Cross-Domain Specific Emitter Identification Based on Domain-Specific Classifier
Specific emitter identification (SEI) is crucial in the Internet of Things (IoT) to ensure the authentication and security of devices. With advancements in deep learning (DL), SEI for IoT devices has achieved remarkable progress. However, traditional DL-based SEI relies on a blanket assumption that...
Saved in:
Published in | IEEE internet of things journal Vol. 12; no. 14; pp. 27660 - 27670 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
15.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2327-4662 2327-4662 |
DOI | 10.1109/JIOT.2025.3563894 |
Cover
Abstract | Specific emitter identification (SEI) is crucial in the Internet of Things (IoT) to ensure the authentication and security of devices. With advancements in deep learning (DL), SEI for IoT devices has achieved remarkable progress. However, traditional DL-based SEI relies on a blanket assumption that emitter signals are transmitted in a constant channel environment and collected by a fixed receiver before identification. This assumption overlooks the dynamic characteristics of real-world IoT scenarios, where the channel environment and receiver are subject to change. Such variations can significantly impact SEI systems, potentially leading to a substantial decrease in identification accuracy. This challenge is known as the cross-domain SEI problem, where different receivers and channel environments are viewed as distinct domains. To mitigate this issue, we integrate unsupervised domain adaptation (UDA) into SEI. We propose an innovative UDA framework named domain-specific classifier network (DSCN) for cross-domain SEI. In our method, we initially use a weight-shared extractor for feature extraction. Unlike most existing UDA methods, we do not enforce the extractor to generate domain-invariant features for cross-domain identification. Instead, we design domain-specific classifiers to process features from different domains: source signal features are recognized by a source-specific classifier, while target signal features are recognized by a target-specific classifier. Experimental results demonstrate that the DSCN framework effectively mitigates identification accuracy degradation in cross-domain scenarios and outperforms existing UDA methods. |
---|---|
AbstractList | Specific emitter identification (SEI) is crucial in the Internet of Things (IoT) to ensure the authentication and security of devices. With advancements in deep learning (DL), SEI for IoT devices has achieved remarkable progress. However, traditional DL-based SEI relies on a blanket assumption that emitter signals are transmitted in a constant channel environment and collected by a fixed receiver before identification. This assumption overlooks the dynamic characteristics of real-world IoT scenarios, where the channel environment and receiver are subject to change. Such variations can significantly impact SEI systems, potentially leading to a substantial decrease in identification accuracy. This challenge is known as the cross-domain SEI problem, where different receivers and channel environments are viewed as distinct domains. To mitigate this issue, we integrate unsupervised domain adaptation (UDA) into SEI. We propose an innovative UDA framework named domain-specific classifier network (DSCN) for cross-domain SEI. In our method, we initially use a weight-shared extractor for feature extraction. Unlike most existing UDA methods, we do not enforce the extractor to generate domain-invariant features for cross-domain identification. Instead, we design domain-specific classifiers to process features from different domains: source signal features are recognized by a source-specific classifier, while target signal features are recognized by a target-specific classifier. Experimental results demonstrate that the DSCN framework effectively mitigates identification accuracy degradation in cross-domain scenarios and outperforms existing UDA methods. |
Author | Li, Qiang Xie, Yunhong Shao, Huaizong Xiao, Zhiling Sun, Guomin |
Author_xml | – sequence: 1 givenname: Zhiling orcidid: 0000-0002-2113-5647 surname: Xiao fullname: Xiao, Zhiling email: zhilingxiao9928@163.com organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Yunhong surname: Xie fullname: Xie, Yunhong email: xyh199777@std.uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Qiang orcidid: 0000-0001-5609-3320 surname: Li fullname: Li, Qiang email: lq@uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 4 givenname: Guomin surname: Sun fullname: Sun, Guomin email: gms_6220062@uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 5 givenname: Huaizong orcidid: 0000-0003-1253-7991 surname: Shao fullname: Shao, Huaizong email: hzshao@uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China |
BookMark | eNpNkEtLw0AUhQdRsNb-AMFFwHXqPDKvpcaqlUIF63qYTO5ASpvUmXThv3dCinR1D4fv3Ms9N-iy7VpA6I7gOSFYP34s15s5xZTPGRdM6eICTSijMi-EoJdn-hrNYtxijFOMEy0m6LMMXYz5S7e3TZt9HcA1vnHZYt_0PYRsWUPbD47tm67Nnm2EOkti5PN_vtzZGJOCcIuuvN1FmJ3mFH2_Ljble75avy3Lp1XuaKH6XFNSeKkZcVrwuhYcQDEusVayrpVXoqK-ciCpl7VlXlfJFU46KyuunJJsih7GvYfQ_Rwh9mbbHUObThpGqeK8wEQnioyUG94M4M0hNHsbfg3BZujODN2ZoTtz6i5l7sdMAwBnvJZcCsn-APg8bFo |
CODEN | IITJAU |
Cites_doi | 10.1109/TIFS.2022.3152404 10.1109/TII.2020.3008010 10.1109/CNS59707.2023.10288752 10.1109/JSAC.2021.3087250 10.1016/j.sigpro.2020.107526 10.1109/JIOT.2023.3257479 10.1109/LCOMM.2023.3312390 10.1016/j.eswa.2020.114490 10.1109/TIFS.2022.3223794 10.1109/TIFS.2016.2520908 10.1109/TIFS.2020.3001721 10.1109/JRFID.2018.2880457 10.1109/JIOT.2024.3404042 10.23919/JCC.2021.12.005 10.1109/JIOT.2023.3240242 10.1109/TAES.2022.3184619 10.1016/j.knosys.2020.106122 10.1007/978-3-319-13560-1_76 10.1109/TII.2019.2943898 10.1109/TIFS.2021.3088008 10.1109/ACCESS.2022.3154790 10.1109/CVPR.2018.00392 10.1109/JRFID.2021.3051901 10.1109/TAES.2022.3153756 10.1109/TNNLS.2021.3110109 10.1109/JIOT.2023.3284428 10.1109/JSTARS.2021.3089238 10.3390/info14090479 10.1109/TWC.2023.3316286 10.1109/LCOMM.2018.2871465 10.1109/TAES.2023.3240115 10.1109/LSP.2023.3264621 10.1109/TVT.2020.3042128 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/JIOT.2025.3563894 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2327-4662 |
EndPage | 27670 |
ExternalDocumentID | 10_1109_JIOT_2025_3563894 10975767 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62301115; 62171110 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c248t-9214f7931c965dd65ee83570987dd8f86b2fbce72f7da3f9bdd86c7ca7b58c873 |
IEDL.DBID | RIE |
ISSN | 2327-4662 |
IngestDate | Sat Sep 27 06:40:42 EDT 2025 Wed Oct 01 05:39:10 EDT 2025 Wed Aug 20 06:20:53 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 14 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c248t-9214f7931c965dd65ee83570987dd8f86b2fbce72f7da3f9bdd86c7ca7b58c873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2113-5647 0000-0001-5609-3320 0000-0003-1253-7991 |
PQID | 3228554019 |
PQPubID | 2040421 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_JIOT_2025_3563894 proquest_journals_3228554019 ieee_primary_10975767 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-07-15 |
PublicationDateYYYYMMDD | 2025-07-15 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE internet of things journal |
PublicationTitleAbbrev | JIoT |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Van der Maaten (ref34) 2008; 9 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref15 doi: 10.1109/TIFS.2022.3152404 – ident: ref23 doi: 10.1109/TII.2020.3008010 – ident: ref28 doi: 10.1109/CNS59707.2023.10288752 – ident: ref8 doi: 10.1109/JSAC.2021.3087250 – ident: ref21 doi: 10.1016/j.sigpro.2020.107526 – ident: ref6 doi: 10.1109/JIOT.2023.3257479 – ident: ref13 doi: 10.1109/LCOMM.2023.3312390 – ident: ref22 doi: 10.1016/j.eswa.2020.114490 – ident: ref32 doi: 10.1109/TIFS.2022.3223794 – ident: ref3 doi: 10.1109/TIFS.2016.2520908 – volume: 9 start-page: 2579 issue: 86 year: 2008 ident: ref34 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref16 doi: 10.1109/TIFS.2020.3001721 – ident: ref1 doi: 10.1109/JRFID.2018.2880457 – ident: ref33 doi: 10.1109/JIOT.2024.3404042 – ident: ref31 doi: 10.23919/JCC.2021.12.005 – ident: ref12 doi: 10.1109/JIOT.2023.3240242 – ident: ref7 doi: 10.1109/TAES.2022.3184619 – ident: ref18 doi: 10.1016/j.knosys.2020.106122 – ident: ref26 doi: 10.1007/978-3-319-13560-1_76 – ident: ref30 doi: 10.1109/TII.2019.2943898 – ident: ref14 doi: 10.1109/TIFS.2021.3088008 – ident: ref29 doi: 10.1109/ACCESS.2022.3154790 – ident: ref20 doi: 10.1109/CVPR.2018.00392 – ident: ref11 doi: 10.1109/JRFID.2021.3051901 – ident: ref9 doi: 10.1109/TAES.2022.3153756 – ident: ref27 doi: 10.1109/TNNLS.2021.3110109 – ident: ref2 doi: 10.1109/JIOT.2023.3284428 – ident: ref19 doi: 10.1109/JSTARS.2021.3089238 – ident: ref17 doi: 10.3390/info14090479 – ident: ref25 doi: 10.1109/TWC.2023.3316286 – ident: ref4 doi: 10.1109/LCOMM.2018.2871465 – ident: ref5 doi: 10.1109/TAES.2023.3240115 – ident: ref24 doi: 10.1109/LSP.2023.3264621 – ident: ref10 doi: 10.1109/TVT.2020.3042128 |
SSID | ssj0001105196 |
Score | 2.349048 |
Snippet | Specific emitter identification (SEI) is crucial in the Internet of Things (IoT) to ensure the authentication and security of devices. With advancements in... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 27660 |
SubjectTerms | Classification tree analysis Cross-domain Distortion domain-adapted classifier Dynamic characteristics Emitters Feature extraction Hardware Identification Internet of Things Machine learning Receivers Security specific emitter identification (SEI) Target recognition Training Transforms |
Title | Cross-Domain Specific Emitter Identification Based on Domain-Specific Classifier |
URI | https://ieeexplore.ieee.org/document/10975767 https://www.proquest.com/docview/3228554019 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LSgMxMNievFgfFatVcvAkZNt95HXUaqkFq4cWels22QkUaSt1e_HrTbK7PhG8DctsGDKZzGSeCF2KjEmTa0EUU5okAiiRCsDKVR9MyA2XyhUnP0zYaJaM53ReFav7WhgA8MlnEDjQx_Lztd46V1nPRUutfcwbqMG5LIu1Ph0qobNGWBW5tKi98f3j1L4AIxrE1Cnm5Jvu8cNUft3AXq0MW2hSE1RmkzwH20IF-u1Hr8Z_U7yP9ioDE1-XJ-IA7cDqELXq4Q24kuUj9DRwNJLb9TJbrLAfQ28WGt8tF66-B5cFvKby6OEbq-xybIESn3zg-6GaFoJNG82Gd9PBiFTjFYiOElEQGYWJ5UUcaslonjMKYM0x3peC57kwgqnIKA08MjzPYiOV_co01xlXVGjB42PUXK1XcIJwCNouRSGCjLuW9kIpEUEUS22ZIgR00FW98elL2UUj9a-Pvkwdl1LHpbTiUge13UZ-QSz3sIO6Na_SStBeU3sfuUQ7a6ie_vHbGdp1qzt_bEi7qFlstnBuDYlCXfgD9A7Y9cdG |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LTsMwzOJxgAvPIQYDeuCE1G1NmyY5wti0ARscNmm3qkkdaULb0OgufD1J2vEUEjerclvLjmPH8QPgkqex0Jnivoyl8iOO1BcS0ehVE3XANBPSFif3B3F3FN2N6bgsVne1MIjoks-wbkF3l5_N1dKGyhr2ttT4x2wdNmkUMVKUa32GVALrj8Tl3aVBbtz1HofmDEhoPaTWNEffrI8bp_JrD3aGpbMLgxVJRT7Jc32Zy7p6-9Gt8d8078FO6WJ618Wa2Ic1nB3A7mp8g1dq8yE8tSyN_u18mk5mnhtEryfKa08ntsLHK0p4dRnT826Mucs8AxT4_ge-G6tpIFxUYNRpD1tdvxyw4CsS8dwXJIiMNMJAiZhmWUwRjUPGmoKzLOOax5JoqZARzbI01EKap7FiKmWScsVZeAQbs_kMj8ELUJlPUSSYMtvUnkvJCZJQKCMUzrEKVyvGJy9FH43EnT-aIrFSSqyUklJKVahYRn5BLHhYhdpKVkmpaq-J2ZFsqp1xVU_-eO0CtrrD_kPy0Bvcn8K2_ZONzga0Bhv5Yolnxq3I5blbTO9u0sqR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Domain+Specific+Emitter+Identification+Based+on+Domain-Specific+Classifier&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Xiao%2C+Zhiling&rft.au=Xie%2C+Yunhong&rft.au=Li%2C+Qiang&rft.au=Sun%2C+Guomin&rft.date=2025-07-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=12&rft.issue=19&rft.spage=27660&rft.epage=27670&rft_id=info:doi/10.1109%2FJIOT.2025.3563894&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |