019
– volume: 30
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref62
  article-title: LightGBM: A highly efficient gradient boosting decision tree
– ident: ref58
  doi: 10.1016/j.rse.2018.12.013
– ident: ref81
  doi: 10.1109/jstars.2013.2256339
– ident: ref17
  doi: 10.3390/s8052986
– ident: ref87
  doi: 10.1029/2021gl095354
– year: 1523
  ident: ref5
  article-title: Implementation plan for the global observing system for climate in support of the UNFCCC (2010 update)
– ident: ref27
  doi: 10.1016/j.rse.2020.112126
– volume: 123
  start-page: 1
  year: 2016
  ident: ref67
  article-title: Soil moisture-data assimilation for improving flash flood predictions in Mediterranean catchments. Case study: ASCAT and Sentinel 1 derived products
  publication-title: Case Study, ASCAT Sentinel 1 Derived Products
– ident: ref55
  doi: 10.1016/j.rse.2021.112627
– ident: ref41
  doi: 10.1109/jstars.2021.3124743
– ident: ref32
  doi: 10.1016/j.jhydrol.2024.131581
– ident: ref57
  doi: 10.1016/j.jhydrol.2023.129325
– ident: ref83
  doi: 10.1029/2012wr011976
– ident: ref25
  doi: 10.1002/2017gl075619
– ident: ref28
  doi: 10.1016/j.rse.2017.10.026
– ident: ref11
  doi: 10.3390/s16081308
– volume-title: Speibase V.2.9
  year: 2024
  ident: ref86
– ident: ref33
  doi: 10.1016/j.rse.2020.112248
– ident: ref36
  doi: 10.1109/igarss53475.2024.10642287
– ident: ref47
  doi: 10.1016/j.rse.2021.112324
– ident: ref70
  doi: 10.1029/2004gl020938
– year: 2018
  ident: ref22
  article-title: Readme document for NASA GLDAS version 2 data products
– ident: ref59
  doi: 10.1016/j.jag.2022.103016
– ident: ref49
  doi: 10.5194/essd-13-1-2021
– volume-title: Era5 Hourly Data on Single Levels From 1940 to Present
  year: 2023
  ident: ref53
– ident: ref13
  doi: 10.1029/2007gl031088
– ident: ref38
  doi: 10.5194/hess-25-5749-2021
– ident: ref65
  doi: 10.1046/j.1365-8711.1998.01841.x
– ident: ref39
  doi: 10.1016/j.rse.2020.112028
– ident: ref10
  doi: 10.5194/hess-25-17-2021
– ident: ref18
  doi: 10.1175/jhm-d-17-0063.1
– ident: ref75
  doi: 10.1175/jhm505.1
SSID ssj0014517
Score 2.466709
Snippet Accurate and spatiotemporal seamless soil moisture (SM) products are important for hydrological drought monitoring and agricultural water management....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Agricultural management
Artificial intelligence
Collocation
Computational modeling
Correlation coefficient
Correlation coefficients
Data assimilation
Data assimilation (DA)
Data collection
Data models
Datasets
Drought
Environmental monitoring
Estimation
Hydrologic data
in situ evaluation
Land surface
Learning algorithms
light gradient boosting machine (LightGBM)
Machine learning
Moisture content
Satellites
Simulation
Soil
Soil moisture
soil moisture (SM)
Soil surfaces
Spatiotemporal data
Spatiotemporal phenomena
Water management
Title Spatiotemporal Seamless Estimation of Global Surface Soil Moisture Using Triple Collocation, Machine Learning, and Data Assimilation
URI https://ieeexplore.ieee.org/document/10994304
https://www.proquest.com/docview/3212848992
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKUqVy6IOCWEqrOfSEyBKcxHGOVQtdVdo9NIvELbKdcbVi2VRLcuHMD2f82ApaIfWWQxxZ-cbz8sw3jH0ueVZalepEWaMS8sDLpBIKE2NTVdlCp7J1ecjpTEwu8x9XxVVsVve9MIjoi89w7B79XX7bmcGlyk7dLU6eOfbPrVKK0Kz158ogL85ib7RIKIrg8QqT1pzOv_-sKRTkxTgrhEyz_IkR8lNV_lHF3r5cvGGzzc5CWcn1eOj12Nz9Rdr431t_y15HTxO-BNF4x17gapftPOIf3GUvff2nuX3P7mtfWR2JqpZQo7pZkhKEc1IBobsROgthQgDUw9oqg1B3iyVMO5KUYY3gqw9gvnape3AJiS6kA09g6is2ESKZ668TUKsWvqleAYnH4mYRCvL22OXF-fzrJIkDGhLDc9knqIVNjRCqFAS3bHVO6urMCMKYV7Kt0PCW_INcu4OvHPGNkBRyc5G1Vhsss322vepWeMBAViXFs9aRyWPuxn8I1KRfhFUVGVAhR-x4g1jzO_BwND5-SavGwds4eJsI74jtOQQevRh-_ogdbUBu4lG9bTLuTDSFnfzwmWUf2Cv39ZB4OWLb_XrAj-SK9PqTF8EHFjHbEQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6hVgh6KFCKulDAB06o2aaO4yRHBC0LdPdAtlJvke2M0arbTbVNLpz54YwfiwoIiVsOsWLlG8_LM98AvCl4VliV6kRZoxLywIukkgoTY1NV2VynZevykNOZnFyIz5f5ZWxW970wiOiLz3DsHv1dftuZwaXKjt0tjsgc--d2LoTIQ7vWr0sDkZ_E7miZUBzB4yUmrTqef_xaUzDI83GWyzLNxG9myM9V-UsZewtz9ghmm72FwpKr8dDrsfn-B23jf2_-MexGX5O9C8LxBO7hag927jAQ7sF9XwFqbp_Cj9rXVkeqqiWrUV0vSQ2yU1ICob-RdZaFGQGsHtZWGWR1t1iyaUeyMqyR-foDNl-75D1zKYkuJASP2NTXbCKLdK7fjphateyD6hUjAVlcL0JJ3j5cnJ3O30-SOKIhMVyUfYJa2tRIqQpJgJetFqSwTowklHlVthUa3pKHILQ7-spR38iSgm4us9Zqg0X2DLZW3QoPgJVVQRGtdXTyKNwAEImaNIy0qiITKssRvN0g1twEJo7GRzBp1Th4GwdvE-Edwb5D4M6L4eeP4HADchMP622TcWekKfDkz_-x7DU8mMyn5835p9mXF_DQfSmkYQ5hq18P-JIck16_8uL4E7eY3l4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+Seamless+Estimation+of+Global+Surface+Soil+Moisture+Using+Triple+Collocation%2C+Machine+Learning%2C+and+Data+Assimilation&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Xu%2C+Lei&rft.au=Ye%2C+Zhenni&rft.au=Dai%2C+Jin&rft.au=Li%2C+Qi&rft.date=2025&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=63&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTGRS.2025.3568034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2025_3568034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon