Cross-Domain Specific Emitter Identification Based on Domain-Specific Classifier

Specific emitter identification (SEI) is crucial in the Internet of Things (IoT) to ensure the authentication and security of devices. With advancements in deep learning (DL), SEI for IoT devices has achieved remarkable progress. However, traditional DL-based SEI relies on a blanket assumption that...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 12; no. 14; pp. 27660 - 27670
Main Authors Xiao, Zhiling, Xie, Yunhong, Li, Qiang, Sun, Guomin, Shao, Huaizong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 15.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4662
2327-4662
DOI10.1109/JIOT.2025.3563894

Cover

Abstract Specific emitter identification (SEI) is crucial in the Internet of Things (IoT) to ensure the authentication and security of devices. With advancements in deep learning (DL), SEI for IoT devices has achieved remarkable progress. However, traditional DL-based SEI relies on a blanket assumption that emitter signals are transmitted in a constant channel environment and collected by a fixed receiver before identification. This assumption overlooks the dynamic characteristics of real-world IoT scenarios, where the channel environment and receiver are subject to change. Such variations can significantly impact SEI systems, potentially leading to a substantial decrease in identification accuracy. This challenge is known as the cross-domain SEI problem, where different receivers and channel environments are viewed as distinct domains. To mitigate this issue, we integrate unsupervised domain adaptation (UDA) into SEI. We propose an innovative UDA framework named domain-specific classifier network (DSCN) for cross-domain SEI. In our method, we initially use a weight-shared extractor for feature extraction. Unlike most existing UDA methods, we do not enforce the extractor to generate domain-invariant features for cross-domain identification. Instead, we design domain-specific classifiers to process features from different domains: source signal features are recognized by a source-specific classifier, while target signal features are recognized by a target-specific classifier. Experimental results demonstrate that the DSCN framework effectively mitigates identification accuracy degradation in cross-domain scenarios and outperforms existing UDA methods.
AbstractList Specific emitter identification (SEI) is crucial in the Internet of Things (IoT) to ensure the authentication and security of devices. With advancements in deep learning (DL), SEI for IoT devices has achieved remarkable progress. However, traditional DL-based SEI relies on a blanket assumption that emitter signals are transmitted in a constant channel environment and collected by a fixed receiver before identification. This assumption overlooks the dynamic characteristics of real-world IoT scenarios, where the channel environment and receiver are subject to change. Such variations can significantly impact SEI systems, potentially leading to a substantial decrease in identification accuracy. This challenge is known as the cross-domain SEI problem, where different receivers and channel environments are viewed as distinct domains. To mitigate this issue, we integrate unsupervised domain adaptation (UDA) into SEI. We propose an innovative UDA framework named domain-specific classifier network (DSCN) for cross-domain SEI. In our method, we initially use a weight-shared extractor for feature extraction. Unlike most existing UDA methods, we do not enforce the extractor to generate domain-invariant features for cross-domain identification. Instead, we design domain-specific classifiers to process features from different domains: source signal features are recognized by a source-specific classifier, while target signal features are recognized by a target-specific classifier. Experimental results demonstrate that the DSCN framework effectively mitigates identification accuracy degradation in cross-domain scenarios and outperforms existing UDA methods.
Author Li, Qiang
Xie, Yunhong
Shao, Huaizong
Xiao, Zhiling
Sun, Guomin
Author_xml – sequence: 1
  givenname: Zhiling
  orcidid: 0000-0002-2113-5647
  surname: Xiao
  fullname: Xiao, Zhiling
  email: zhilingxiao9928@163.com
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Yunhong
  surname: Xie
  fullname: Xie, Yunhong
  email: xyh199777@std.uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Qiang
  orcidid: 0000-0001-5609-3320
  surname: Li
  fullname: Li, Qiang
  email: lq@uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Guomin
  surname: Sun
  fullname: Sun, Guomin
  email: gms_6220062@uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 5
  givenname: Huaizong
  orcidid: 0000-0003-1253-7991
  surname: Shao
  fullname: Shao, Huaizong
  email: hzshao@uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
BookMark eNpNkEtLw0AUhQdRsNb-AMFFwHXqPDKvpcaqlUIF63qYTO5ASpvUmXThv3dCinR1D4fv3Ms9N-iy7VpA6I7gOSFYP34s15s5xZTPGRdM6eICTSijMi-EoJdn-hrNYtxijFOMEy0m6LMMXYz5S7e3TZt9HcA1vnHZYt_0PYRsWUPbD47tm67Nnm2EOkti5PN_vtzZGJOCcIuuvN1FmJ3mFH2_Ljble75avy3Lp1XuaKH6XFNSeKkZcVrwuhYcQDEusVayrpVXoqK-ciCpl7VlXlfJFU46KyuunJJsih7GvYfQ_Rwh9mbbHUObThpGqeK8wEQnioyUG94M4M0hNHsbfg3BZujODN2ZoTtz6i5l7sdMAwBnvJZcCsn-APg8bFo
CODEN IITJAU
Cites_doi 10.1109/TIFS.2022.3152404
10.1109/TII.2020.3008010
10.1109/CNS59707.2023.10288752
10.1109/JSAC.2021.3087250
10.1016/j.sigpro.2020.107526
10.1109/JIOT.2023.3257479
10.1109/LCOMM.2023.3312390
10.1016/j.eswa.2020.114490
10.1109/TIFS.2022.3223794
10.1109/TIFS.2016.2520908
10.1109/TIFS.2020.3001721
10.1109/JRFID.2018.2880457
10.1109/JIOT.2024.3404042
10.23919/JCC.2021.12.005
10.1109/JIOT.2023.3240242
10.1109/TAES.2022.3184619
10.1016/j.knosys.2020.106122
10.1007/978-3-319-13560-1_76
10.1109/TII.2019.2943898
10.1109/TIFS.2021.3088008
10.1109/ACCESS.2022.3154790
10.1109/CVPR.2018.00392
10.1109/JRFID.2021.3051901
10.1109/TAES.2022.3153756
10.1109/TNNLS.2021.3110109
10.1109/JIOT.2023.3284428
10.1109/JSTARS.2021.3089238
10.3390/info14090479
10.1109/TWC.2023.3316286
10.1109/LCOMM.2018.2871465
10.1109/TAES.2023.3240115
10.1109/LSP.2023.3264621
10.1109/TVT.2020.3042128
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2025.3563894
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 27670
ExternalDocumentID 10_1109_JIOT_2025_3563894
10975767
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62301115; 62171110
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c248t-9214f7931c965dd65ee83570987dd8f86b2fbce72f7da3f9bdd86c7ca7b58c873
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Sat Sep 27 06:40:42 EDT 2025
Wed Oct 01 05:39:10 EDT 2025
Wed Aug 20 06:20:53 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 14
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-9214f7931c965dd65ee83570987dd8f86b2fbce72f7da3f9bdd86c7ca7b58c873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2113-5647
0000-0001-5609-3320
0000-0003-1253-7991
PQID 3228554019
PQPubID 2040421
PageCount 11
ParticipantIDs crossref_primary_10_1109_JIOT_2025_3563894
proquest_journals_3228554019
ieee_primary_10975767
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-15
PublicationDateYYYYMMDD 2025-07-15
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Van der Maaten (ref34) 2008; 9
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref15
  doi: 10.1109/TIFS.2022.3152404
– ident: ref23
  doi: 10.1109/TII.2020.3008010
– ident: ref28
  doi: 10.1109/CNS59707.2023.10288752
– ident: ref8
  doi: 10.1109/JSAC.2021.3087250
– ident: ref21
  doi: 10.1016/j.sigpro.2020.107526
– ident: ref6
  doi: 10.1109/JIOT.2023.3257479
– ident: ref13
  doi: 10.1109/LCOMM.2023.3312390
– ident: ref22
  doi: 10.1016/j.eswa.2020.114490
– ident: ref32
  doi: 10.1109/TIFS.2022.3223794
– ident: ref3
  doi: 10.1109/TIFS.2016.2520908
– volume: 9
  start-page: 2579
  issue: 86
  year: 2008
  ident: ref34
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref16
  doi: 10.1109/TIFS.2020.3001721
– ident: ref1
  doi: 10.1109/JRFID.2018.2880457
– ident: ref33
  doi: 10.1109/JIOT.2024.3404042
– ident: ref31
  doi: 10.23919/JCC.2021.12.005
– ident: ref12
  doi: 10.1109/JIOT.2023.3240242
– ident: ref7
  doi: 10.1109/TAES.2022.3184619
– ident: ref18
  doi: 10.1016/j.knosys.2020.106122
– ident: ref26
  doi: 10.1007/978-3-319-13560-1_76
– ident: ref30
  doi: 10.1109/TII.2019.2943898
– ident: ref14
  doi: 10.1109/TIFS.2021.3088008
– ident: ref29
  doi: 10.1109/ACCESS.2022.3154790
– ident: ref20
  doi: 10.1109/CVPR.2018.00392
– ident: ref11
  doi: 10.1109/JRFID.2021.3051901
– ident: ref9
  doi: 10.1109/TAES.2022.3153756
– ident: ref27
  doi: 10.1109/TNNLS.2021.3110109
– ident: ref2
  doi: 10.1109/JIOT.2023.3284428
– ident: ref19
  doi: 10.1109/JSTARS.2021.3089238
– ident: ref17
  doi: 10.3390/info14090479
– ident: ref25
  doi: 10.1109/TWC.2023.3316286
– ident: ref4
  doi: 10.1109/LCOMM.2018.2871465
– ident: ref5
  doi: 10.1109/TAES.2023.3240115
– ident: ref24
  doi: 10.1109/LSP.2023.3264621
– ident: ref10
  doi: 10.1109/TVT.2020.3042128
SSID ssj0001105196
Score 2.349048
Snippet Specific emitter identification (SEI) is crucial in the Internet of Things (IoT) to ensure the authentication and security of devices. With advancements in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 27660
SubjectTerms Classification tree analysis
Cross-domain
Distortion
domain-adapted classifier
Dynamic characteristics
Emitters
Feature extraction
Hardware
Identification
Internet of Things
Machine learning
Receivers
Security
specific emitter identification (SEI)
Target recognition
Training
Transforms
Title Cross-Domain Specific Emitter Identification Based on Domain-Specific Classifier
URI https://ieeexplore.ieee.org/document/10975767
https://www.proquest.com/docview/3228554019
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LSgMxMNievFgfFatVcvAkZNt95HXUaqkFq4cWels22QkUaSt1e_HrTbK7PhG8DctsGDKZzGSeCF2KjEmTa0EUU5okAiiRCsDKVR9MyA2XyhUnP0zYaJaM53ReFav7WhgA8MlnEDjQx_Lztd46V1nPRUutfcwbqMG5LIu1Ph0qobNGWBW5tKi98f3j1L4AIxrE1Cnm5Jvu8cNUft3AXq0MW2hSE1RmkzwH20IF-u1Hr8Z_U7yP9ioDE1-XJ-IA7cDqELXq4Q24kuUj9DRwNJLb9TJbrLAfQ28WGt8tF66-B5cFvKby6OEbq-xybIESn3zg-6GaFoJNG82Gd9PBiFTjFYiOElEQGYWJ5UUcaslonjMKYM0x3peC57kwgqnIKA08MjzPYiOV_co01xlXVGjB42PUXK1XcIJwCNouRSGCjLuW9kIpEUEUS22ZIgR00FW98elL2UUj9a-Pvkwdl1LHpbTiUge13UZ-QSz3sIO6Na_SStBeU3sfuUQ7a6ie_vHbGdp1qzt_bEi7qFlstnBuDYlCXfgD9A7Y9cdG
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LTsMwzOJxgAvPIQYDeuCE1G1NmyY5wti0ARscNmm3qkkdaULb0OgufD1J2vEUEjerclvLjmPH8QPgkqex0Jnivoyl8iOO1BcS0ehVE3XANBPSFif3B3F3FN2N6bgsVne1MIjoks-wbkF3l5_N1dKGyhr2ttT4x2wdNmkUMVKUa32GVALrj8Tl3aVBbtz1HofmDEhoPaTWNEffrI8bp_JrD3aGpbMLgxVJRT7Jc32Zy7p6-9Gt8d8078FO6WJ618Wa2Ic1nB3A7mp8g1dq8yE8tSyN_u18mk5mnhtEryfKa08ntsLHK0p4dRnT826Mucs8AxT4_ge-G6tpIFxUYNRpD1tdvxyw4CsS8dwXJIiMNMJAiZhmWUwRjUPGmoKzLOOax5JoqZARzbI01EKap7FiKmWScsVZeAQbs_kMj8ELUJlPUSSYMtvUnkvJCZJQKCMUzrEKVyvGJy9FH43EnT-aIrFSSqyUklJKVahYRn5BLHhYhdpKVkmpaq-J2ZFsqp1xVU_-eO0CtrrD_kPy0Bvcn8K2_ZONzga0Bhv5Yolnxq3I5blbTO9u0sqR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Domain+Specific+Emitter+Identification+Based+on+Domain-Specific+Classifier&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Xiao%2C+Zhiling&rft.au=Xie%2C+Yunhong&rft.au=Li%2C+Qiang&rft.au=Sun%2C+Guomin&rft.date=2025-07-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=12&rft.issue=19&rft.spage=27660&rft.epage=27670&rft_id=info:doi/10.1109%2FJIOT.2025.3563894&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon