Language and Memory Network Alterations in Temporal Lobe Epilepsy: A Functional and Structural Connectivity Study

This study evaluated preoperative alterations and postoperative reorganization of the joint language-memory network (LMN) from the perspective of resting-state functional and structural connectivity in temporal lobe epilepsy (TLE). Graph theory and machine learning approaches were used to explore au...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of neuroradiology : AJNR Vol. 46; no. 9; p. 1953
Main Authors Fallahi, Alireza, Nazem-Zadeh, Mohammad-Reza, Hoseini-Tabatabaei, Narges, Habibabadi, Jafar Mehvari, Hashemi Fesharaki, Seyed Sohrab, Soltanian-Zadeh, Hamid
Format Journal Article
LanguageEnglish
Published United States 01.09.2025
Subjects
Online AccessGet full text
ISSN0195-6108
1936-959X
1936-959X
DOI10.3174/ajnr.A8737

Cover

Abstract This study evaluated preoperative alterations and postoperative reorganization of the joint language-memory network (LMN) from the perspective of resting-state functional and structural connectivity in temporal lobe epilepsy (TLE). Graph theory and machine learning approaches were used to explore automatic lateralization. Resting-state fMRI and DTI data were obtained from 20 healthy subjects and 35 patients with TLE. Functional and structural connectivity were calculated within the LMN before and after temporal lobectomy. ANOVA was performed to identify significant connectivity differences between groups. Four local graph measures were extracted from functional and structural connectivity matrices. Standard feature selection techniques and genetic algorithm methods were applied to select the optimal features. Subsequently, K-nearest neighbor, support vector machine, Naive Bayes, and logistic regression classification methods were used to classify healthy controls (HC) and presurgical TLE groups, as well as presurgical left TLE (L-TLE) and right TLE (R-TLE) groups. Also, relationships between psychological scores and the selected features were evaluated using a linear regression method. The results demonstrated increased functional and decreased structural connectivity in patients with TLE before surgery. After surgery, significant connections revealed reduced functional connectivity and increased structural connectivity in patients with TLE. Functional analysis identified the left parahippocampal region in L-TLE and the right temporal regions in R-TLE as key areas. Structural connectivity analysis showed that memory-related areas in the bilateral occipital region and the left language-related area were the origins of alterations. The genetic algorithm method achieved the highest classification performance using a support vector machine for fMRI and DTI graph measures, with accuracy rates of 97% and 88% for distinguishing L-TLE from R-TLE, and 93% and 87% for distinguishing patients with TLE from HC, respectively. Moreover, a significant relationship was observed between the best-selected features and memory-assisted cognitive tests. Presurgical functional hyperconnectivity, postsurgical hypoconnectivity, and newly observed bilateral structural connectivity after surgery highlight both functional and structural alterations in the LMN network. Additionally, the study underscores the potential for machine learning for TLE diagnosis and lateralization. A limited sample size, particularly in the postsurgical group, was one of the constraints of this study.
AbstractList This study evaluated preoperative alterations and postoperative reorganization of the joint language-memory network (LMN) from the perspective of resting-state functional and structural connectivity in Temporal lobe epilepsy (TLE). Graph theory and machine learning approaches were employed to explore automatic lateralization.BACKGROUND AND PURPOSEThis study evaluated preoperative alterations and postoperative reorganization of the joint language-memory network (LMN) from the perspective of resting-state functional and structural connectivity in Temporal lobe epilepsy (TLE). Graph theory and machine learning approaches were employed to explore automatic lateralization.Resting-state fMRI and DTI data were obtained from 20 healthy subjects and 35 patients with TLE. Functional and structural connectivity were calculated within the LMN before and after temporal lobectomy. ANOVA was performed to identify significant connectivity differences between groups. Four local graph measures were extracted from functional and structural connectivity matrices. Standard feature selection techniques and genetic algorithm (GA) methods were applied to select the optimal features. Subsequently, the K-nearest neighbor, support vector machine (SVM), Naive Bayes, and logistic regression classification methods were used to classify healthy controls (HCs) and pre-surgical TLE groups, as well as pre-surgical left TLE (LTLE) and right TLE (RTLE) groups. Also, relationships between psychological scores and the selected features were evaluated using a linear regression method.MATERIALS AND METHODSResting-state fMRI and DTI data were obtained from 20 healthy subjects and 35 patients with TLE. Functional and structural connectivity were calculated within the LMN before and after temporal lobectomy. ANOVA was performed to identify significant connectivity differences between groups. Four local graph measures were extracted from functional and structural connectivity matrices. Standard feature selection techniques and genetic algorithm (GA) methods were applied to select the optimal features. Subsequently, the K-nearest neighbor, support vector machine (SVM), Naive Bayes, and logistic regression classification methods were used to classify healthy controls (HCs) and pre-surgical TLE groups, as well as pre-surgical left TLE (LTLE) and right TLE (RTLE) groups. Also, relationships between psychological scores and the selected features were evaluated using a linear regression method.The results demonstrated increased functional and decreased structural connectivity in TLE patients before surgery. After surgery, significant connections revealed reduced functional connectivity and increased structural connectivity in TLE patients. Functional analysis identified the left parahippocampal region in LTLE and the right temporal regions in RTLE as key areas. Structural connectivity analysis showed that memory-related areas in the bilateral occipital region and the left language-related area were the origins of alterations. The GA method achieved the highest classification performance using SVM for fMRI and DTI graph measures, with accuracy rates of 97% and 88% for distinguishing LTLE from RTLE, and 93% and 87% for distinguishing TLE from HC, respectively. Moreover, a significant relationship was observed between the best-selected features and memory-assisted cognitive tests.RESULTSThe results demonstrated increased functional and decreased structural connectivity in TLE patients before surgery. After surgery, significant connections revealed reduced functional connectivity and increased structural connectivity in TLE patients. Functional analysis identified the left parahippocampal region in LTLE and the right temporal regions in RTLE as key areas. Structural connectivity analysis showed that memory-related areas in the bilateral occipital region and the left language-related area were the origins of alterations. The GA method achieved the highest classification performance using SVM for fMRI and DTI graph measures, with accuracy rates of 97% and 88% for distinguishing LTLE from RTLE, and 93% and 87% for distinguishing TLE from HC, respectively. Moreover, a significant relationship was observed between the best-selected features and memory-assisted cognitive tests.Pre-surgical functional hyperconnectivity and post-surgical hypoconnectivity and also newly observed bilateral postsurgical structural connectivity, highlighting functional and structural alterations in the LMN network. Additionally, the study underscores the potential of machine learning for TLE diagnosis and lateralization. A limited sample size, particularly in the postsurgical group was one of the constraints of this study.CONCLUSIONSPre-surgical functional hyperconnectivity and post-surgical hypoconnectivity and also newly observed bilateral postsurgical structural connectivity, highlighting functional and structural alterations in the LMN network. Additionally, the study underscores the potential of machine learning for TLE diagnosis and lateralization. A limited sample size, particularly in the postsurgical group was one of the constraints of this study.TLE=Temporal lobe epilepsy; LMN=Language-memory network; GA=Genetic algorithm; HC=Healthy controls; LTLE=Left TLE; RTLE=Right TLE; AUC=Area under the curve.ABBREVIATIONSTLE=Temporal lobe epilepsy; LMN=Language-memory network; GA=Genetic algorithm; HC=Healthy controls; LTLE=Left TLE; RTLE=Right TLE; AUC=Area under the curve.
This study evaluated preoperative alterations and postoperative reorganization of the joint language-memory network (LMN) from the perspective of resting-state functional and structural connectivity in temporal lobe epilepsy (TLE). Graph theory and machine learning approaches were used to explore automatic lateralization. Resting-state fMRI and DTI data were obtained from 20 healthy subjects and 35 patients with TLE. Functional and structural connectivity were calculated within the LMN before and after temporal lobectomy. ANOVA was performed to identify significant connectivity differences between groups. Four local graph measures were extracted from functional and structural connectivity matrices. Standard feature selection techniques and genetic algorithm methods were applied to select the optimal features. Subsequently, K-nearest neighbor, support vector machine, Naive Bayes, and logistic regression classification methods were used to classify healthy controls (HC) and presurgical TLE groups, as well as presurgical left TLE (L-TLE) and right TLE (R-TLE) groups. Also, relationships between psychological scores and the selected features were evaluated using a linear regression method. The results demonstrated increased functional and decreased structural connectivity in patients with TLE before surgery. After surgery, significant connections revealed reduced functional connectivity and increased structural connectivity in patients with TLE. Functional analysis identified the left parahippocampal region in L-TLE and the right temporal regions in R-TLE as key areas. Structural connectivity analysis showed that memory-related areas in the bilateral occipital region and the left language-related area were the origins of alterations. The genetic algorithm method achieved the highest classification performance using a support vector machine for fMRI and DTI graph measures, with accuracy rates of 97% and 88% for distinguishing L-TLE from R-TLE, and 93% and 87% for distinguishing patients with TLE from HC, respectively. Moreover, a significant relationship was observed between the best-selected features and memory-assisted cognitive tests. Presurgical functional hyperconnectivity, postsurgical hypoconnectivity, and newly observed bilateral structural connectivity after surgery highlight both functional and structural alterations in the LMN network. Additionally, the study underscores the potential for machine learning for TLE diagnosis and lateralization. A limited sample size, particularly in the postsurgical group, was one of the constraints of this study.
Author Nazem-Zadeh, Mohammad-Reza
Soltanian-Zadeh, Hamid
Hoseini-Tabatabaei, Narges
Hashemi Fesharaki, Seyed Sohrab
Fallahi, Alireza
Habibabadi, Jafar Mehvari
Author_xml – sequence: 1
  givenname: Alireza
  orcidid: 0000-0001-7978-3201
  surname: Fallahi
  fullname: Fallahi, Alireza
– sequence: 2
  givenname: Mohammad-Reza
  surname: Nazem-Zadeh
  fullname: Nazem-Zadeh, Mohammad-Reza
– sequence: 3
  givenname: Narges
  surname: Hoseini-Tabatabaei
  fullname: Hoseini-Tabatabaei, Narges
– sequence: 4
  givenname: Jafar Mehvari
  surname: Habibabadi
  fullname: Habibabadi, Jafar Mehvari
– sequence: 5
  givenname: Seyed Sohrab
  orcidid: 0000-0001-5962-6081
  surname: Hashemi Fesharaki
  fullname: Hashemi Fesharaki, Seyed Sohrab
– sequence: 6
  givenname: Hamid
  surname: Soltanian-Zadeh
  fullname: Soltanian-Zadeh, Hamid
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40081848$$D View this record in MEDLINE/PubMed
BookMark eNo9kV1LwzAYhYNM3Ife-AMklyJ0Jk26pt6Vsakw9cIJ3pU0TUdnm3T5UPrvbZ169cJ7Hg6cc6ZgpLSSAFxiNCc4prd8r8w8ZTGJT8AEJ2QRJFHyPgIThJMoWGDExmBq7R4hFCVxeAbGFCGGGWUTcNhwtfN8JyFXBXySjTYdfJbuS5sPmNZOGu4qrSysFNzKptWG13CjcwlXbVXL1nZ3MIVrr8SA9dpg8-qMF84P6FIrJXvts3Jd__dFdw5OS15befF7Z-BtvdouH4LNy_3jMt0EIqTMBZRIFFMqaEEFiWNKEO2zIspYISLMSZ5TzpOEMxGxpOSo7NNhzjGhRVlGYkFm4Pro2xp98NK6rKmskHXNldTeZn11MY7CkOEevfpFfd7IImtN1XDTZX819cDNERBGW2tk-Y9gNBjRbNgg-9mAfAPpc3of
Cites_doi 10.1016/j.yebeh.2021.107834
10.1111/epi.17160
10.1111/epi.16309]
10.1111/epi.17370
10.1038/nrn3338
10.1016/j.imu.2020.100444
10.3389/fnins.2019.00585
10.3171/2014.9.jns131422
10.1007/s00415-020-10307-6
10.1016/j.yebeh.2015.12.039
10.1097/WCO.0000000000000568
10.1111/epi.17889
10.15274/NRJ-2014-10031
10.2174/1573405613666170622114920
10.3390/biology11030469
10.1016/j.neuropsychologia.2020.107455
10.1016/B978-0-444-52898-8.00014-8
10.1111/epi.14736
10.1016/j.eswa.2020.113981
10.1212/WNL.0b013e3181ebdd3e
10.1016/j.seizure.2022.01.007
10.1371/journal.pone.0021976
10.1016/j.nicl.2021.102702
10.1016/j.bandl.2018.12.007
10.1016/j.neulet.2019.134351
10.1002/hbm.24839
10.1152/jn.00338.2011
10.3171/2019.3.JNS19350
10.1111/epi.16333
10.1016/j.patcog.2018.12.001
10.1007/s10548-021-00857-x
10.1073/pnas.1603312113
10.1162/jocn.2009.21056
10.1002/acn3.51908
10.1007/s10334-021-00948-7
10.1007/s10072-020-04759-x
10.1111/epi.17767
10.1007/s12021-016-9299-4
10.3389/fneur.2015.00184
10.1146/annurev-psych-113011-143733
10.1186/s40708-020-00105-1
10.1044/2017_AJSLP-16-0195
10.3389/fnhum.2021.752138
10.3171/2020.4.JNS193401
10.3389/fnins.2021.684825
10.1111/j.1528-1167.2010.02785.x
10.1111/epi.13229
10.1016/j.yebeh.2023.109407
10.1016/j.neuroimage.2020.116706
10.1016/j.jocn.2018.06.020
10.1016/j.jns.2014.09.029
10.1093/brain/awad117
10.1371/journal.pone.0219683
10.1016/j.yebeh.2017.08.003
10.1016/j.neuroimage.2015.10.019
10.1016/j.jneumeth.2015.07.013
ContentType Journal Article
Copyright 2025 by American Journal of Neuroradiology.
Copyright_xml – notice: 2025 by American Journal of Neuroradiology.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.3174/ajnr.A8737
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1936-959X
ExternalDocumentID 40081848
10_3174_ajnr_A8737
Genre Journal Article
GroupedDBID ---
.55
23M
5GY
5RE
6J9
AAYXX
ACGFO
ACIWK
ACPRK
ADBBV
AENEX
AFHIN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
E3Z
EBS
EJD
EMOBN
F5P
F9R
H13
INIJC
KQ8
MV1
N9A
OK1
P2P
P6G
R0Z
RHI
RPM
TNE
TR2
WOQ
WOW
X7M
ZCG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c248t-43e0744c4d4c37743041740488dc51a3bb4aa99a8c589fa0f0001aa134dff5c63
ISSN 0195-6108
1936-959X
IngestDate Sun Sep 28 09:19:32 EDT 2025
Thu Sep 25 01:51:28 EDT 2025
Wed Oct 01 05:37:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License 2025 by American Journal of Neuroradiology.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c248t-43e0744c4d4c37743041740488dc51a3bb4aa99a8c589fa0f0001aa134dff5c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7978-3201
0000-0001-5962-6081
PMID 40081848
PQID 3177152281
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3177152281
pubmed_primary_40081848
crossref_primary_10_3174_ajnr_A8737
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of neuroradiology : AJNR
PublicationTitleAlternate AJNR Am J Neuroradiol
PublicationYear 2025
References 2025080710000732000_ajnr.A8737v2.9
2025080710000732000_ajnr.A8737v2.8
2025080710000732000_ajnr.A8737v2.7
2025080710000732000_ajnr.A8737v2.6
2025080710000732000_ajnr.A8737v2.5
2025080710000732000_ajnr.A8737v2.4
2025080710000732000_ajnr.A8737v2.50
2025080710000732000_ajnr.A8737v2.3
2025080710000732000_ajnr.A8737v2.51
2025080710000732000_ajnr.A8737v2.2
2025080710000732000_ajnr.A8737v2.52
2025080710000732000_ajnr.A8737v2.1
2025080710000732000_ajnr.A8737v2.53
2025080710000732000_ajnr.A8737v2.10
2025080710000732000_ajnr.A8737v2.54
2025080710000732000_ajnr.A8737v2.11
2025080710000732000_ajnr.A8737v2.55
2025080710000732000_ajnr.A8737v2.12
2025080710000732000_ajnr.A8737v2.56
2025080710000732000_ajnr.A8737v2.13
2025080710000732000_ajnr.A8737v2.57
2025080710000732000_ajnr.A8737v2.14
2025080710000732000_ajnr.A8737v2.15
2025080710000732000_ajnr.A8737v2.16
2025080710000732000_ajnr.A8737v2.17
2025080710000732000_ajnr.A8737v2.18
2025080710000732000_ajnr.A8737v2.19
2025080710000732000_ajnr.A8737v2.20
2025080710000732000_ajnr.A8737v2.21
2025080710000732000_ajnr.A8737v2.22
2025080710000732000_ajnr.A8737v2.23
2025080710000732000_ajnr.A8737v2.24
2025080710000732000_ajnr.A8737v2.25
2025080710000732000_ajnr.A8737v2.26
2025080710000732000_ajnr.A8737v2.27
2025080710000732000_ajnr.A8737v2.28
2025080710000732000_ajnr.A8737v2.29
2025080710000732000_ajnr.A8737v2.30
2025080710000732000_ajnr.A8737v2.31
2025080710000732000_ajnr.A8737v2.32
2025080710000732000_ajnr.A8737v2.33
2025080710000732000_ajnr.A8737v2.34
2025080710000732000_ajnr.A8737v2.35
2025080710000732000_ajnr.A8737v2.36
2025080710000732000_ajnr.A8737v2.37
2025080710000732000_ajnr.A8737v2.38
2025080710000732000_ajnr.A8737v2.39
2025080710000732000_ajnr.A8737v2.40
2025080710000732000_ajnr.A8737v2.41
2025080710000732000_ajnr.A8737v2.42
2025080710000732000_ajnr.A8737v2.43
2025080710000732000_ajnr.A8737v2.44
2025080710000732000_ajnr.A8737v2.45
2025080710000732000_ajnr.A8737v2.46
2025080710000732000_ajnr.A8737v2.47
2025080710000732000_ajnr.A8737v2.48
2025080710000732000_ajnr.A8737v2.49
References_xml – ident: 2025080710000732000_ajnr.A8737v2.16
  doi: 10.1016/j.yebeh.2021.107834
– ident: 2025080710000732000_ajnr.A8737v2.40
  doi: 10.1111/epi.17160
– ident: 2025080710000732000_ajnr.A8737v2.50
  doi: 10.1111/epi.16309]
– ident: 2025080710000732000_ajnr.A8737v2.3
  doi: 10.1111/epi.17370
– ident: 2025080710000732000_ajnr.A8737v2.21
  doi: 10.1038/nrn3338
– ident: 2025080710000732000_ajnr.A8737v2.46
  doi: 10.1016/j.imu.2020.100444
– ident: 2025080710000732000_ajnr.A8737v2.41
  doi: 10.3389/fnins.2019.00585
– ident: 2025080710000732000_ajnr.A8737v2.14
  doi: 10.3171/2014.9.jns131422
– ident: 2025080710000732000_ajnr.A8737v2.36
– ident: 2025080710000732000_ajnr.A8737v2.55
  doi: 10.1007/s00415-020-10307-6
– ident: 2025080710000732000_ajnr.A8737v2.43
  doi: 10.1016/j.yebeh.2015.12.039
– ident: 2025080710000732000_ajnr.A8737v2.26
  doi: 10.1097/WCO.0000000000000568
– ident: 2025080710000732000_ajnr.A8737v2.53
  doi: 10.1111/epi.17889
– ident: 2025080710000732000_ajnr.A8737v2.7
  doi: 10.15274/NRJ-2014-10031
– ident: 2025080710000732000_ajnr.A8737v2.27
  doi: 10.2174/1573405613666170622114920
– ident: 2025080710000732000_ajnr.A8737v2.49
  doi: 10.3390/biology11030469
– ident: 2025080710000732000_ajnr.A8737v2.17
  doi: 10.1016/j.neuropsychologia.2020.107455
– ident: 2025080710000732000_ajnr.A8737v2.19
  doi: 10.1016/B978-0-444-52898-8.00014-8
– ident: 2025080710000732000_ajnr.A8737v2.13
  doi: 10.1111/epi.14736
– ident: 2025080710000732000_ajnr.A8737v2.44
  doi: 10.1016/j.eswa.2020.113981
– ident: 2025080710000732000_ajnr.A8737v2.31
  doi: 10.1212/WNL.0b013e3181ebdd3e
– ident: 2025080710000732000_ajnr.A8737v2.54
  doi: 10.1016/j.seizure.2022.01.007
– ident: 2025080710000732000_ajnr.A8737v2.56
  doi: 10.1371/journal.pone.0021976
– ident: 2025080710000732000_ajnr.A8737v2.37
  doi: 10.1016/j.nicl.2021.102702
– ident: 2025080710000732000_ajnr.A8737v2.18
  doi: 10.1016/j.bandl.2018.12.007
– ident: 2025080710000732000_ajnr.A8737v2.42
  doi: 10.1016/j.neulet.2019.134351
– ident: 2025080710000732000_ajnr.A8737v2.25
  doi: 10.1002/hbm.24839
– ident: 2025080710000732000_ajnr.A8737v2.39
  doi: 10.1152/jn.00338.2011
– ident: 2025080710000732000_ajnr.A8737v2.6
  doi: 10.3171/2019.3.JNS19350
– ident: 2025080710000732000_ajnr.A8737v2.47
  doi: 10.1111/epi.16333
– ident: 2025080710000732000_ajnr.A8737v2.52
  doi: 10.1016/j.patcog.2018.12.001
– ident: 2025080710000732000_ajnr.A8737v2.9
  doi: 10.1007/s10548-021-00857-x
– ident: 2025080710000732000_ajnr.A8737v2.23
  doi: 10.1073/pnas.1603312113
– ident: 2025080710000732000_ajnr.A8737v2.22
  doi: 10.1162/jocn.2009.21056
– ident: 2025080710000732000_ajnr.A8737v2.10
  doi: 10.1002/acn3.51908
– ident: 2025080710000732000_ajnr.A8737v2.12
  doi: 10.1007/s10334-021-00948-7
– ident: 2025080710000732000_ajnr.A8737v2.29
  doi: 10.1007/s10072-020-04759-x
– ident: 2025080710000732000_ajnr.A8737v2.5
  doi: 10.1111/epi.17767
– ident: 2025080710000732000_ajnr.A8737v2.34
  doi: 10.1007/s12021-016-9299-4
– ident: 2025080710000732000_ajnr.A8737v2.28
  doi: 10.3389/fneur.2015.00184
– ident: 2025080710000732000_ajnr.A8737v2.20
  doi: 10.1146/annurev-psych-113011-143733
– ident: 2025080710000732000_ajnr.A8737v2.48
  doi: 10.1186/s40708-020-00105-1
– ident: 2025080710000732000_ajnr.A8737v2.2
  doi: 10.1044/2017_AJSLP-16-0195
– ident: 2025080710000732000_ajnr.A8737v2.24
  doi: 10.3389/fnhum.2021.752138
– ident: 2025080710000732000_ajnr.A8737v2.8
  doi: 10.3171/2020.4.JNS193401
– ident: 2025080710000732000_ajnr.A8737v2.33
  doi: 10.3389/fnins.2021.684825
– ident: 2025080710000732000_ajnr.A8737v2.32
  doi: 10.1111/j.1528-1167.2010.02785.x
– ident: 2025080710000732000_ajnr.A8737v2.1
  doi: 10.1111/epi.13229
– ident: 2025080710000732000_ajnr.A8737v2.57
  doi: 10.1016/j.yebeh.2023.109407
– ident: 2025080710000732000_ajnr.A8737v2.51
  doi: 10.1016/j.neuroimage.2020.116706
– ident: 2025080710000732000_ajnr.A8737v2.15
  doi: 10.1016/j.jocn.2018.06.020
– ident: 2025080710000732000_ajnr.A8737v2.30
  doi: 10.1016/j.jns.2014.09.029
– ident: 2025080710000732000_ajnr.A8737v2.11
  doi: 10.1093/brain/awad117
– ident: 2025080710000732000_ajnr.A8737v2.45
  doi: 10.1371/journal.pone.0219683
– ident: 2025080710000732000_ajnr.A8737v2.4
  doi: 10.1016/j.yebeh.2017.08.003
– ident: 2025080710000732000_ajnr.A8737v2.35
  doi: 10.1016/j.neuroimage.2015.10.019
– ident: 2025080710000732000_ajnr.A8737v2.38
  doi: 10.1016/j.jneumeth.2015.07.013
SSID ssj0005972
Score 2.4788501
Snippet This study evaluated preoperative alterations and postoperative reorganization of the joint language-memory network (LMN) from the perspective of resting-state...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage 1953
SubjectTerms Adult
Connectome - methods
Epilepsy, Temporal Lobe - complications
Epilepsy, Temporal Lobe - pathology
Epilepsy, Temporal Lobe - physiopathology
Epilepsy, Temporal Lobe - surgery
Female
Humans
Language
Magnetic Resonance Imaging - methods
Male
Memory - physiology
Middle Aged
Nerve Net - pathology
Nerve Net - physiopathology
Sensitivity and Specificity
Young Adult
Title Language and Memory Network Alterations in Temporal Lobe Epilepsy: A Functional and Structural Connectivity Study
URI https://www.ncbi.nlm.nih.gov/pubmed/40081848
https://www.proquest.com/docview/3177152281
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1936-959X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005972
  issn: 0195-6108
  databaseCode: KQ8
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtMwELXKIiFeEHfKTUYgXlZetomTJrxVqFW1tEVAKlW8RBPHYYO2abfbRdp-BZ_MjJ3bcpEWHhpVaWq34yPP2HN8hrFXYeYoP-2brK4rZN9NRKD9nqCkIJWCd1KjWzCd-eO5PFp4i07nR4u1dL5NDtTuj-dK_mdU8R6OK52S_YeRrRvFG_gexxevOMJ4vdIYT8rNRsuWIM7sBZ3gJa7V_uDE6CVXTPHISlCd7E-IXTFc42SwPruw59JH6NvKLUFD5DSSskaOw9BgVFlg4nOtRFup1lbZnpb8hNHH3EBaajuZDo5mdTppRPv2po4w_kCcbXe1V5jBTi_FF0i12eiZro5huYRUfGo9M0aPrvMiFxEksMWXzq2H2HxtqJBjSPIEP0tzywLOjFLR8XfY5O0tDserOVzVrBy6vgg9U3MXndbv9371AxgUSXJy34rNwSDoW1mZy2Lbsw_xaD6ZxNFwEb1enwqqQ0b5-rIoyzV23UE_QcVA3n9s9Odx-eVYnoLt3AreUndvms4uhzh_WbeY-CW6zW6VCw8-sCi6wzq6uMtuTEtqxT12WoGJIwa4BRMvwcRbYOJ5wSswcQITr8D0lg94AyXTTAMl3oYSN1C6z-ajYfRuLMp6HEI5MtgK6WoMOKWSqVQuLhvcQ4l_nFxAqrweuEkiAcIQAuUFYQaHGS0gAHquTLPMU777gO0Vq0I_YhwfQe_hZOBheIk-BbyMUuAkVKESjIK77GVlwnhtZVdiXK6SoWMydGwM3WUvKuvGOCtSqgsKvTo_owf7GJk6Qa_LHlqz1-1II-Mog8dX-PYTdrMB5FO2h1bTzzAK3SbPDTB-AiUajik
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Language+and+Memory+Network+Alterations+in+Temporal+Lobe+Epilepsy%3A+A+Functional+and+Structural+Connectivity+Study&rft.jtitle=American+journal+of+neuroradiology+%3A+AJNR&rft.au=Fallahi%2C+Alireza&rft.au=Nazem-Zadeh%2C+Mohammad-Reza&rft.au=Hosseini-Tabatabaei%2C+Narges&rft.au=Habibabadi%2C+Jafar+Mehvari&rft.date=2025-09-01&rft.issn=1936-959X&rft.eissn=1936-959X&rft_id=info:doi/10.3174%2Fajnr.A8737&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-6108&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-6108&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-6108&client=summon