A Multimodal Progressive Fusion Bearing Fault Diagnosis Algorithm Based on Residual Network
Bearings are crucial components of rotating machinery in critical industrial equipment such as wind turbines, high-speed trains, and aerospace engines. Existing methods for bearing fault diagnosis are generally confined to superficial integration of multisensor or multidomain data, constrained by ei...
Saved in:
| Published in | IEEE sensors journal Vol. 25; no. 13; pp. 23857 - 23868 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1530-437X 1558-1748 |
| DOI | 10.1109/JSEN.2025.3571201 |
Cover
| Abstract | Bearings are crucial components of rotating machinery in critical industrial equipment such as wind turbines, high-speed trains, and aerospace engines. Existing methods for bearing fault diagnosis are generally confined to superficial integration of multisensor or multidomain data, constrained by either poor heterogeneous information integration in early fusion approaches or information loss and imbalanced modality representations caused by late fusion strategies, resulting in limited diagnostic effectiveness under complex and dynamic industrial operating conditions. In order to solve this issue, we propose a multimodal progressive fusion bearing fault diagnosis algorithm based on residual networks (MMPro-ResNet). The algorithm integrates multisensor and multidomain data and automatically extracts fault features using residual networks. Then, an improved progressive feature fusion technique is applied to optimize the use of the multimodal features, which aims to allow earlier layers to access later fused features, avoiding the loss of important information and improving the fusion representation over multiple iterations. The diagnostic efficacy of the proposed method is validated using two different bearing datasets, achieving a diagnostic accuracy of 99.97% for composite faults. This advancement shows great potential for implementation on industrial internet of things (IoT) platforms, especially in scenarios, such as power generation and transport, where predictive maintenance is required, reducing unplanned downtime and maintenance costs. |
|---|---|
| AbstractList | Bearings are crucial components of rotating machinery in critical industrial equipment such as wind turbines, high-speed trains, and aerospace engines. Existing methods for bearing fault diagnosis are generally confined to superficial integration of multisensor or multidomain data, constrained by either poor heterogeneous information integration in early fusion approaches or information loss and imbalanced modality representations caused by late fusion strategies, resulting in limited diagnostic effectiveness under complex and dynamic industrial operating conditions. In order to solve this issue, we propose a multimodal progressive fusion bearing fault diagnosis algorithm based on residual networks (MMPro-ResNet). The algorithm integrates multisensor and multidomain data and automatically extracts fault features using residual networks. Then, an improved progressive feature fusion technique is applied to optimize the use of the multimodal features, which aims to allow earlier layers to access later fused features, avoiding the loss of important information and improving the fusion representation over multiple iterations. The diagnostic efficacy of the proposed method is validated using two different bearing datasets, achieving a diagnostic accuracy of 99.97% for composite faults. This advancement shows great potential for implementation on industrial internet of things (IoT) platforms, especially in scenarios, such as power generation and transport, where predictive maintenance is required, reducing unplanned downtime and maintenance costs. |
| Author | Ni, Bo Li, Zhuo Chang, Jianhua Ni, Haibin Zhu, Wenbing Cao, Ji |
| Author_xml | – sequence: 1 givenname: Wenbing orcidid: 0009-0005-6761-4570 surname: Zhu fullname: Zhu, Wenbing email: wen_bing_zhu@163.com organization: School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 2 givenname: Haibin orcidid: 0000-0003-2916-823X surname: Ni fullname: Ni, Haibin email: nihaibin@nuist.edu.cn organization: School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 3 givenname: Zhuo surname: Li fullname: Li, Zhuo email: Lz2213126333@gmail.com organization: School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 4 givenname: Ji surname: Cao fullname: Cao, Ji email: jicao_cao@163.com organization: Jiangsu JITRI Integrated Circuit Application Technology Innovation Center, Wuxi, China – sequence: 5 givenname: Bo orcidid: 0000-0002-7863-3399 surname: Ni fullname: Ni, Bo email: bni@nuist.edu.cn organization: School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 6 givenname: Jianhua orcidid: 0000-0003-4834-2141 surname: Chang fullname: Chang, Jianhua email: jianhuachang@nuist.edu.cn organization: Jiangsu Provincial Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing, China |
| BookMark | eNpFkE1LAzEQhoMo2FZ_gOAh4HlrZpM02WOtrR_UKn6A4GGJ2dkabTc12VX89-5SwdMMw_O-A0-f7Fa-QkKOgA0BWHZ6_TBdDFOWyiGXClIGO6QHUuoElNC73c5ZIrh63if9GN8Zg0xJ1SMvY3rTrGq39oVZ0bvglwFjdF9IZ010vqJnaIKrlnRmWoyeO7OsfHSRjldLH1z9tqZnJmJBW_QeoyuatmaB9bcPHwdkrzSriId_c0CeZtPHyWUyv724mozniU2FrhNusBQWSybNqwKtNeBrwcCqUWqlNWDLzKSj0hbCZGJkJJbtUdtMQwFci4wPyMm2dxP8Z4Oxzt99E6r2Zc7TVLGMMyVbCraUDT7GgGW-CW5twk8OLO8c5p3DvHOY_zlsM8fbjEPEfx4YCKkE_wUr8XAp |
| CODEN | ISJEAZ |
| Cites_doi | 10.1016/j.apacoust.2024.110442 10.1109/JSEN.2023.3296670 10.1109/JSEN.2024.3496693 10.1007/978-981-19-1111-8_22 10.1109/JSEN.2024.3386679 10.1007/s42417-022-00498-9 10.1016/j.asoc.2024.111506 10.5555/3045118.3045167 10.3390/machines10111105 10.1109/TFUZZ.2024.3470960 10.36001/phme.2016.v3i1.1577 10.1109/PHM-Paris.2019.00061 10.1016/j.ymssp.2017.06.012 10.1016/j.measurement.2020.108502 10.1016/j.engappai.2022.105317 10.1080/10589759.2024.2425813 10.1016/j.ress.2024.110556 10.1007/s11760-024-03129-w 10.1016/j.inffus.2024.102554 10.1109/ICAIIC51459.2021.9415249 10.1016/j.jsv.2016.05.027 10.1016/j.isatra.2021.11.024 10.1016/j.eswa.2009.11.006 10.1109/CVPR.2016.90 10.1007/s10462-021-09993-z 10.1016/j.isatra.2018.12.025 10.3390/s23063068 10.1007/s00521-021-06668-2 10.1007/978-3-030-11018-5_26 10.1016/j.ress.2023.109793 10.1016/j.ymssp.2022.109605 10.1016/j.ymssp.2022.109896 10.1109/JIOT.2024.3377731 10.1109/5.726791 10.1016/j.measurement.2020.108522 10.1080/10589759.2023.2228979 10.1007/s11760-023-02715-8 10.21595/jve.2022.22366 10.3390/en15093340 10.1007/s11071-024-10157-1 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2025.3571201 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEL(IEEE/IET Electronic Library ) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 23868 |
| ExternalDocumentID | 10_1109_JSEN_2025_3571201 11014574 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61605082; 61875089 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c248t-3aef4cef05ab718881ebd01c762c5ca1cf9a26fcd4a946a5efca18c981d138493 |
| IEDL.DBID | RIE |
| ISSN | 1530-437X |
| IngestDate | Sat Oct 25 08:47:25 EDT 2025 Wed Oct 01 05:46:54 EDT 2025 Wed Aug 27 02:12:56 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c248t-3aef4cef05ab718881ebd01c762c5ca1cf9a26fcd4a946a5efca18c981d138493 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0005-6761-4570 0000-0003-4834-2141 0000-0002-7863-3399 0000-0003-2916-823X |
| PQID | 3227093075 |
| PQPubID | 75733 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_11014574 crossref_primary_10_1109_JSEN_2025_3571201 proquest_journals_3227093075 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref19 ref18 Kingma (ref43) 2014 Shankar (ref38) 2022 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 Zhou (ref42) 2024; 45 ref5 ref40 |
| References_xml | – ident: ref13 doi: 10.1016/j.apacoust.2024.110442 – ident: ref22 doi: 10.1109/JSEN.2023.3296670 – ident: ref29 doi: 10.1109/JSEN.2024.3496693 – ident: ref11 doi: 10.1007/978-981-19-1111-8_22 – ident: ref35 doi: 10.1109/JSEN.2024.3386679 – ident: ref3 doi: 10.1007/s42417-022-00498-9 – ident: ref10 doi: 10.1016/j.asoc.2024.111506 – ident: ref40 doi: 10.5555/3045118.3045167 – ident: ref33 doi: 10.3390/machines10111105 – ident: ref12 doi: 10.1109/TFUZZ.2024.3470960 – ident: ref41 doi: 10.36001/phme.2016.v3i1.1577 – ident: ref30 doi: 10.1109/PHM-Paris.2019.00061 – ident: ref1 doi: 10.1016/j.ymssp.2017.06.012 – ident: ref2 doi: 10.1016/j.measurement.2020.108502 – ident: ref5 doi: 10.1016/j.engappai.2022.105317 – ident: ref18 doi: 10.1080/10589759.2024.2425813 – ident: ref28 doi: 10.1016/j.ress.2024.110556 – volume: 45 start-page: 3744 issue: 10 year: 2024 ident: ref42 article-title: Study of JUST slewing bearing failure test data publication-title: Acta Armamentarii – ident: ref37 doi: 10.1007/s11760-024-03129-w – ident: ref20 doi: 10.1016/j.inffus.2024.102554 – ident: ref6 doi: 10.1109/ICAIIC51459.2021.9415249 – ident: ref16 doi: 10.1016/j.jsv.2016.05.027 – year: 2014 ident: ref43 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref17 doi: 10.1016/j.isatra.2021.11.024 – ident: ref7 doi: 10.1016/j.eswa.2009.11.006 – ident: ref24 doi: 10.1109/CVPR.2016.90 – ident: ref19 doi: 10.1007/s10462-021-09993-z – ident: ref25 doi: 10.1016/j.isatra.2018.12.025 – ident: ref26 doi: 10.3390/s23063068 – ident: ref27 doi: 10.1007/s00521-021-06668-2 – ident: ref34 doi: 10.1007/978-3-030-11018-5_26 – ident: ref23 doi: 10.1016/j.ress.2023.109793 – ident: ref14 doi: 10.1016/j.ymssp.2022.109605 – ident: ref15 doi: 10.1016/j.ymssp.2022.109896 – ident: ref21 doi: 10.1109/JIOT.2024.3377731 – ident: ref39 doi: 10.1109/5.726791 – ident: ref31 doi: 10.1016/j.measurement.2020.108522 – ident: ref8 doi: 10.1080/10589759.2023.2228979 – ident: ref32 doi: 10.1007/s11760-023-02715-8 – year: 2022 ident: ref38 article-title: Progressive fusion for multimodal integration publication-title: arXiv:2209.00302 – ident: ref4 doi: 10.21595/jve.2022.22366 – ident: ref9 doi: 10.3390/en15093340 – ident: ref36 doi: 10.1007/s11071-024-10157-1 |
| SSID | ssj0019757 |
| Score | 2.4352114 |
| Snippet | Bearings are crucial components of rotating machinery in critical industrial equipment such as wind turbines, high-speed trains, and aerospace engines.... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 23857 |
| SubjectTerms | Aerospace engines Algorithms Bearing fault diagnosis Convolution Convolutional neural networks Data mining Data models Downtime Effectiveness Fault diagnosis Feature extraction High speed rail Industrial applications Industrial Internet of Things Maintenance costs multimodal Nickel Predictive maintenance progressive feature fusion Representations residual networks Residual neural networks Rotating machinery Time-frequency analysis Training Wind turbines |
| Title | A Multimodal Progressive Fusion Bearing Fault Diagnosis Algorithm Based on Residual Network |
| URI | https://ieeexplore.ieee.org/document/11014574 https://www.proquest.com/docview/3227093075 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyQxEC5WL-se1FUXxxc57EnosR_JpHMcH4MIOyy6wsAemnRSUdl1RpweQX-9lXRmFUXYW9NUmtBfUo_kqyqA7-SDl4U1ZWKklgl3FLAqChMStGSOUKVaGH_e8WPYO73kZyMxisnqIRcGEQP5DLv-Mdzl24mZ-aOygyw0lpV8ARZk2WuTtf5dGSgZynrSDk4TXshRvMLMUnVwdnEypFAwF91CyCyPDWDmRih0VXmnioN9GazAcD6zllbypztr6q55elO08b-nvgrL0dNk_XZpfIVPOF6DL6_qD67B59gC_fpxHX73WUjGvZ1YGvXT07Y8Q_YB2WDmT9TYIe0JGsUGmsTYcUvRu5my_t-ryf1Nc33LDskiWkai5zgNOV5s2JLMN-BycPLr6DSJnRcSk_OySQqNjht0qdA1gVmWGdY2zQxpTiOMzoxTOu85Y7lWvKcFOnpZGkXOb1aUXBXfYHE8GeMmMGcxdQS8yA2F4iSH0gnrJDl-Uum67sD-HIrqri2wUYXAJFWVx63yuFURtw5s-F_7Ihj_agd25uhVcQ9OK1JVMlWkw8TWB8O2Ycl_vWXf7sBicz_DXfIxmnovrK1n8qHObg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dTxQxEJ8oPKAPgojxBLQPPpnssR_tdft4fFxOhI1RSC7xYdNtp0KUO8PtmcBfz7TbQ6Ix8W2zmWab_bXz0f5mBuAd-eBlYU2ZGKllwh0FrIrChAQtmSNUqRbGn3ecVoPxOT-eiElMVg-5MIgYyGfY94_hLt_OzMIfle1lobGs5I9hVXDORZeudX9poGQo7El7OE14ISfxEjNL1d7xl6OKgsFc9Ashszy2gFmaodBX5S9lHCzMaB2q5dw6Ysn3_qJt-ub2j7KN_z35DXgWfU027BbHc3iE0014-qAC4SasxSboFzcv4OuQhXTcq5mlUZ88cctzZH8hGy38mRrbp11Bo9hIkxg77Eh6l3M2_PFtdn3ZXlyxfbKJlpHoZ5yHLC9WdTTzLTgfHZ0djJPYeyExOS_bpNDouEGXCt0QnGWZYWPTzJDuNMLozDil84EzlmvFB1qgo5elUeT-ZkXJVfESVqazKb4C5iymjqAXuaFgnORQOmGdJNdPKt00PXi_hKL-2ZXYqENokqra41Z73OqIWw-2_K_9LRj_ag92lujVcRfOa1JWMlWkxcTrfwx7C2vjs9OT-uRD9XEbnvgvdVzcHVhprxe4Sx5H27wJ6-wO6zfRuw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multimodal+Progressive+Fusion+Bearing+Fault+Diagnosis+Algorithm+Based+on+Residual+Network&rft.jtitle=IEEE+sensors+journal&rft.au=Zhu%2C+Wenbing&rft.au=Ni%2C+Haibin&rft.au=Li%2C+Zhuo&rft.au=Cao%2C+Ji&rft.date=2025-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=15&rft.spage=23857&rft.epage=23868&rft_id=info:doi/10.1109%2FJSEN.2025.3571201&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |