Thickness Measurement for Mountain Glaciers With Water-Rich Ice Based on VHF GPR and PSO-CTM-CFAR Detector
Glaciers and ice caps in High Mountain Asia are changing rapidly in response to climate change, where ice thickness is a key parameter to describe glacier change. However, in high mountain areas of Asia, with the increasing liquid water content (LWC) of mountain glaciers and formation of water-rich...
Saved in:
| Published in | IEEE transactions on geoscience and remote sensing Vol. 63; pp. 1 - 13 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-2892 1558-0644 |
| DOI | 10.1109/TGRS.2025.3603270 |
Cover
| Abstract | Glaciers and ice caps in High Mountain Asia are changing rapidly in response to climate change, where ice thickness is a key parameter to describe glacier change. However, in high mountain areas of Asia, with the increasing liquid water content (LWC) of mountain glaciers and formation of water-rich ice layers, the dispersion caused by water-rich ice makes it difficult to directly identify the true location of ice-granite interface through ground penetrating radar (GPR) data. It is a core challenge for thickness measurement of mountain glaciers with water-rich ice to accurately detect the ice-granite interface. In this article, to extract ice-granite interface and measure the thickness of mountain glaciers with water-rich ice, we construct a stochastic dispersive medium model of mountain glaciers with water-rich ice based on FDTD algorithm, establish a mixed Weibull noise model to describe to clutters from liquid water in water-rich ice medium, and propose a corrected trimmed mean constant false alarm rate (CTM-CFAR) based on particle swarm optimization (PSO) to extract the characteristic of ice-granite interface. Compared with other CFAR, the method proposed in this article has higher precision and lower measurement error. In addition, with low signal-to-noise ratio (SNR) conditions, the proposed method also exhibits better performance than other CFAR-based methods. |
|---|---|
| AbstractList | Glaciers and ice caps in High Mountain Asia are changing rapidly in response to climate change, where ice thickness is a key parameter to describe glacier change. However, in high mountain areas of Asia, with the increasing liquid water content (LWC) of mountain glaciers and formation of water-rich ice layers, the dispersion caused by water-rich ice makes it difficult to directly identify the true location of ice–granite interface through ground penetrating radar (GPR) data. It is a core challenge for thickness measurement of mountain glaciers with water-rich ice to accurately detect the ice–granite interface. In this article, to extract ice–granite interface and measure the thickness of mountain glaciers with water-rich ice, we construct a stochastic dispersive medium model of mountain glaciers with water-rich ice based on FDTD algorithm, establish a mixed Weibull noise model to describe to clutters from liquid water in water-rich ice medium, and propose a corrected trimmed mean constant false alarm rate (CTM-CFAR) based on particle swarm optimization (PSO) to extract the characteristic of ice–granite interface. Compared with other CFAR, the method proposed in this article has higher precision and lower measurement error. In addition, with low signal-to-noise ratio (SNR) conditions, the proposed method also exhibits better performance than other CFAR-based methods. |
| Author | Jiang, Liming Pang, Xiaoguang Wu, Yuxuan |
| Author_xml | – sequence: 1 givenname: Yuxuan orcidid: 0000-0001-9377-0685 surname: Wu fullname: Wu, Yuxuan email: wuyuxuan@apm.ac.cn organization: State Key Laboratory of Precision Geodesy, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan, China – sequence: 2 givenname: Xiaoguang surname: Pang fullname: Pang, Xiaoguang organization: State Key Laboratory of Precision Geodesy, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan, China – sequence: 3 givenname: Liming orcidid: 0000-0002-1127-9823 surname: Jiang fullname: Jiang, Liming email: jlm@whigg.ac.cn organization: State Key Laboratory of Precision Geodesy, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan, China |
| BookMark | eNpFkE1PwkAURScGEwH9ASYuJnFdnK9Op0tEKSQQSKmybMbpayjCFGfahf_eEkhcvbc4997kDFDP1hYQeqRkRCmJX7Ik3YwYYeGIS8JZRG5Qn4ahCogUoof6hMYyYCpmd2jg_Z4QKkIa9dE-21Xm24L3eAnatw6OYBtc1g4v69Y2urI4OWhTgfN4WzU7vNUNuCCtzA7PDeBX7aHAtcWfsylO1inWtsDrzSqYZMtgMh2n-A0aME3t7tFtqQ8eHq53iD6m79lkFixWyXwyXgSGCdUESnNTioJTDUxGnKjuLWQpVVlIIkIm41BEjCtOv7TmpYlibUAZaVjEWRxyPkTPl96Tq39a8E2-r1tnu8mcdwsRFZ2xjqIXyrjaewdlfnLVUbvfnJL8rDQ_K83PSvOr0i7zdMlUAPDPUyqYEjH_A1ficWw |
| CODEN | IGRSD2 |
| Cites_doi | 10.1038/s41586-018-0123-1 10.1109/JSTARS.2017.2771215 10.3390/rs15010150 10.1016/j.cpc.2016.08.020 10.1038/s41561-019-0300-3 10.1017/jog.2021.55 10.1109/TGRS.2008.918648 10.3390/s150306924 10.5194/tc-6-1295-2012 10.1007/s11442-018-1468-y 10.3389/feart.2018.00112 10.3189/002214309788816759 10.1109/TGRS.2024.3492495 10.3389/feart.2015.00054 10.1007/s11430-010-0078-z 10.1017/jog.2023.83 10.1109/JSTARS.2018.2841361 10.1017/CBO9780511606168 10.1109/RUSAUTOCON.2019.8867747 10.3189/S0022143000005839 10.1109/TIM.2010.2047579 10.3390/rs15010189 10.1016/j.ress.2018.08.008 10.1049/pbra003e 10.1109/JSTARS.2017.2764751 10.1109/TGRS.2019.2958085 10.1109/ICSMC.1996.569880 10.5194/tc-14-1555-2020 10.1360/04yd0004 10.1016/j.rse.2021.112715 10.5194/tc-17-3895-2023 10.2307/2282967 10.3189/S0022143000002227 10.3189/172756409789097540 10.1109/LGRS.2013.2245854 10.1017/jog.2023.68 10.1016/j.isprsjprs.2025.01.011 10.1016/0165-232X(85)90052-7 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2025.3603270 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 13 |
| ExternalDocumentID | 10_1109_TGRS_2025_3603270 11142849 |
| Genre | orig-research |
| GeographicLocations | Asia |
| GeographicLocations_xml | – name: Asia |
| GrantInformation_xml | – fundername: Innovative Research Group Project Natural Science Foundation of Hubei Province grantid: 2021CFA028 – fundername: National Natural Science Foundation of China grantid: 42174046 funderid: 10.13039/501100001809 – fundername: Hubei Provincial Natural Science Foundation of China grantid: 2025AFB417 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c248t-8a3cf4d31ae267308d31d6f68fd604526954723831baa3fc79ace8c6c27329533 |
| IEDL.DBID | RIE |
| ISSN | 0196-2892 |
| IngestDate | Fri Sep 12 10:31:01 EDT 2025 Wed Oct 01 05:18:41 EDT 2025 Wed Sep 17 06:32:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c248t-8a3cf4d31ae267308d31d6f68fd604526954723831baa3fc79ace8c6c27329533 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1127-9823 0000-0001-9377-0685 |
| PQID | 3248714110 |
| PQPubID | 85465 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_11142849 crossref_primary_10_1109_TGRS_2025_3603270 proquest_journals_3248714110 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref15 ref37 ref14 ref36 ref31 ref11 ref33 ref10 ref17 ref39 ref16 ref38 ref19 Pang (ref3) 2025; 58 Wang (ref25) 2013; 35 Warren (ref29) 2016; 209 (ref42) 2008 ref24 ref23 ref26 Zha (ref30) 2015; 15 ref20 Kachniarz (ref21) 2022; 15 ref41 ref44 Ning-lian (ref45) 2013; 35 ref28 Giese (ref22) 2020; 14 ref27 Zhao (ref2) 2023; 17 Ducros (ref34) 2018; 180 Wang (ref5) 2025; 220 ref7 He (ref32) 2011 ref9 ref4 (ref1) 2023 ref6 Ashby (ref12) 1985; 11 Forte (ref18) 2021; 267 ref40 Marzeion (ref8) 2012; 6 Ding (ref43) 2015 |
| References_xml | – volume-title: Radar Target Detection and CFAR Processing year: 2011 ident: ref32 – ident: ref7 doi: 10.1038/s41586-018-0123-1 – ident: ref14 doi: 10.1109/JSTARS.2017.2771215 – ident: ref13 doi: 10.3390/rs15010150 – volume: 209 start-page: 163 year: 2016 ident: ref29 article-title: GprMax: Open source software to simulate electromagnetic wave propagation for ground penetrating radar publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2016.08.020 – ident: ref9 doi: 10.1038/s41561-019-0300-3 – ident: ref10 doi: 10.1017/jog.2021.55 – ident: ref19 doi: 10.1109/TGRS.2008.918648 – volume: 15 start-page: 6924 issue: 3 year: 2015 ident: ref30 article-title: Bayesian deconvolution for angular super-resolution in forward-looking scanning radar publication-title: Sensors doi: 10.3390/s150306924 – volume: 6 start-page: 1295 issue: 6 year: 2012 ident: ref8 article-title: Past and future sea-level change from the surface mass balance of glaciers publication-title: Cryosphere doi: 10.5194/tc-6-1295-2012 – ident: ref4 doi: 10.1007/s11442-018-1468-y – ident: ref15 doi: 10.3389/feart.2018.00112 – volume-title: ISO/IEC Guide 98-3:2008 Uncertainty of Measurement Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995) year: 2008 ident: ref42 – ident: ref11 doi: 10.3189/002214309788816759 – ident: ref37 doi: 10.1109/TGRS.2024.3492495 – volume: 35 start-page: 1371 issue: 6 year: 2013 ident: ref45 article-title: Discovery of the water-rich ice layers in glaciers on the Tibetan Plateauand its environmental significances publication-title: J. Glaciol. Geocryol. – start-page: 147 volume-title: Climate Change 2021-the Physical Science Basis: Working Group I Contribution To the Sixth Assessment Report of the Intergovernmental Panel on Climate Change year: 2023 ident: ref1 – ident: ref6 doi: 10.3389/feart.2015.00054 – ident: ref27 doi: 10.1007/s11430-010-0078-z – ident: ref20 doi: 10.1017/jog.2023.83 – ident: ref40 doi: 10.1109/JSTARS.2018.2841361 – ident: ref41 doi: 10.1017/CBO9780511606168 – volume: 35 start-page: 1371 issue: 6 year: 2013 ident: ref25 article-title: Discovery of the water-rich ice layer in glaciers on the Tibetan Plateau and its environmental significances publication-title: J. Glaciol. Geocryol. – ident: ref39 doi: 10.1109/RUSAUTOCON.2019.8867747 – volume: 58 year: 2025 ident: ref3 article-title: Mass loss of bayi glacier in the Heihe river basin revealed by ground-penetration radar measurements from 2006 to 2023 publication-title: J. Hydrology: Regional Stud. – ident: ref24 doi: 10.3189/S0022143000005839 – ident: ref35 doi: 10.1109/TIM.2010.2047579 – volume: 15 start-page: 189 issue: 1 year: 2022 ident: ref21 article-title: Changes in the structure of the snow cover of hansbreen (S Spitsbergen) derived from repeated high-frequency radio-echo sounding publication-title: Remote Sens. doi: 10.3390/rs15010189 – volume: 180 start-page: 453 year: 2018 ident: ref34 article-title: Bayesian estimation of Weibull mixture in heavily censored data setting publication-title: Rel. Eng. Syst. Saf. doi: 10.1016/j.ress.2018.08.008 – ident: ref33 doi: 10.1049/pbra003e – ident: ref17 doi: 10.1109/JSTARS.2017.2764751 – ident: ref31 doi: 10.1109/TGRS.2019.2958085 – ident: ref36 doi: 10.1109/ICSMC.1996.569880 – volume: 14 start-page: 1555 issue: 5 year: 2020 ident: ref22 article-title: Incorporating moisture content in surface energy balance modeling of a debris-covered glacier publication-title: Cryosphere doi: 10.5194/tc-14-1555-2020 – ident: ref44 doi: 10.1360/04yd0004 – volume: 267 year: 2021 ident: ref18 article-title: New insights in glaciers characterization by differential diagnosis integrating GPR and remote sensing techniques: A case study for the eastern gran zebrù glacier (central Alps) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112715 – volume: 17 start-page: 3895 issue: 9 year: 2023 ident: ref2 article-title: Thinning and surface mass balance patterns of two neighbouring debris-covered glaciers in the Southeastern Tibetan Plateau publication-title: Cryosphere doi: 10.5194/tc-17-3895-2023 – ident: ref38 doi: 10.2307/2282967 – ident: ref23 doi: 10.3189/S0022143000002227 – ident: ref26 doi: 10.3189/172756409789097540 – start-page: 34 volume-title: Instrument Accuracy Theory year: 2015 ident: ref43 – ident: ref16 doi: 10.1109/LGRS.2013.2245854 – ident: ref28 doi: 10.1017/jog.2023.68 – volume: 220 start-page: 593 year: 2025 ident: ref5 article-title: A novel airborne TomoSAR 3-D focusing method for accurate ice thickness and glacier volume estimation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2025.01.011 – volume: 11 start-page: 285 issue: 3 year: 1985 ident: ref12 article-title: The creep of polycrystalline ice publication-title: Cold Regions Sci. Technol. doi: 10.1016/0165-232X(85)90052-7 |
| SSID | ssj0014517 |
| Score | 2.466709 |
| Snippet | Glaciers and ice caps in High Mountain Asia are changing rapidly in response to climate change, where ice thickness is a key parameter to describe glacier... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Climate change Constant false alarm rate Constant false alarm rate (CFAR) Detection algorithms Dispersion glacier thickness Glaciers Granite Ground penetrating radar Ice Ice caps Ice cover Ice formation Ice thickness mixed Weibull distribution Moisture content mountain glacier Mountain regions Mountainous areas Particle swarm optimization Signal to noise ratio Stochastic processes Thickness measurement Time-domain analysis Water Water content Water resources water-rich ice Weibull distribution |
| Title | Thickness Measurement for Mountain Glaciers With Water-Rich Ice Based on VHF GPR and PSO-CTM-CFAR Detector |
| URI | https://ieeexplore.ieee.org/document/11142849 https://www.proquest.com/docview/3248714110 |
| Volume | 63 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UEPTgW1xf5OBJyNpHmqZHXd1dhVVZ18etpEnKrkpXtHvx1ztJuyqKIL3k0IaQSWe-yTw-gAMWexr9hojGiFYp41rRLJcZlUZ4sUTMEblu-71L3r1lFw_RQ12s7mphjDEu-cw07dDF8vVYTexV2ZFvCz8FS2ZhNha8Ktb6DBmwyK9rozlFLyKoQ5i-lxwNOv0bdAWDqBlyLwwsMfE3I-RYVX6pYmdf2stwOV1ZlVby1JyUWVO9_2ja-O-lr8BSjTTJcXU0VmHGFGuw-K3_4BrMu_xP9bYOj4PhSD1ZtUd6X7eGBBEt6Vk2CTkqSOdZKkucTe5H5ZDcI0h9pbYun5wrQ07QGmoyLshdt006130iC02ub65oa9CjrfZxn5ya0kUINuC2fTZodWlNw0BVwERJhQxVznToSxNwVAgCh5rnXOSae46hPGKWuiz0MynDXMWJVEYorhAZBTZ7dRPminFhtoDYXj3ocspIK59paRKjIny0L7XhXAQNOJzKJX2pum2kzkvxktQKMbVCTGshNmDD7vPXi_UWN2B3Ksq0_iHfUsSN6BoynGn7j892YMHOXiXq7cJc-Toxewg4ymzfHbQPjOfOdw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9swFD7iogl4YBsXUWCbH_Y0ySUX200eodCWjXSoBOhb5NiOKKAUQfrCr-fYSQdimjTlxQ-5WD7O8XeuH8B31vE02g2cdhCtUia0onkhcypN5HUkYg7uuu0nQzG4ZD_HfNwUq7taGGOMSz4zbTt0sXw9VTPrKjvwbeFnxOJFWOaMMV6Xa_0JGjDuN9XRgqIdETRBTN-LD9L-6AKNwYC3Q-GFgaUmfnMMOV6Vv5SxO2F6H2E4n1udWHLXnlV5Wz2_a9v435P_BOsN1iSH9eb4DAum3IC1Nx0IN-CDywBVT5twm95M1J1VfCR59RsSxLQksXwSclKS_r1UljqbXE-qG3KNMPWR2sp8cqoMOcLzUJNpSa4GPdI_HxFZanJ-8Zt204R2e4cjcmwqFyPYgsveSdod0IaIgaqARRWNZKgKpkNfmkCgSohwqEUhokILz3GUc2bJy0I_lzIsVCeWykRKKMRGgc1f3YalclqaHSC2Ww8anZJr5TMtTWwUx0v7UhshoqAFP-ZyyR7qfhuZs1O8OLNCzKwQs0aILdiy6_x6Y7PELdifizJrfsmnDJEjGocM37T7j8e-wcogTc6ys9Phrz1YtV-qnS37sFQ9zswXhB9V_tVtuheLF9HE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thickness+Measurement+for+Mountain+Glaciers+With+Water-Rich+Ice+Based+on+VHF+GPR+and+PSO-CTM-CFAR+Detector&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Wu%2C+Yuxuan&rft.au=Pang%2C+Xiaoguang&rft.au=Jiang%2C+Liming&rft.date=2025&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=63&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTGRS.2025.3603270&rft.externalDocID=11142849 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |