Critical Nodes Identification Algorithm Based on ResNet-CBAM

The identification of critical nodes in networks is of substantial practical significance. For instance, it can expedite information propagation within networks, target vulnerable links to enhance robustness, and optimize resource allocation by reducing redundancy and lowering costs. To improve the...

Full description

Saved in:
Bibliographic Details
Published inIEEE networking letters Vol. 7; no. 2; pp. 103 - 107
Main Authors Li, Xujie, Shao, Fei, Sun, Ying, Li, Haotian, Huang, Jiayi
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2576-3156
2576-3156
DOI10.1109/LNET.2025.3572513

Cover

Abstract The identification of critical nodes in networks is of substantial practical significance. For instance, it can expedite information propagation within networks, target vulnerable links to enhance robustness, and optimize resource allocation by reducing redundancy and lowering costs. To improve the accuracy of critical node identification, we propose an algorithm that integrates complex networks, propagation models, and deep learning techniques. The algorithm generates low-complexity features that include the characteristics of nodes and their neighboring nodes. A ResNet-CBAM network is then designed to identify critical nodes. To assess node importance, a method has been proposed that considers both propagation range and propagation efficiency, using their product as the evaluation criterion. Experimental results show that, compared to various centrality-based algorithms and other deep learning methods, our proposed algorithm outperforms others in terms of recognition accuracy across different types of networks.
AbstractList The identification of critical nodes in networks is of substantial practical significance. For instance, it can expedite information propagation within networks, target vulnerable links to enhance robustness, and optimize resource allocation by reducing redundancy and lowering costs. To improve the accuracy of critical node identification, we propose an algorithm that integrates complex networks, propagation models, and deep learning techniques. The algorithm generates low-complexity features that include the characteristics of nodes and their neighboring nodes. A ResNet-CBAM network is then designed to identify critical nodes. To assess node importance, a method has been proposed that considers both propagation range and propagation efficiency, using their product as the evaluation criterion. Experimental results show that, compared to various centrality-based algorithms and other deep learning methods, our proposed algorithm outperforms others in terms of recognition accuracy across different types of networks.
Author Li, Xujie
Sun, Ying
Li, Haotian
Huang, Jiayi
Shao, Fei
Author_xml – sequence: 1
  givenname: Xujie
  orcidid: 0000-0001-5486-5702
  surname: Li
  fullname: Li, Xujie
  email: lixujie@hhu.edu.cn
  organization: College of Computer Science and Software Engineering, Hohai University, Nanjing, China
– sequence: 2
  givenname: Fei
  surname: Shao
  fullname: Shao, Fei
  organization: College of Information Science and Engineering, Hohai University, Nanjing, China
– sequence: 3
  givenname: Ying
  surname: Sun
  fullname: Sun, Ying
  organization: College of Information Science and Engineering, Hohai University, Nanjing, China
– sequence: 4
  givenname: Haotian
  orcidid: 0000-0002-8939-7379
  surname: Li
  fullname: Li, Haotian
  organization: College of Information Science and Engineering, Hohai University, Nanjing, China
– sequence: 5
  givenname: Jiayi
  surname: Huang
  fullname: Huang, Jiayi
  organization: Department of Engineering, King's College London, London, U.K
BookMark eNpNkE1Lw0AQhhepYK39AYKHgOfUnf3IbsBLG6oWagWp52WTnWhKm6276cF_b0oLeprh5Xln4Lkmg9a3SMgt0AkAzR-Wq_l6wiiTEy4Vk8AvyJBJlaUcZDb4t1-RcYwbSimjQivNh-SxCE3XVHabrLzDmCwctl1T90nX-DaZbj99D3ztkpmN6JI-ese4wi4tZtPXG3JZ223E8XmOyMfTfF28pMu350UxXaYVE7pLLZaQY1mqUjOlS-kURcjAAneqBokWnZNC1gq5xIxT4FJUudAu51I6p_iI3J_u7oP_PmDszMYfQtu_NJxBrnOmhegpOFFV8DEGrM0-NDsbfgxQc_Rkjp7M0ZM5e-o7d6dOg4h_PFCagwb-C6BfY8k
CODEN INLEBB
Cites_doi 10.1145/1134271.1134277
10.1080/01621459.1966.10480879
10.1016/j.neucom.2021.10.031
10.1109/TPAMI.2021.3081744
10.1016/j.ins.2023.01.097
10.1109/TNSE.2019.2903272
10.1109/TKDE.2021.3085570
10.1103/PhysRevE.68.065103
10.1007/s10489-024-05336-x
10.1038/35075138
10.1109/TCBB.2018.2889978
10.1016/j.tcs.2015.02.033
10.1109/JSAC.2023.3310071
10.1109/TNSE.2022.3196397
10.1109/TNET.2003.822655
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/LNET.2025.3572513
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2576-3156
EndPage 107
ExternalDocumentID 10_1109_LNET_2025_3572513
11009181
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China; Project of National Natural Science Foundation of China
  grantid: U23B20144
  funderid: 10.13039/501100001809
– fundername: Future Network Scientific Research Fund Project
  grantid: FNSRFP-2021-YB-7
  funderid: 10.13039/501100002349
– fundername: Open Foundation of State key Laboratory of Networking and Switching Technology (Beijing University of Posts and Telecommunications)
  grantid: SKLNST-2022-1-15
  funderid: 10.13039/501100011532
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c248t-aeb19ebb7b8278b5d70e161a13d7f15eaedd545f7e35e6301354c948d9355dd73
IEDL.DBID RIE
ISSN 2576-3156
IngestDate Mon Jun 30 07:20:05 EDT 2025
Wed Oct 01 05:53:46 EDT 2025
Wed Jun 25 06:01:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-aeb19ebb7b8278b5d70e161a13d7f15eaedd545f7e35e6301354c948d9355dd73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8939-7379
0000-0001-5486-5702
PQID 3219892844
PQPubID 4437228
PageCount 5
ParticipantIDs crossref_primary_10_1109_LNET_2025_3572513
ieee_primary_11009181
proquest_journals_3219892844
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE networking letters
PublicationTitleAbbrev LNET
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref10
  doi: 10.1145/1134271.1134277
– ident: ref8
  doi: 10.1080/01621459.1966.10480879
– ident: ref6
  doi: 10.1016/j.neucom.2021.10.031
– ident: ref7
  doi: 10.1109/TPAMI.2021.3081744
– ident: ref14
  doi: 10.1016/j.ins.2023.01.097
– ident: ref1
  doi: 10.1109/TNSE.2019.2903272
– ident: ref5
  doi: 10.1109/TKDE.2021.3085570
– ident: ref13
  doi: 10.1103/PhysRevE.68.065103
– ident: ref15
  doi: 10.1007/s10489-024-05336-x
– ident: ref9
  doi: 10.1038/35075138
– ident: ref4
  doi: 10.1109/TCBB.2018.2889978
– ident: ref12
  doi: 10.1016/j.tcs.2015.02.033
– ident: ref3
  doi: 10.1109/JSAC.2023.3310071
– ident: ref2
  doi: 10.1109/TNSE.2022.3196397
– ident: ref11
  doi: 10.1109/TNET.2003.822655
SSID ssj0002048783
Score 2.2957218
Snippet The identification of critical nodes in networks is of substantial practical significance. For instance, it can expedite information propagation within...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 103
SubjectTerms Algorithms
Artificial intelligence
Attention mechanisms
CBAM
Complex networks
Complexity
Computational modeling
Data mining
Deep learning
Feature extraction
Machine learning
Networks
Nodes
Redundancy
Resource allocation
Telecommunications
Training
Vectors
Title Critical Nodes Identification Algorithm Based on ResNet-CBAM
URI https://ieeexplore.ieee.org/document/11009181
https://www.proquest.com/docview/3219892844
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2576-3156
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048783
  issn: 2576-3156
  databaseCode: RIE
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kxd_4MTplB48Ce3aJmkS8LKNjSGuB9lgt9I0rwrqKq67-NebpKmiIngrJS3hS_K-l5f3viB0Zey-Edr3NR2EPuFR6RtVK7-kVCWFNofMBtzmaTJbktsVXblidVsLAwA2-QwC82jP8lVVbE2obGDkzURkCq13GU-aYq3PgIpRoGUcu5PLKBSDu3Sy0DvAmAaYMs3j-Bv32MtUfllgSyvTA5S2HWqySZ6CbS2D4v2HVuO_e3yI9p2D6Q2bGXGEdmB9jG7aGw28tFKw8Zry3NLF67zh80OlGzy-eCNNasrTr-5hk0Ltj0fDeRctp5PFeOa7exP8Iia89nNtfwVIySSPGZdUsRC0Y5dHWLEyopCDUtpxKhlgCole4ZiSQhCujNa6UgyfoM66WsMp8kheyiQEilkOhMeCS6XCRIASnJGc5D103SKavTbyGJndVoQiM_BnBv7Mwd9DXYPQV0MHTg_120HI3AraZDg22VyaPMnZH5-doz3z9yZvq4869dsWLrSHUMtLOzM-ABFWtl8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA6iB734AydOp_bgSWjXNkmTgpdtbEzdepANditN86qgruK6i3-9SZoqKoK3UlIaviTve3l57wtCl9rua6F9V9GB7xIeFK5WtXILSmWUK3PITMBtmkTjObld0IUtVje1MABgks_A04_mLF-W-VqHyrpa3iwOdKH1FiWE0Lpc6zOkojVoGcf27DLw4-4kGc7UHjCkHqZMMTn-xj7mOpVfNtgQy2gPJU2X6nySJ29dCS9__6HW-O8-76Nd62I6vXpOHKANWB6i6-ZOAycpJaycukC3sBE7p_f8UKoGjy9OX9GadNSre1glULmDfm_aQvPRcDYYu_bmBDcPCa_cTFngGIRggoeMCyqZD8q1ywIsWRFQyEBK5ToVDDCFSK1xTEkeEy612rqUDB-hzWW5hGPkkKwQkQ8UswwID2MupPSjGGTMGclI1kZXDaLpay2QkZqNhR-nGv5Uw59a-NuopRH6amjBaaNOMwipXUOrFIc6n0vRJzn547MLtD2eTSfp5Ca5O0U7-k91FlcHbVZvazhT_kIlzs0s-QDNsrms
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+Nodes+Identification+Algorithm+Based+on+ResNet-CBAM&rft.jtitle=IEEE+networking+letters&rft.au=Li%2C+Xujie&rft.au=Shao%2C+Fei&rft.au=Sun%2C+Ying&rft.au=Li%2C+Haotian&rft.date=2025-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2576-3156&rft.volume=7&rft.issue=2&rft.spage=103&rft.epage=107&rft_id=info:doi/10.1109%2FLNET.2025.3572513&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-3156&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-3156&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-3156&client=summon