Language and Memory Network Alterations in Temporal Lobe Epilepsy: A Functional and Structural Connectivity Study
This study evaluated preoperative alterations and postoperative reorganization of the joint language-memory network (LMN) from the perspective of resting-state functional and structural connectivity in temporal lobe epilepsy (TLE). Graph theory and machine learning approaches were used to explore au...
Saved in:
| Published in | American journal of neuroradiology : AJNR Vol. 46; no. 9; p. 1953 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
01.09.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0195-6108 1936-959X 1936-959X |
| DOI | 10.3174/ajnr.A8737 |
Cover
| Abstract | This study evaluated preoperative alterations and postoperative reorganization of the joint language-memory network (LMN) from the perspective of resting-state functional and structural connectivity in temporal lobe epilepsy (TLE). Graph theory and machine learning approaches were used to explore automatic lateralization.
Resting-state fMRI and DTI data were obtained from 20 healthy subjects and 35 patients with TLE. Functional and structural connectivity were calculated within the LMN before and after temporal lobectomy. ANOVA was performed to identify significant connectivity differences between groups. Four local graph measures were extracted from functional and structural connectivity matrices. Standard feature selection techniques and genetic algorithm methods were applied to select the optimal features. Subsequently, K-nearest neighbor, support vector machine, Naive Bayes, and logistic regression classification methods were used to classify healthy controls (HC) and presurgical TLE groups, as well as presurgical left TLE (L-TLE) and right TLE (R-TLE) groups. Also, relationships between psychological scores and the selected features were evaluated using a linear regression method.
The results demonstrated increased functional and decreased structural connectivity in patients with TLE before surgery. After surgery, significant connections revealed reduced functional connectivity and increased structural connectivity in patients with TLE. Functional analysis identified the left parahippocampal region in L-TLE and the right temporal regions in R-TLE as key areas. Structural connectivity analysis showed that memory-related areas in the bilateral occipital region and the left language-related area were the origins of alterations. The genetic algorithm method achieved the highest classification performance using a support vector machine for fMRI and DTI graph measures, with accuracy rates of 97% and 88% for distinguishing L-TLE from R-TLE, and 93% and 87% for distinguishing patients with TLE from HC, respectively. Moreover, a significant relationship was observed between the best-selected features and memory-assisted cognitive tests.
Presurgical functional hyperconnectivity, postsurgical hypoconnectivity, and newly observed bilateral structural connectivity after surgery highlight both functional and structural alterations in the LMN network. Additionally, the study underscores the potential for machine learning for TLE diagnosis and lateralization. A limited sample size, particularly in the postsurgical group, was one of the constraints of this study. |
|---|---|
| AbstractList | This study evaluated preoperative alterations and postoperative reorganization of the joint language-memory network (LMN) from the perspective of resting-state functional and structural connectivity in Temporal lobe epilepsy (TLE). Graph theory and machine learning approaches were employed to explore automatic lateralization.BACKGROUND AND PURPOSEThis study evaluated preoperative alterations and postoperative reorganization of the joint language-memory network (LMN) from the perspective of resting-state functional and structural connectivity in Temporal lobe epilepsy (TLE). Graph theory and machine learning approaches were employed to explore automatic lateralization.Resting-state fMRI and DTI data were obtained from 20 healthy subjects and 35 patients with TLE. Functional and structural connectivity were calculated within the LMN before and after temporal lobectomy. ANOVA was performed to identify significant connectivity differences between groups. Four local graph measures were extracted from functional and structural connectivity matrices. Standard feature selection techniques and genetic algorithm (GA) methods were applied to select the optimal features. Subsequently, the K-nearest neighbor, support vector machine (SVM), Naive Bayes, and logistic regression classification methods were used to classify healthy controls (HCs) and pre-surgical TLE groups, as well as pre-surgical left TLE (LTLE) and right TLE (RTLE) groups. Also, relationships between psychological scores and the selected features were evaluated using a linear regression method.MATERIALS AND METHODSResting-state fMRI and DTI data were obtained from 20 healthy subjects and 35 patients with TLE. Functional and structural connectivity were calculated within the LMN before and after temporal lobectomy. ANOVA was performed to identify significant connectivity differences between groups. Four local graph measures were extracted from functional and structural connectivity matrices. Standard feature selection techniques and genetic algorithm (GA) methods were applied to select the optimal features. Subsequently, the K-nearest neighbor, support vector machine (SVM), Naive Bayes, and logistic regression classification methods were used to classify healthy controls (HCs) and pre-surgical TLE groups, as well as pre-surgical left TLE (LTLE) and right TLE (RTLE) groups. Also, relationships between psychological scores and the selected features were evaluated using a linear regression method.The results demonstrated increased functional and decreased structural connectivity in TLE patients before surgery. After surgery, significant connections revealed reduced functional connectivity and increased structural connectivity in TLE patients. Functional analysis identified the left parahippocampal region in LTLE and the right temporal regions in RTLE as key areas. Structural connectivity analysis showed that memory-related areas in the bilateral occipital region and the left language-related area were the origins of alterations. The GA method achieved the highest classification performance using SVM for fMRI and DTI graph measures, with accuracy rates of 97% and 88% for distinguishing LTLE from RTLE, and 93% and 87% for distinguishing TLE from HC, respectively. Moreover, a significant relationship was observed between the best-selected features and memory-assisted cognitive tests.RESULTSThe results demonstrated increased functional and decreased structural connectivity in TLE patients before surgery. After surgery, significant connections revealed reduced functional connectivity and increased structural connectivity in TLE patients. Functional analysis identified the left parahippocampal region in LTLE and the right temporal regions in RTLE as key areas. Structural connectivity analysis showed that memory-related areas in the bilateral occipital region and the left language-related area were the origins of alterations. The GA method achieved the highest classification performance using SVM for fMRI and DTI graph measures, with accuracy rates of 97% and 88% for distinguishing LTLE from RTLE, and 93% and 87% for distinguishing TLE from HC, respectively. Moreover, a significant relationship was observed between the best-selected features and memory-assisted cognitive tests.Pre-surgical functional hyperconnectivity and post-surgical hypoconnectivity and also newly observed bilateral postsurgical structural connectivity, highlighting functional and structural alterations in the LMN network. Additionally, the study underscores the potential of machine learning for TLE diagnosis and lateralization. A limited sample size, particularly in the postsurgical group was one of the constraints of this study.CONCLUSIONSPre-surgical functional hyperconnectivity and post-surgical hypoconnectivity and also newly observed bilateral postsurgical structural connectivity, highlighting functional and structural alterations in the LMN network. Additionally, the study underscores the potential of machine learning for TLE diagnosis and lateralization. A limited sample size, particularly in the postsurgical group was one of the constraints of this study.TLE=Temporal lobe epilepsy; LMN=Language-memory network; GA=Genetic algorithm; HC=Healthy controls; LTLE=Left TLE; RTLE=Right TLE; AUC=Area under the curve.ABBREVIATIONSTLE=Temporal lobe epilepsy; LMN=Language-memory network; GA=Genetic algorithm; HC=Healthy controls; LTLE=Left TLE; RTLE=Right TLE; AUC=Area under the curve. This study evaluated preoperative alterations and postoperative reorganization of the joint language-memory network (LMN) from the perspective of resting-state functional and structural connectivity in temporal lobe epilepsy (TLE). Graph theory and machine learning approaches were used to explore automatic lateralization. Resting-state fMRI and DTI data were obtained from 20 healthy subjects and 35 patients with TLE. Functional and structural connectivity were calculated within the LMN before and after temporal lobectomy. ANOVA was performed to identify significant connectivity differences between groups. Four local graph measures were extracted from functional and structural connectivity matrices. Standard feature selection techniques and genetic algorithm methods were applied to select the optimal features. Subsequently, K-nearest neighbor, support vector machine, Naive Bayes, and logistic regression classification methods were used to classify healthy controls (HC) and presurgical TLE groups, as well as presurgical left TLE (L-TLE) and right TLE (R-TLE) groups. Also, relationships between psychological scores and the selected features were evaluated using a linear regression method. The results demonstrated increased functional and decreased structural connectivity in patients with TLE before surgery. After surgery, significant connections revealed reduced functional connectivity and increased structural connectivity in patients with TLE. Functional analysis identified the left parahippocampal region in L-TLE and the right temporal regions in R-TLE as key areas. Structural connectivity analysis showed that memory-related areas in the bilateral occipital region and the left language-related area were the origins of alterations. The genetic algorithm method achieved the highest classification performance using a support vector machine for fMRI and DTI graph measures, with accuracy rates of 97% and 88% for distinguishing L-TLE from R-TLE, and 93% and 87% for distinguishing patients with TLE from HC, respectively. Moreover, a significant relationship was observed between the best-selected features and memory-assisted cognitive tests. Presurgical functional hyperconnectivity, postsurgical hypoconnectivity, and newly observed bilateral structural connectivity after surgery highlight both functional and structural alterations in the LMN network. Additionally, the study underscores the potential for machine learning for TLE diagnosis and lateralization. A limited sample size, particularly in the postsurgical group, was one of the constraints of this study. |
| Author | Nazem-Zadeh, Mohammad-Reza Soltanian-Zadeh, Hamid Hoseini-Tabatabaei, Narges Hashemi Fesharaki, Seyed Sohrab Fallahi, Alireza Habibabadi, Jafar Mehvari |
| Author_xml | – sequence: 1 givenname: Alireza orcidid: 0000-0001-7978-3201 surname: Fallahi fullname: Fallahi, Alireza – sequence: 2 givenname: Mohammad-Reza surname: Nazem-Zadeh fullname: Nazem-Zadeh, Mohammad-Reza – sequence: 3 givenname: Narges surname: Hoseini-Tabatabaei fullname: Hoseini-Tabatabaei, Narges – sequence: 4 givenname: Jafar Mehvari surname: Habibabadi fullname: Habibabadi, Jafar Mehvari – sequence: 5 givenname: Seyed Sohrab orcidid: 0000-0001-5962-6081 surname: Hashemi Fesharaki fullname: Hashemi Fesharaki, Seyed Sohrab – sequence: 6 givenname: Hamid surname: Soltanian-Zadeh fullname: Soltanian-Zadeh, Hamid |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40081848$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9kV1LwzAYhYNM3Ife-AMklyJ0Jk26pt6Vsakw9cIJ3pU0TUdnm3T5UPrvbZ169cJ7Hg6cc6ZgpLSSAFxiNCc4prd8r8w8ZTGJT8AEJ2QRJFHyPgIThJMoWGDExmBq7R4hFCVxeAbGFCGGGWUTcNhwtfN8JyFXBXySjTYdfJbuS5sPmNZOGu4qrSysFNzKptWG13CjcwlXbVXL1nZ3MIVrr8SA9dpg8-qMF84P6FIrJXvts3Jd__dFdw5OS15befF7Z-BtvdouH4LNy_3jMt0EIqTMBZRIFFMqaEEFiWNKEO2zIspYISLMSZ5TzpOEMxGxpOSo7NNhzjGhRVlGYkFm4Pro2xp98NK6rKmskHXNldTeZn11MY7CkOEevfpFfd7IImtN1XDTZX819cDNERBGW2tk-Y9gNBjRbNgg-9mAfAPpc3of |
| Cites_doi | 10.1016/j.yebeh.2021.107834 10.1111/epi.17160 10.1111/epi.16309] 10.1111/epi.17370 10.1038/nrn3338 10.1016/j.imu.2020.100444 10.3389/fnins.2019.00585 10.3171/2014.9.jns131422 10.1007/s00415-020-10307-6 10.1016/j.yebeh.2015.12.039 10.1097/WCO.0000000000000568 10.1111/epi.17889 10.15274/NRJ-2014-10031 10.2174/1573405613666170622114920 10.3390/biology11030469 10.1016/j.neuropsychologia.2020.107455 10.1016/B978-0-444-52898-8.00014-8 10.1111/epi.14736 10.1016/j.eswa.2020.113981 10.1212/WNL.0b013e3181ebdd3e 10.1016/j.seizure.2022.01.007 10.1371/journal.pone.0021976 10.1016/j.nicl.2021.102702 10.1016/j.bandl.2018.12.007 10.1016/j.neulet.2019.134351 10.1002/hbm.24839 10.1152/jn.00338.2011 10.3171/2019.3.JNS19350 10.1111/epi.16333 10.1016/j.patcog.2018.12.001 10.1007/s10548-021-00857-x 10.1073/pnas.1603312113 10.1162/jocn.2009.21056 10.1002/acn3.51908 10.1007/s10334-021-00948-7 10.1007/s10072-020-04759-x 10.1111/epi.17767 10.1007/s12021-016-9299-4 10.3389/fneur.2015.00184 10.1146/annurev-psych-113011-143733 10.1186/s40708-020-00105-1 10.1044/2017_AJSLP-16-0195 10.3389/fnhum.2021.752138 10.3171/2020.4.JNS193401 10.3389/fnins.2021.684825 10.1111/j.1528-1167.2010.02785.x 10.1111/epi.13229 10.1016/j.yebeh.2023.109407 10.1016/j.neuroimage.2020.116706 10.1016/j.jocn.2018.06.020 10.1016/j.jns.2014.09.029 10.1093/brain/awad117 10.1371/journal.pone.0219683 10.1016/j.yebeh.2017.08.003 10.1016/j.neuroimage.2015.10.019 10.1016/j.jneumeth.2015.07.013 |
| ContentType | Journal Article |
| Copyright | 2025 by American Journal of Neuroradiology. |
| Copyright_xml | – notice: 2025 by American Journal of Neuroradiology. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.3174/ajnr.A8737 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1936-959X |
| ExternalDocumentID | 40081848 10_3174_ajnr_A8737 |
| Genre | Journal Article |
| GroupedDBID | --- .55 23M 5GY 5RE 6J9 AAYXX ACGFO ACIWK ACPRK ADBBV AENEX AFHIN AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 E3Z EBS EJD EMOBN F5P F9R H13 INIJC KQ8 MV1 N9A OK1 P2P P6G R0Z RHI RPM TNE TR2 WOQ WOW X7M ZCG CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c248t-43e0744c4d4c37743041740488dc51a3bb4aa99a8c589fa0f0001aa134dff5c63 |
| ISSN | 0195-6108 1936-959X |
| IngestDate | Sun Sep 28 09:19:32 EDT 2025 Thu Sep 25 01:51:28 EDT 2025 Wed Oct 01 05:37:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | 2025 by American Journal of Neuroradiology. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c248t-43e0744c4d4c37743041740488dc51a3bb4aa99a8c589fa0f0001aa134dff5c63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-7978-3201 0000-0001-5962-6081 |
| PMID | 40081848 |
| PQID | 3177152281 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3177152281 pubmed_primary_40081848 crossref_primary_10_3174_ajnr_A8737 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | American journal of neuroradiology : AJNR |
| PublicationTitleAlternate | AJNR Am J Neuroradiol |
| PublicationYear | 2025 |
| References | 2025080710000732000_ajnr.A8737v2.9 2025080710000732000_ajnr.A8737v2.8 2025080710000732000_ajnr.A8737v2.7 2025080710000732000_ajnr.A8737v2.6 2025080710000732000_ajnr.A8737v2.5 2025080710000732000_ajnr.A8737v2.4 2025080710000732000_ajnr.A8737v2.50 2025080710000732000_ajnr.A8737v2.3 2025080710000732000_ajnr.A8737v2.51 2025080710000732000_ajnr.A8737v2.2 2025080710000732000_ajnr.A8737v2.52 2025080710000732000_ajnr.A8737v2.1 2025080710000732000_ajnr.A8737v2.53 2025080710000732000_ajnr.A8737v2.10 2025080710000732000_ajnr.A8737v2.54 2025080710000732000_ajnr.A8737v2.11 2025080710000732000_ajnr.A8737v2.55 2025080710000732000_ajnr.A8737v2.12 2025080710000732000_ajnr.A8737v2.56 2025080710000732000_ajnr.A8737v2.13 2025080710000732000_ajnr.A8737v2.57 2025080710000732000_ajnr.A8737v2.14 2025080710000732000_ajnr.A8737v2.15 2025080710000732000_ajnr.A8737v2.16 2025080710000732000_ajnr.A8737v2.17 2025080710000732000_ajnr.A8737v2.18 2025080710000732000_ajnr.A8737v2.19 2025080710000732000_ajnr.A8737v2.20 2025080710000732000_ajnr.A8737v2.21 2025080710000732000_ajnr.A8737v2.22 2025080710000732000_ajnr.A8737v2.23 2025080710000732000_ajnr.A8737v2.24 2025080710000732000_ajnr.A8737v2.25 2025080710000732000_ajnr.A8737v2.26 2025080710000732000_ajnr.A8737v2.27 2025080710000732000_ajnr.A8737v2.28 2025080710000732000_ajnr.A8737v2.29 2025080710000732000_ajnr.A8737v2.30 2025080710000732000_ajnr.A8737v2.31 2025080710000732000_ajnr.A8737v2.32 2025080710000732000_ajnr.A8737v2.33 2025080710000732000_ajnr.A8737v2.34 2025080710000732000_ajnr.A8737v2.35 2025080710000732000_ajnr.A8737v2.36 2025080710000732000_ajnr.A8737v2.37 2025080710000732000_ajnr.A8737v2.38 2025080710000732000_ajnr.A8737v2.39 2025080710000732000_ajnr.A8737v2.40 2025080710000732000_ajnr.A8737v2.41 2025080710000732000_ajnr.A8737v2.42 2025080710000732000_ajnr.A8737v2.43 2025080710000732000_ajnr.A8737v2.44 2025080710000732000_ajnr.A8737v2.45 2025080710000732000_ajnr.A8737v2.46 2025080710000732000_ajnr.A8737v2.47 2025080710000732000_ajnr.A8737v2.48 2025080710000732000_ajnr.A8737v2.49 |
| References_xml | – ident: 2025080710000732000_ajnr.A8737v2.16 doi: 10.1016/j.yebeh.2021.107834 – ident: 2025080710000732000_ajnr.A8737v2.40 doi: 10.1111/epi.17160 – ident: 2025080710000732000_ajnr.A8737v2.50 doi: 10.1111/epi.16309] – ident: 2025080710000732000_ajnr.A8737v2.3 doi: 10.1111/epi.17370 – ident: 2025080710000732000_ajnr.A8737v2.21 doi: 10.1038/nrn3338 – ident: 2025080710000732000_ajnr.A8737v2.46 doi: 10.1016/j.imu.2020.100444 – ident: 2025080710000732000_ajnr.A8737v2.41 doi: 10.3389/fnins.2019.00585 – ident: 2025080710000732000_ajnr.A8737v2.14 doi: 10.3171/2014.9.jns131422 – ident: 2025080710000732000_ajnr.A8737v2.36 – ident: 2025080710000732000_ajnr.A8737v2.55 doi: 10.1007/s00415-020-10307-6 – ident: 2025080710000732000_ajnr.A8737v2.43 doi: 10.1016/j.yebeh.2015.12.039 – ident: 2025080710000732000_ajnr.A8737v2.26 doi: 10.1097/WCO.0000000000000568 – ident: 2025080710000732000_ajnr.A8737v2.53 doi: 10.1111/epi.17889 – ident: 2025080710000732000_ajnr.A8737v2.7 doi: 10.15274/NRJ-2014-10031 – ident: 2025080710000732000_ajnr.A8737v2.27 doi: 10.2174/1573405613666170622114920 – ident: 2025080710000732000_ajnr.A8737v2.49 doi: 10.3390/biology11030469 – ident: 2025080710000732000_ajnr.A8737v2.17 doi: 10.1016/j.neuropsychologia.2020.107455 – ident: 2025080710000732000_ajnr.A8737v2.19 doi: 10.1016/B978-0-444-52898-8.00014-8 – ident: 2025080710000732000_ajnr.A8737v2.13 doi: 10.1111/epi.14736 – ident: 2025080710000732000_ajnr.A8737v2.44 doi: 10.1016/j.eswa.2020.113981 – ident: 2025080710000732000_ajnr.A8737v2.31 doi: 10.1212/WNL.0b013e3181ebdd3e – ident: 2025080710000732000_ajnr.A8737v2.54 doi: 10.1016/j.seizure.2022.01.007 – ident: 2025080710000732000_ajnr.A8737v2.56 doi: 10.1371/journal.pone.0021976 – ident: 2025080710000732000_ajnr.A8737v2.37 doi: 10.1016/j.nicl.2021.102702 – ident: 2025080710000732000_ajnr.A8737v2.18 doi: 10.1016/j.bandl.2018.12.007 – ident: 2025080710000732000_ajnr.A8737v2.42 doi: 10.1016/j.neulet.2019.134351 – ident: 2025080710000732000_ajnr.A8737v2.25 doi: 10.1002/hbm.24839 – ident: 2025080710000732000_ajnr.A8737v2.39 doi: 10.1152/jn.00338.2011 – ident: 2025080710000732000_ajnr.A8737v2.6 doi: 10.3171/2019.3.JNS19350 – ident: 2025080710000732000_ajnr.A8737v2.47 doi: 10.1111/epi.16333 – ident: 2025080710000732000_ajnr.A8737v2.52 doi: 10.1016/j.patcog.2018.12.001 – ident: 2025080710000732000_ajnr.A8737v2.9 doi: 10.1007/s10548-021-00857-x – ident: 2025080710000732000_ajnr.A8737v2.23 doi: 10.1073/pnas.1603312113 – ident: 2025080710000732000_ajnr.A8737v2.22 doi: 10.1162/jocn.2009.21056 – ident: 2025080710000732000_ajnr.A8737v2.10 doi: 10.1002/acn3.51908 – ident: 2025080710000732000_ajnr.A8737v2.12 doi: 10.1007/s10334-021-00948-7 – ident: 2025080710000732000_ajnr.A8737v2.29 doi: 10.1007/s10072-020-04759-x – ident: 2025080710000732000_ajnr.A8737v2.5 doi: 10.1111/epi.17767 – ident: 2025080710000732000_ajnr.A8737v2.34 doi: 10.1007/s12021-016-9299-4 – ident: 2025080710000732000_ajnr.A8737v2.28 doi: 10.3389/fneur.2015.00184 – ident: 2025080710000732000_ajnr.A8737v2.20 doi: 10.1146/annurev-psych-113011-143733 – ident: 2025080710000732000_ajnr.A8737v2.48 doi: 10.1186/s40708-020-00105-1 – ident: 2025080710000732000_ajnr.A8737v2.2 doi: 10.1044/2017_AJSLP-16-0195 – ident: 2025080710000732000_ajnr.A8737v2.24 doi: 10.3389/fnhum.2021.752138 – ident: 2025080710000732000_ajnr.A8737v2.8 doi: 10.3171/2020.4.JNS193401 – ident: 2025080710000732000_ajnr.A8737v2.33 doi: 10.3389/fnins.2021.684825 – ident: 2025080710000732000_ajnr.A8737v2.32 doi: 10.1111/j.1528-1167.2010.02785.x – ident: 2025080710000732000_ajnr.A8737v2.1 doi: 10.1111/epi.13229 – ident: 2025080710000732000_ajnr.A8737v2.57 doi: 10.1016/j.yebeh.2023.109407 – ident: 2025080710000732000_ajnr.A8737v2.51 doi: 10.1016/j.neuroimage.2020.116706 – ident: 2025080710000732000_ajnr.A8737v2.15 doi: 10.1016/j.jocn.2018.06.020 – ident: 2025080710000732000_ajnr.A8737v2.30 doi: 10.1016/j.jns.2014.09.029 – ident: 2025080710000732000_ajnr.A8737v2.11 doi: 10.1093/brain/awad117 – ident: 2025080710000732000_ajnr.A8737v2.45 doi: 10.1371/journal.pone.0219683 – ident: 2025080710000732000_ajnr.A8737v2.4 doi: 10.1016/j.yebeh.2017.08.003 – ident: 2025080710000732000_ajnr.A8737v2.35 doi: 10.1016/j.neuroimage.2015.10.019 – ident: 2025080710000732000_ajnr.A8737v2.38 doi: 10.1016/j.jneumeth.2015.07.013 |
| SSID | ssj0005972 |
| Score | 2.4788501 |
| Snippet | This study evaluated preoperative alterations and postoperative reorganization of the joint language-memory network (LMN) from the perspective of resting-state... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 1953 |
| SubjectTerms | Adult Connectome - methods Epilepsy, Temporal Lobe - complications Epilepsy, Temporal Lobe - pathology Epilepsy, Temporal Lobe - physiopathology Epilepsy, Temporal Lobe - surgery Female Humans Language Magnetic Resonance Imaging - methods Male Memory - physiology Middle Aged Nerve Net - pathology Nerve Net - physiopathology Sensitivity and Specificity Young Adult |
| Title | Language and Memory Network Alterations in Temporal Lobe Epilepsy: A Functional and Structural Connectivity Study |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40081848 https://www.proquest.com/docview/3177152281 |
| Volume | 46 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1936-959X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005972 issn: 0195-6108 databaseCode: KQ8 dateStart: 19800101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtMwELXKIiFeEHfKTUYgXlZetomTJrxVqFW1tEVAKlW8RBPHYYO2abfbRdp-BZ_MjJ3bcpEWHhpVaWq34yPP2HN8hrFXYeYoP-2brK4rZN9NRKD9nqCkIJWCd1KjWzCd-eO5PFp4i07nR4u1dL5NDtTuj-dK_mdU8R6OK52S_YeRrRvFG_gexxevOMJ4vdIYT8rNRsuWIM7sBZ3gJa7V_uDE6CVXTPHISlCd7E-IXTFc42SwPruw59JH6NvKLUFD5DSSskaOw9BgVFlg4nOtRFup1lbZnpb8hNHH3EBaajuZDo5mdTppRPv2po4w_kCcbXe1V5jBTi_FF0i12eiZro5huYRUfGo9M0aPrvMiFxEksMWXzq2H2HxtqJBjSPIEP0tzywLOjFLR8XfY5O0tDserOVzVrBy6vgg9U3MXndbv9371AxgUSXJy34rNwSDoW1mZy2Lbsw_xaD6ZxNFwEb1enwqqQ0b5-rIoyzV23UE_QcVA3n9s9Odx-eVYnoLt3AreUndvms4uhzh_WbeY-CW6zW6VCw8-sCi6wzq6uMtuTEtqxT12WoGJIwa4BRMvwcRbYOJ5wSswcQITr8D0lg94AyXTTAMl3oYSN1C6z-ajYfRuLMp6HEI5MtgK6WoMOKWSqVQuLhvcQ4l_nFxAqrweuEkiAcIQAuUFYQaHGS0gAHquTLPMU777gO0Vq0I_YhwfQe_hZOBheIk-BbyMUuAkVKESjIK77GVlwnhtZVdiXK6SoWMydGwM3WUvKuvGOCtSqgsKvTo_owf7GJk6Qa_LHlqz1-1II-Mog8dX-PYTdrMB5FO2h1bTzzAK3SbPDTB-AiUajik |
| linkProvider | Colorado Alliance of Research Libraries |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Language+and+Memory+Network+Alterations+in+Temporal+Lobe+Epilepsy%3A+A+Functional+and+Structural+Connectivity+Study&rft.jtitle=American+journal+of+neuroradiology+%3A+AJNR&rft.au=Fallahi%2C+Alireza&rft.au=Nazem-Zadeh%2C+Mohammad-Reza&rft.au=Hosseini-Tabatabaei%2C+Narges&rft.au=Habibabadi%2C+Jafar+Mehvari&rft.date=2025-09-01&rft.issn=1936-959X&rft.eissn=1936-959X&rft_id=info:doi/10.3174%2Fajnr.A8737&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-6108&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-6108&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-6108&client=summon |