Spatiotemporal Seamless Estimation of Global Surface Soil Moisture Using Triple Collocation, Machine Learning, and Data Assimilation
Accurate and spatiotemporal seamless soil moisture (SM) products are important for hydrological drought monitoring and agricultural water management. Currently, physically-based process models with data assimilation (DA) are widely used for global seamless SM generation, such as SM Active Passive Le...
Saved in:
| Published in | IEEE transactions on geoscience and remote sensing Vol. 63; pp. 1 - 16 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-2892 1558-0644 |
| DOI | 10.1109/TGRS.2025.3568034 |
Cover
| Abstract | Accurate and spatiotemporal seamless soil moisture (SM) products are important for hydrological drought monitoring and agricultural water management. Currently, physically-based process models with data assimilation (DA) are widely used for global seamless SM generation, such as SM Active Passive Level 4 (SMAP L4), the land component of the fifth generation of European Reanalysis (ERA5-land), and Global Land DA System Noah (GLDAS-Noah). These datasets are usually produced using high-performance computation platforms and may be subject to potential uncertainties from model structure and parameters, limiting their practical application capacity in a flexible way in local or global areas. Here, we proposed a data-driven artificial intelligence (AI)-based method to generate spatiotemporal seamless daily SM data using triple collocation (TC), machine learning (ML), and DA. Specifically, the TC correlation coefficients (TC-Rs) method is employed to combine different SM datasets in order to obtain high-accuracy label data for model training first. A light gradient boosting machine (LightGBM) ML model is constructed to simulate global daily SM at 0.25° in an autoregressive way, using ERA5 meteorological forcings and MSWEP precipitation data as inputs. In addition, the satellite-based SM SMAP Level 3 (SMAP L3) is assimilated into the developed ML model using the simple Newtonian nudging technique to update the SM simulation states. The incorporation of DA into ML mimics the idea of physical models and brings much room for adaptable SM simulations. The developed data-driven model is examined over global land areas from March 31, 2015 to May 31, 2023 with a ten-fold cross-validation scheme, evaluated using 1094 in situ SM stations from the International Soil Moisture Network (ISMN). The results indicate that the ML-based assimilated soil moisture dataset (ML-DA) demonstrates a median correlation (R) of 0.741 and an unbiased root mean square error (ubRMSE) of 0.0437 m3/m3, better than SMAP L4 (R = 0.717 and ubRMSE = 0.0452 m3/m3), ERA5-land (R = 0.706 and ubRMSE = 0.0452 m3/m3), and GLDAS (R = 0.633 and ubRMSE = 0.0501 m3/m3). Compared to the three model-based SM products, the ML-DA dataset exhibits superior performance in time and space, and also in dry-wet zones. Therefore, the developed ML-DA framework offers significant potential for accurate, spatiotemporal SM simulations globally. |
|---|---|
| AbstractList | Accurate and spatiotemporal seamless soil moisture (SM) products are important for hydrological drought monitoring and agricultural water management. Currently, physically-based process models with data assimilation (DA) are widely used for global seamless SM generation, such as SM Active Passive Level 4 (SMAP L4), the land component of the fifth generation of European Reanalysis (ERA5-land), and Global Land DA System Noah (GLDAS-Noah). These datasets are usually produced using high-performance computation platforms and may be subject to potential uncertainties from model structure and parameters, limiting their practical application capacity in a flexible way in local or global areas. Here, we proposed a data-driven artificial intelligence (AI)-based method to generate spatiotemporal seamless daily SM data using triple collocation (TC), machine learning (ML), and DA. Specifically, the TC correlation coefficients (TC-Rs) method is employed to combine different SM datasets in order to obtain high-accuracy label data for model training first. A light gradient boosting machine (LightGBM) ML model is constructed to simulate global daily SM at 0.25° in an autoregressive way, using ERA5 meteorological forcings and MSWEP precipitation data as inputs. In addition, the satellite-based SM SMAP Level 3 (SMAP L3) is assimilated into the developed ML model using the simple Newtonian nudging technique to update the SM simulation states. The incorporation of DA into ML mimics the idea of physical models and brings much room for adaptable SM simulations. The developed data-driven model is examined over global land areas from March 31, 2015 to May 31, 2023 with a ten-fold cross-validation scheme, evaluated using 1094 in situ SM stations from the International Soil Moisture Network (ISMN). The results indicate that the ML-based assimilated soil moisture dataset (ML-DA) demonstrates a median correlation (R) of 0.741 and an unbiased root mean square error (ubRMSE) of 0.0437 m3/m3, better than SMAP L4 (R = 0.717 and ubRMSE = 0.0452 m3/m3), ERA5-land (R = 0.706 and ubRMSE = 0.0452 m3/m3), and GLDAS (R = 0.633 and ubRMSE = 0.0501 m3/m3). Compared to the three model-based SM products, the ML-DA dataset exhibits superior performance in time and space, and also in dry-wet zones. Therefore, the developed ML-DA framework offers significant potential for accurate, spatiotemporal SM simulations globally. |
| Author | Ye, Zhenni Yu, Hongchu Li, Qi Xu, Lei Chen, Nengcheng Tao, Yun Dai, Jin Zhang, Chong Chen, Zeqiang Hong, Youting |
| Author_xml | – sequence: 1 givenname: Lei orcidid: 0000-0002-6454-2963 surname: Xu fullname: Xu, Lei email: xulei10@cug.edu.cn organization: National Engineering Research Center for Geographic Information System, China University of Geosciences (Wuhan), Wuhan, China – sequence: 2 givenname: Zhenni orcidid: 0009-0005-3108-2939 surname: Ye fullname: Ye, Zhenni email: yzn869409994@cug.edu.cn organization: National Engineering Research Center for Geographic Information System, China University of Geosciences (Wuhan), Wuhan, China – sequence: 3 givenname: Jin orcidid: 0009-0009-7429-9133 surname: Dai fullname: Dai, Jin email: daijin1218@cug.edu.cn organization: National Engineering Research Center for Geographic Information System, China University of Geosciences (Wuhan), Wuhan, China – sequence: 4 givenname: Qi surname: Li fullname: Li, Qi email: 1202321962@cug.edu.cn organization: National Engineering Research Center for Geographic Information System, China University of Geosciences (Wuhan), Wuhan, China – sequence: 5 givenname: Youting orcidid: 0009-0002-0171-5043 surname: Hong fullname: Hong, Youting email: hongyt@cug.edu.cn organization: National Engineering Research Center for Geographic Information System, China University of Geosciences (Wuhan), Wuhan, China – sequence: 6 givenname: Yun surname: Tao fullname: Tao, Yun email: taoyun@cug.edu.cn organization: National Engineering Research Center for Geographic Information System, China University of Geosciences (Wuhan), Wuhan, China – sequence: 7 givenname: Hongchu orcidid: 0000-0003-3858-9212 surname: Yu fullname: Yu, Hongchu email: hcyu@whut.edu.cn organization: School of Navigation, Wuhan University of Technology, Wuhan, China – sequence: 8 givenname: Chong orcidid: 0000-0002-8931-9725 surname: Zhang fullname: Zhang, Chong email: chongzhang@cnu.edu.cnn organization: College of Resource Environment and Tourism, Capital Normal University, Beijing, China – sequence: 9 givenname: Zeqiang orcidid: 0000-0001-6624-6693 surname: Chen fullname: Chen, Zeqiang email: chenzeqiang@cug.edu.cn organization: National Engineering Research Center for Geographic Information System, China University of Geosciences (Wuhan), Wuhan, China – sequence: 10 givenname: Nengcheng orcidid: 0000-0002-3521-9972 surname: Chen fullname: Chen, Nengcheng organization: National Engineering Research Center for Geographic Information System, China University of Geosciences (Wuhan), Wuhan, China |
| BookMark | eNpNkDtPwzAUhS0EEuXxA5AYLLGS4lcce0SlFKRWSLSdI8e5ASM3DnY6sPPDSSgD0x3Od86VvjN03IYWELqiZEop0Xebxet6ygjLpzyXinBxhCY0z1VGpBDHaEKolhlTmp2is5Q-CKEip8UEfa8707vQw64L0Xi8BrPzkBKep97txqjFocELH6ox3cfGWMDr4DxeBZf6fQS8Ta59w5voOg94FrwP9rd4i1fGvrsW8BJMbAfoFpu2xg-mN_g-Jbdz_he8QCeN8Qku_-452j7ON7OnbPmyeJ7dLzPLhOozqGRDrJSmkIZUqq4ELyS1sskrplWtwbKa5kxUOSXUcMmkVIVSTPK6qSwU_BzdHHa7GD73kPryI-xjO7wsOaNMCaU1Gyh6oGwMKUVoyi4OKuJXSUk5yi5H2eUou_yTPXSuDx0HAP94rQUngv8A8nZ-Yg |
| CODEN | IGRSD2 |
| Cites_doi | 10.1016/s0022-1694(01)00518-2 10.1109/jstars.2017.2651140 10.1109/jproc.2010.2043032 10.1016/s0309-1708(02)00099-4 10.1029/2006jd008033 10.1109/igarss.2007.4423287 10.1016/j.jag.2015.09.012 10.1029/2019ms001729 10.1214/aos/1013203451 10.1016/j.rse.2022.112921 10.1175/jhm-d-10-05000.1 10.1175/1520-0493(2001)129<0818:cnntid>2.0.co;2 10.1109/tgrs.2008.2010252 10.3390/rs9040387 10.1109/tgrs.2012.2184548 10.1016/j.rse.2017.10.016 10.1002/2017gl073904 10.1175/2009jhm1134.1 10.2136/vzj2012.0097 10.5194/essd-13-1385-2021 10.1175/bams-d-12-00203.1 10.1002/qj.3803 10.1016/j.rse.2022.113272 10.1016/j.patrec.2005.08.011 10.1127/0941-2948/2014/0585 10.1175/bams-85-3-381 10.1002/2015gl064981 10.1029/2005gl023623 10.1016/j.advwatres.2005.03.013 10.1111/nyas.13912 10.5194/hess-20-4191-2016 10.5194/hess-21-6201-2017 10.1016/j.rse.2011.08.003 10.1002/2014jd021489 10.1007/s10712-013-9221-7 10.5194/essd-13-1711-2021 10.1016/j.rse.2021.112377 10.1016/j.rse.2022.112891 10.1016/j.jocs.2020.101171 10.2136/sssaj2005.0117 10.1016/b978-0-12-803388-3.00001-2 10.1029/2019MS001729 10.1038/s41586-018-0848-x 10.1016/j.jhydrol.2024.131789 10.1016/j.rse.2022.113387 10.2166/nh.2007.029 10.5194/hess-15-2303-2011 10.1029/97jc03180 10.1016/j.jhydrol.2013.06.021 10.1002/vzj2.20026 10.5194/essd-13-4349-2021 10.1127/0941-2948/2013/0399 10.1109/jstars.2014.2321027 10.1109/jproc.2010.2043918 10.5194/hess-23-207-2019 10.1016/j.rse.2018.12.013 10.1109/jstars.2013.2256339 10.3390/s8052986 10.1029/2021gl095354 10.1016/j.rse.2020.112126 10.1016/j.rse.2021.112627 10.1109/jstars.2021.3124743 10.1016/j.jhydrol.2024.131581 10.1016/j.jhydrol.2023.129325 10.1029/2012wr011976 10.1002/2017gl075619 10.1016/j.rse.2017.10.026 10.3390/s16081308 10.1016/j.rse.2020.112248 10.1109/igarss53475.2024.10642287 10.1016/j.rse.2021.112324 10.1029/2004gl020938 10.1016/j.jag.2022.103016 10.5194/essd-13-1-2021 10.1029/2007gl031088 10.5194/hess-25-5749-2021 10.1046/j.1365-8711.1998.01841.x 10.1016/j.rse.2020.112028 10.5194/hess-25-17-2021 10.1175/jhm-d-17-0063.1 10.1175/jhm505.1 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2025.3568034 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 16 |
| ExternalDocumentID | 10_1109_TGRS_2025_3568034 10994304 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 42201509; 42101429; 42371415 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Hubei Province grantid: 2023AFB563 funderid: 10.13039/501100003819 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c248t-eb6f0c66a76a0b8db43761c6f5b298d9ec2d1524b5101a362668788263dfbce73 |
| IEDL.DBID | RIE |
| ISSN | 0196-2892 |
| IngestDate | Tue Jul 22 18:41:13 EDT 2025 Wed Oct 01 06:05:39 EDT 2025 Wed Aug 27 01:50:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c248t-eb6f0c66a76a0b8db43761c6f5b298d9ec2d1524b5101a362668788263dfbce73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6624-6693 0000-0002-6454-2963 0009-0002-0171-5043 0000-0003-3858-9212 0000-0002-3521-9972 0000-0002-8931-9725 0009-0005-3108-2939 0009-0009-7429-9133 |
| PQID | 3212848992 |
| PQPubID | 85465 |
| PageCount | 16 |
| ParticipantIDs | ieee_primary_10994304 crossref_primary_10_1109_TGRS_2025_3568034 proquest_journals_3212848992 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref59 ref58 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Ke (ref62); 30 ref51 ref50 ref46 ref45 ref89 ref48 ref47 ref42 ref41 ref85 ref44 ref88 ref43 ref87 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref82 ref81 ref40 ref84 (ref53) 2023 ref83 O’Neill (ref15) 2021 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 Cenci (ref67) 2016; 123 ref39 Beguería (ref86) 2024 ref38 (ref14) 2017 Rui (ref22) 2018 Mason (ref5) 1523 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref26 ref25 ref69 ref20 ref64 ref63 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref61 |
| References_xml | – ident: ref4 doi: 10.1016/s0022-1694(01)00518-2 – ident: ref7 doi: 10.1109/jstars.2017.2651140 – ident: ref12 doi: 10.1109/jproc.2010.2043032 – ident: ref68 doi: 10.1016/s0309-1708(02)00099-4 – ident: ref74 doi: 10.1029/2006jd008033 – ident: ref78 doi: 10.1109/igarss.2007.4423287 – ident: ref69 doi: 10.1016/j.jag.2015.09.012 – ident: ref20 doi: 10.1029/2019ms001729 – ident: ref63 doi: 10.1214/aos/1013203451 – ident: ref42 doi: 10.1016/j.rse.2022.112921 – ident: ref73 doi: 10.1175/jhm-d-10-05000.1 – year: 2021 ident: ref15 article-title: SMAP enhanced L3 radiometer global and polar grid daily 9 km ease-grid soil moisture – ident: ref34 doi: 10.1175/1520-0493(2001)129<0818:cnntid>2.0.co;2 – ident: ref77 doi: 10.1109/tgrs.2008.2010252 – ident: ref79 doi: 10.3390/rs9040387 – ident: ref80 doi: 10.1109/tgrs.2012.2184548 – ident: ref29 doi: 10.1016/j.rse.2017.10.016 – ident: ref31 doi: 10.1002/2017gl073904 – ident: ref72 doi: 10.1175/2009jhm1134.1 – ident: ref54 doi: 10.2136/vzj2012.0097 – ident: ref89 doi: 10.5194/essd-13-1385-2021 – ident: ref84 doi: 10.1175/bams-d-12-00203.1 – ident: ref19 doi: 10.1002/qj.3803 – ident: ref56 doi: 10.1016/j.rse.2022.113272 – ident: ref64 doi: 10.1016/j.patrec.2005.08.011 – ident: ref66 doi: 10.1127/0941-2948/2014/0585 – ident: ref50 doi: 10.1175/bams-85-3-381 – ident: ref60 doi: 10.1002/2015gl064981 – ident: ref71 doi: 10.1029/2005gl023623 – ident: ref88 doi: 10.1016/j.advwatres.2005.03.013 – ident: ref8 doi: 10.1111/nyas.13912 – ident: ref21 doi: 10.5194/hess-20-4191-2016 – ident: ref52 doi: 10.5194/hess-21-6201-2017 – ident: ref46 doi: 10.1016/j.rse.2011.08.003 – volume-title: Product User Guide Version 2.0 year: 2017 ident: ref14 – ident: ref6 doi: 10.1002/2014jd021489 – ident: ref16 doi: 10.1007/s10712-013-9221-7 – ident: ref26 doi: 10.5194/essd-13-1711-2021 – ident: ref24 doi: 10.1016/j.rse.2021.112377 – ident: ref43 doi: 10.1016/j.rse.2022.112891 – ident: ref35 doi: 10.1016/j.jocs.2020.101171 – ident: ref45 doi: 10.2136/sssaj2005.0117 – ident: ref2 doi: 10.1016/b978-0-12-803388-3.00001-2 – ident: ref23 doi: 10.1029/2019MS001729 – ident: ref1 doi: 10.1038/s41586-018-0848-x – ident: ref30 doi: 10.1016/j.jhydrol.2024.131789 – ident: ref76 doi: 10.1016/j.rse.2022.113387 – ident: ref9 doi: 10.2166/nh.2007.029 – ident: ref85 doi: 10.5194/hess-15-2303-2011 – ident: ref61 doi: 10.1029/97jc03180 – ident: ref3 doi: 10.1016/j.jhydrol.2013.06.021 – ident: ref37 doi: 10.1002/vzj2.20026 – ident: ref48 doi: 10.5194/essd-13-4349-2021 – ident: ref44 doi: 10.1127/0941-2948/2013/0399 – ident: ref82 doi: 10.1109/jstars.2014.2321027 – ident: ref40 doi: 10.1109/jproc.2010.2043918 – ident: ref51 doi: 10.5194/hess-23-207-2019 – volume: 30 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref62 article-title: LightGBM: A highly efficient gradient boosting decision tree – ident: ref58 doi: 10.1016/j.rse.2018.12.013 – ident: ref81 doi: 10.1109/jstars.2013.2256339 – ident: ref17 doi: 10.3390/s8052986 – ident: ref87 doi: 10.1029/2021gl095354 – year: 1523 ident: ref5 article-title: Implementation plan for the global observing system for climate in support of the UNFCCC (2010 update) – ident: ref27 doi: 10.1016/j.rse.2020.112126 – volume: 123 start-page: 1 year: 2016 ident: ref67 article-title: Soil moisture-data assimilation for improving flash flood predictions in Mediterranean catchments. Case study: ASCAT and Sentinel 1 derived products publication-title: Case Study, ASCAT Sentinel 1 Derived Products – ident: ref55 doi: 10.1016/j.rse.2021.112627 – ident: ref41 doi: 10.1109/jstars.2021.3124743 – ident: ref32 doi: 10.1016/j.jhydrol.2024.131581 – ident: ref57 doi: 10.1016/j.jhydrol.2023.129325 – ident: ref83 doi: 10.1029/2012wr011976 – ident: ref25 doi: 10.1002/2017gl075619 – ident: ref28 doi: 10.1016/j.rse.2017.10.026 – ident: ref11 doi: 10.3390/s16081308 – volume-title: Speibase V.2.9 year: 2024 ident: ref86 – ident: ref33 doi: 10.1016/j.rse.2020.112248 – ident: ref36 doi: 10.1109/igarss53475.2024.10642287 – ident: ref47 doi: 10.1016/j.rse.2021.112324 – ident: ref70 doi: 10.1029/2004gl020938 – year: 2018 ident: ref22 article-title: Readme document for NASA GLDAS version 2 data products – ident: ref59 doi: 10.1016/j.jag.2022.103016 – ident: ref49 doi: 10.5194/essd-13-1-2021 – volume-title: Era5 Hourly Data on Single Levels From 1940 to Present year: 2023 ident: ref53 – ident: ref13 doi: 10.1029/2007gl031088 – ident: ref38 doi: 10.5194/hess-25-5749-2021 – ident: ref65 doi: 10.1046/j.1365-8711.1998.01841.x – ident: ref39 doi: 10.1016/j.rse.2020.112028 – ident: ref10 doi: 10.5194/hess-25-17-2021 – ident: ref18 doi: 10.1175/jhm-d-17-0063.1 – ident: ref75 doi: 10.1175/jhm505.1 |
| SSID | ssj0014517 |
| Score | 2.466709 |
| Snippet | Accurate and spatiotemporal seamless soil moisture (SM) products are important for hydrological drought monitoring and agricultural water management.... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Agricultural management Artificial intelligence Collocation Computational modeling Correlation coefficient Correlation coefficients Data assimilation Data assimilation (DA) Data collection Data models Datasets Drought Environmental monitoring Estimation Hydrologic data in situ evaluation Land surface Learning algorithms light gradient boosting machine (LightGBM) Machine learning Moisture content Satellites Simulation Soil Soil moisture soil moisture (SM) Soil surfaces Spatiotemporal data Spatiotemporal phenomena Water management |
| Title | Spatiotemporal Seamless Estimation of Global Surface Soil Moisture Using Triple Collocation, Machine Learning, and Data Assimilation |
| URI | https://ieeexplore.ieee.org/document/10994304 https://www.proquest.com/docview/3212848992 |
| Volume | 63 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKUqVy6IOCWEqrOfSEyBKcxHGOVQtdVdo9NIvELbKdcbVi2VRLcuHMD2f82ApaIfWWQxxZ-cbz8sw3jH0ueVZalepEWaMS8sDLpBIKE2NTVdlCp7J1ecjpTEwu8x9XxVVsVve9MIjoi89w7B79XX7bmcGlyk7dLU6eOfbPrVKK0Kz158ogL85ib7RIKIrg8QqT1pzOv_-sKRTkxTgrhEyz_IkR8lNV_lHF3r5cvGGzzc5CWcn1eOj12Nz9Rdr431t_y15HTxO-BNF4x17gapftPOIf3GUvff2nuX3P7mtfWR2JqpZQo7pZkhKEc1IBobsROgthQgDUw9oqg1B3iyVMO5KUYY3gqw9gvnape3AJiS6kA09g6is2ESKZ668TUKsWvqleAYnH4mYRCvL22OXF-fzrJIkDGhLDc9knqIVNjRCqFAS3bHVO6urMCMKYV7Kt0PCW_INcu4OvHPGNkBRyc5G1Vhsss322vepWeMBAViXFs9aRyWPuxn8I1KRfhFUVGVAhR-x4g1jzO_BwND5-SavGwds4eJsI74jtOQQevRh-_ogdbUBu4lG9bTLuTDSFnfzwmWUf2Cv39ZB4OWLb_XrAj-SK9PqTF8EHFjHbEQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6hVgh6KFCKulDAB06o2aaO4yRHBC0LdPdAtlJvke2M0arbTbVNLpz54YwfiwoIiVsOsWLlG8_LM98AvCl4VliV6kRZoxLywIukkgoTY1NV2VynZevykNOZnFyIz5f5ZWxW970wiOiLz3DsHv1dftuZwaXKjt0tjsgc--d2LoTIQ7vWr0sDkZ_E7miZUBzB4yUmrTqef_xaUzDI83GWyzLNxG9myM9V-UsZewtz9ghmm72FwpKr8dDrsfn-B23jf2_-MexGX5O9C8LxBO7hag927jAQ7sF9XwFqbp_Cj9rXVkeqqiWrUV0vSQ2yU1ICob-RdZaFGQGsHtZWGWR1t1iyaUeyMqyR-foDNl-75D1zKYkuJASP2NTXbCKLdK7fjphateyD6hUjAVlcL0JJ3j5cnJ3O30-SOKIhMVyUfYJa2tRIqQpJgJetFqSwTowklHlVthUa3pKHILQ7-spR38iSgm4us9Zqg0X2DLZW3QoPgJVVQRGtdXTyKNwAEImaNIy0qiITKssRvN0g1twEJo7GRzBp1Th4GwdvE-Edwb5D4M6L4eeP4HADchMP622TcWekKfDkz_-x7DU8mMyn5835p9mXF_DQfSmkYQ5hq18P-JIck16_8uL4E7eY3l4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+Seamless+Estimation+of+Global+Surface+Soil+Moisture+Using+Triple+Collocation%2C+Machine+Learning%2C+and+Data+Assimilation&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Xu%2C+Lei&rft.au=Ye%2C+Zhenni&rft.au=Dai%2C+Jin&rft.au=Li%2C+Qi&rft.date=2025&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=63&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTGRS.2025.3568034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2025_3568034 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |