Critical Nodes Identification Algorithm Based on ResNet-CBAM
The identification of critical nodes in networks is of substantial practical significance. For instance, it can expedite information propagation within networks, target vulnerable links to enhance robustness, and optimize resource allocation by reducing redundancy and lowering costs. To improve the...
        Saved in:
      
    
          | Published in | IEEE networking letters Vol. 7; no. 2; pp. 103 - 107 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        01.06.2025
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2576-3156 2576-3156  | 
| DOI | 10.1109/LNET.2025.3572513 | 
Cover
| Abstract | The identification of critical nodes in networks is of substantial practical significance. For instance, it can expedite information propagation within networks, target vulnerable links to enhance robustness, and optimize resource allocation by reducing redundancy and lowering costs. To improve the accuracy of critical node identification, we propose an algorithm that integrates complex networks, propagation models, and deep learning techniques. The algorithm generates low-complexity features that include the characteristics of nodes and their neighboring nodes. A ResNet-CBAM network is then designed to identify critical nodes. To assess node importance, a method has been proposed that considers both propagation range and propagation efficiency, using their product as the evaluation criterion. Experimental results show that, compared to various centrality-based algorithms and other deep learning methods, our proposed algorithm outperforms others in terms of recognition accuracy across different types of networks. | 
    
|---|---|
| AbstractList | The identification of critical nodes in networks is of substantial practical significance. For instance, it can expedite information propagation within networks, target vulnerable links to enhance robustness, and optimize resource allocation by reducing redundancy and lowering costs. To improve the accuracy of critical node identification, we propose an algorithm that integrates complex networks, propagation models, and deep learning techniques. The algorithm generates low-complexity features that include the characteristics of nodes and their neighboring nodes. A ResNet-CBAM network is then designed to identify critical nodes. To assess node importance, a method has been proposed that considers both propagation range and propagation efficiency, using their product as the evaluation criterion. Experimental results show that, compared to various centrality-based algorithms and other deep learning methods, our proposed algorithm outperforms others in terms of recognition accuracy across different types of networks. | 
    
| Author | Li, Xujie Sun, Ying Li, Haotian Huang, Jiayi Shao, Fei  | 
    
| Author_xml | – sequence: 1 givenname: Xujie orcidid: 0000-0001-5486-5702 surname: Li fullname: Li, Xujie email: lixujie@hhu.edu.cn organization: College of Computer Science and Software Engineering, Hohai University, Nanjing, China – sequence: 2 givenname: Fei surname: Shao fullname: Shao, Fei organization: College of Information Science and Engineering, Hohai University, Nanjing, China – sequence: 3 givenname: Ying surname: Sun fullname: Sun, Ying organization: College of Information Science and Engineering, Hohai University, Nanjing, China – sequence: 4 givenname: Haotian orcidid: 0000-0002-8939-7379 surname: Li fullname: Li, Haotian organization: College of Information Science and Engineering, Hohai University, Nanjing, China – sequence: 5 givenname: Jiayi surname: Huang fullname: Huang, Jiayi organization: Department of Engineering, King's College London, London, U.K  | 
    
| BookMark | eNpNkE1Lw0AQhhepYK39AYKHgOfUnf3IbsBLG6oWagWp52WTnWhKm6276cF_b0oLeprh5Xln4Lkmg9a3SMgt0AkAzR-Wq_l6wiiTEy4Vk8AvyJBJlaUcZDb4t1-RcYwbSimjQivNh-SxCE3XVHabrLzDmCwctl1T90nX-DaZbj99D3ztkpmN6JI-ese4wi4tZtPXG3JZ223E8XmOyMfTfF28pMu350UxXaYVE7pLLZaQY1mqUjOlS-kURcjAAneqBokWnZNC1gq5xIxT4FJUudAu51I6p_iI3J_u7oP_PmDszMYfQtu_NJxBrnOmhegpOFFV8DEGrM0-NDsbfgxQc_Rkjp7M0ZM5e-o7d6dOg4h_PFCagwb-C6BfY8k | 
    
| CODEN | INLEBB | 
    
| Cites_doi | 10.1145/1134271.1134277 10.1080/01621459.1966.10480879 10.1016/j.neucom.2021.10.031 10.1109/TPAMI.2021.3081744 10.1016/j.ins.2023.01.097 10.1109/TNSE.2019.2903272 10.1109/TKDE.2021.3085570 10.1103/PhysRevE.68.065103 10.1007/s10489-024-05336-x 10.1038/35075138 10.1109/TCBB.2018.2889978 10.1016/j.tcs.2015.02.033 10.1109/JSAC.2023.3310071 10.1109/TNSE.2022.3196397 10.1109/TNET.2003.822655  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M  | 
    
| DOI | 10.1109/LNET.2025.3572513 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 2576-3156 | 
    
| EndPage | 107 | 
    
| ExternalDocumentID | 10_1109_LNET_2025_3572513 11009181  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China; Project of National Natural Science Foundation of China grantid: U23B20144 funderid: 10.13039/501100001809 – fundername: Future Network Scientific Research Fund Project grantid: FNSRFP-2021-YB-7 funderid: 10.13039/501100002349 – fundername: Open Foundation of State key Laboratory of Networking and Switching Technology (Beijing University of Posts and Telecommunications) grantid: SKLNST-2022-1-15 funderid: 10.13039/501100011532  | 
    
| GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE JAVBF OCL RIA RIE AAYXX CITATION 7SP 8FD L7M  | 
    
| ID | FETCH-LOGICAL-c248t-aeb19ebb7b8278b5d70e161a13d7f15eaedd545f7e35e6301354c948d9355dd73 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2576-3156 | 
    
| IngestDate | Mon Jun 30 07:20:05 EDT 2025 Wed Oct 01 05:53:46 EDT 2025 Wed Jun 25 06:01:14 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c248t-aeb19ebb7b8278b5d70e161a13d7f15eaedd545f7e35e6301354c948d9355dd73 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-8939-7379 0000-0001-5486-5702  | 
    
| PQID | 3219892844 | 
    
| PQPubID | 4437228 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | crossref_primary_10_1109_LNET_2025_3572513 ieee_primary_11009181 proquest_journals_3219892844  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-06-01 | 
    
| PublicationDateYYYYMMDD | 2025-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE networking letters | 
    
| PublicationTitleAbbrev | LNET | 
    
| PublicationYear | 2025 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref8 ref7 ref9 ref4 ref3 ref6 ref5  | 
    
| References_xml | – ident: ref10 doi: 10.1145/1134271.1134277 – ident: ref8 doi: 10.1080/01621459.1966.10480879 – ident: ref6 doi: 10.1016/j.neucom.2021.10.031 – ident: ref7 doi: 10.1109/TPAMI.2021.3081744 – ident: ref14 doi: 10.1016/j.ins.2023.01.097 – ident: ref1 doi: 10.1109/TNSE.2019.2903272 – ident: ref5 doi: 10.1109/TKDE.2021.3085570 – ident: ref13 doi: 10.1103/PhysRevE.68.065103 – ident: ref15 doi: 10.1007/s10489-024-05336-x – ident: ref9 doi: 10.1038/35075138 – ident: ref4 doi: 10.1109/TCBB.2018.2889978 – ident: ref12 doi: 10.1016/j.tcs.2015.02.033 – ident: ref3 doi: 10.1109/JSAC.2023.3310071 – ident: ref2 doi: 10.1109/TNSE.2022.3196397 – ident: ref11 doi: 10.1109/TNET.2003.822655  | 
    
| SSID | ssj0002048783 | 
    
| Score | 2.2957218 | 
    
| Snippet | The identification of critical nodes in networks is of substantial practical significance. For instance, it can expedite information propagation within... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 103 | 
    
| SubjectTerms | Algorithms Artificial intelligence Attention mechanisms CBAM Complex networks Complexity Computational modeling Data mining Deep learning Feature extraction Machine learning Networks Nodes Redundancy Resource allocation Telecommunications Training Vectors  | 
    
| Title | Critical Nodes Identification Algorithm Based on ResNet-CBAM | 
    
| URI | https://ieeexplore.ieee.org/document/11009181 https://www.proquest.com/docview/3219892844  | 
    
| Volume | 7 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2576-3156 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048783 issn: 2576-3156 databaseCode: RIE dateStart: 20190101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kxd_4MTplB48Ce3aJmkS8LKNjSGuB9lgt9I0rwrqKq67-NebpKmiIngrJS3hS_K-l5f3viB0Zey-Edr3NR2EPuFR6RtVK7-kVCWFNofMBtzmaTJbktsVXblidVsLAwA2-QwC82jP8lVVbE2obGDkzURkCq13GU-aYq3PgIpRoGUcu5PLKBSDu3Sy0DvAmAaYMs3j-Bv32MtUfllgSyvTA5S2HWqySZ6CbS2D4v2HVuO_e3yI9p2D6Q2bGXGEdmB9jG7aGw28tFKw8Zry3NLF67zh80OlGzy-eCNNasrTr-5hk0Ltj0fDeRctp5PFeOa7exP8Iia89nNtfwVIySSPGZdUsRC0Y5dHWLEyopCDUtpxKhlgCole4ZiSQhCujNa6UgyfoM66WsMp8kheyiQEilkOhMeCS6XCRIASnJGc5D103SKavTbyGJndVoQiM_BnBv7Mwd9DXYPQV0MHTg_120HI3AraZDg22VyaPMnZH5-doz3z9yZvq4869dsWLrSHUMtLOzM-ABFWtl8 | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA6iB734AydOp_bgSWjXNkmTgpdtbEzdepANditN86qgruK6i3-9SZoqKoK3UlIaviTve3l57wtCl9rua6F9V9GB7xIeFK5WtXILSmWUK3PITMBtmkTjObld0IUtVje1MABgks_A04_mLF-W-VqHyrpa3iwOdKH1FiWE0Lpc6zOkojVoGcf27DLw4-4kGc7UHjCkHqZMMTn-xj7mOpVfNtgQy2gPJU2X6nySJ29dCS9__6HW-O8-76Nd62I6vXpOHKANWB6i6-ZOAycpJaycukC3sBE7p_f8UKoGjy9OX9GadNSre1glULmDfm_aQvPRcDYYu_bmBDcPCa_cTFngGIRggoeMCyqZD8q1ywIsWRFQyEBK5ToVDDCFSK1xTEkeEy612rqUDB-hzWW5hGPkkKwQkQ8UswwID2MupPSjGGTMGclI1kZXDaLpay2QkZqNhR-nGv5Uw59a-NuopRH6amjBaaNOMwipXUOrFIc6n0vRJzn547MLtD2eTSfp5Ca5O0U7-k91FlcHbVZvazhT_kIlzs0s-QDNsrms | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+Nodes+Identification+Algorithm+Based+on+ResNet-CBAM&rft.jtitle=IEEE+networking+letters&rft.au=Li%2C+Xujie&rft.au=Shao%2C+Fei&rft.au=Sun%2C+Ying&rft.au=Li%2C+Haotian&rft.date=2025-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2576-3156&rft.volume=7&rft.issue=2&rft.spage=103&rft.epage=107&rft_id=info:doi/10.1109%2FLNET.2025.3572513&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-3156&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-3156&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-3156&client=summon |