A Multimodal Progressive Fusion Bearing Fault Diagnosis Algorithm Based on Residual Network

Bearings are crucial components of rotating machinery in critical industrial equipment such as wind turbines, high-speed trains, and aerospace engines. Existing methods for bearing fault diagnosis are generally confined to superficial integration of multisensor or multidomain data, constrained by ei...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 25; no. 13; pp. 23857 - 23868
Main Authors Zhu, Wenbing, Ni, Haibin, Li, Zhuo, Cao, Ji, Ni, Bo, Chang, Jianhua
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2025.3571201

Cover

Abstract Bearings are crucial components of rotating machinery in critical industrial equipment such as wind turbines, high-speed trains, and aerospace engines. Existing methods for bearing fault diagnosis are generally confined to superficial integration of multisensor or multidomain data, constrained by either poor heterogeneous information integration in early fusion approaches or information loss and imbalanced modality representations caused by late fusion strategies, resulting in limited diagnostic effectiveness under complex and dynamic industrial operating conditions. In order to solve this issue, we propose a multimodal progressive fusion bearing fault diagnosis algorithm based on residual networks (MMPro-ResNet). The algorithm integrates multisensor and multidomain data and automatically extracts fault features using residual networks. Then, an improved progressive feature fusion technique is applied to optimize the use of the multimodal features, which aims to allow earlier layers to access later fused features, avoiding the loss of important information and improving the fusion representation over multiple iterations. The diagnostic efficacy of the proposed method is validated using two different bearing datasets, achieving a diagnostic accuracy of 99.97% for composite faults. This advancement shows great potential for implementation on industrial internet of things (IoT) platforms, especially in scenarios, such as power generation and transport, where predictive maintenance is required, reducing unplanned downtime and maintenance costs.
AbstractList Bearings are crucial components of rotating machinery in critical industrial equipment such as wind turbines, high-speed trains, and aerospace engines. Existing methods for bearing fault diagnosis are generally confined to superficial integration of multisensor or multidomain data, constrained by either poor heterogeneous information integration in early fusion approaches or information loss and imbalanced modality representations caused by late fusion strategies, resulting in limited diagnostic effectiveness under complex and dynamic industrial operating conditions. In order to solve this issue, we propose a multimodal progressive fusion bearing fault diagnosis algorithm based on residual networks (MMPro-ResNet). The algorithm integrates multisensor and multidomain data and automatically extracts fault features using residual networks. Then, an improved progressive feature fusion technique is applied to optimize the use of the multimodal features, which aims to allow earlier layers to access later fused features, avoiding the loss of important information and improving the fusion representation over multiple iterations. The diagnostic efficacy of the proposed method is validated using two different bearing datasets, achieving a diagnostic accuracy of 99.97% for composite faults. This advancement shows great potential for implementation on industrial internet of things (IoT) platforms, especially in scenarios, such as power generation and transport, where predictive maintenance is required, reducing unplanned downtime and maintenance costs.
Author Ni, Bo
Li, Zhuo
Chang, Jianhua
Ni, Haibin
Zhu, Wenbing
Cao, Ji
Author_xml – sequence: 1
  givenname: Wenbing
  orcidid: 0009-0005-6761-4570
  surname: Zhu
  fullname: Zhu, Wenbing
  email: wen_bing_zhu@163.com
  organization: School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 2
  givenname: Haibin
  orcidid: 0000-0003-2916-823X
  surname: Ni
  fullname: Ni, Haibin
  email: nihaibin@nuist.edu.cn
  organization: School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 3
  givenname: Zhuo
  surname: Li
  fullname: Li, Zhuo
  email: Lz2213126333@gmail.com
  organization: School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 4
  givenname: Ji
  surname: Cao
  fullname: Cao, Ji
  email: jicao_cao@163.com
  organization: Jiangsu JITRI Integrated Circuit Application Technology Innovation Center, Wuxi, China
– sequence: 5
  givenname: Bo
  orcidid: 0000-0002-7863-3399
  surname: Ni
  fullname: Ni, Bo
  email: bni@nuist.edu.cn
  organization: School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 6
  givenname: Jianhua
  orcidid: 0000-0003-4834-2141
  surname: Chang
  fullname: Chang, Jianhua
  email: jianhuachang@nuist.edu.cn
  organization: Jiangsu Provincial Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing, China
BookMark eNpFkE1LAzEQhoMo2FZ_gOAh4HlrZpM02WOtrR_UKn6A4GGJ2dkabTc12VX89-5SwdMMw_O-A0-f7Fa-QkKOgA0BWHZ6_TBdDFOWyiGXClIGO6QHUuoElNC73c5ZIrh63if9GN8Zg0xJ1SMvY3rTrGq39oVZ0bvglwFjdF9IZ010vqJnaIKrlnRmWoyeO7OsfHSRjldLH1z9tqZnJmJBW_QeoyuatmaB9bcPHwdkrzSriId_c0CeZtPHyWUyv724mozniU2FrhNusBQWSybNqwKtNeBrwcCqUWqlNWDLzKSj0hbCZGJkJJbtUdtMQwFci4wPyMm2dxP8Z4Oxzt99E6r2Zc7TVLGMMyVbCraUDT7GgGW-CW5twk8OLO8c5p3DvHOY_zlsM8fbjEPEfx4YCKkE_wUr8XAp
CODEN ISJEAZ
Cites_doi 10.1016/j.apacoust.2024.110442
10.1109/JSEN.2023.3296670
10.1109/JSEN.2024.3496693
10.1007/978-981-19-1111-8_22
10.1109/JSEN.2024.3386679
10.1007/s42417-022-00498-9
10.1016/j.asoc.2024.111506
10.5555/3045118.3045167
10.3390/machines10111105
10.1109/TFUZZ.2024.3470960
10.36001/phme.2016.v3i1.1577
10.1109/PHM-Paris.2019.00061
10.1016/j.ymssp.2017.06.012
10.1016/j.measurement.2020.108502
10.1016/j.engappai.2022.105317
10.1080/10589759.2024.2425813
10.1016/j.ress.2024.110556
10.1007/s11760-024-03129-w
10.1016/j.inffus.2024.102554
10.1109/ICAIIC51459.2021.9415249
10.1016/j.jsv.2016.05.027
10.1016/j.isatra.2021.11.024
10.1016/j.eswa.2009.11.006
10.1109/CVPR.2016.90
10.1007/s10462-021-09993-z
10.1016/j.isatra.2018.12.025
10.3390/s23063068
10.1007/s00521-021-06668-2
10.1007/978-3-030-11018-5_26
10.1016/j.ress.2023.109793
10.1016/j.ymssp.2022.109605
10.1016/j.ymssp.2022.109896
10.1109/JIOT.2024.3377731
10.1109/5.726791
10.1016/j.measurement.2020.108522
10.1080/10589759.2023.2228979
10.1007/s11760-023-02715-8
10.21595/jve.2022.22366
10.3390/en15093340
10.1007/s11071-024-10157-1
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2025.3571201
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL(IEEE/IET Electronic Library )
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 23868
ExternalDocumentID 10_1109_JSEN_2025_3571201
11014574
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61605082; 61875089
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c248t-3aef4cef05ab718881ebd01c762c5ca1cf9a26fcd4a946a5efca18c981d138493
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Sat Oct 25 08:47:25 EDT 2025
Wed Oct 01 05:46:54 EDT 2025
Wed Aug 27 02:12:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-3aef4cef05ab718881ebd01c762c5ca1cf9a26fcd4a946a5efca18c981d138493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0005-6761-4570
0000-0003-4834-2141
0000-0002-7863-3399
0000-0003-2916-823X
PQID 3227093075
PQPubID 75733
PageCount 12
ParticipantIDs ieee_primary_11014574
crossref_primary_10_1109_JSEN_2025_3571201
proquest_journals_3227093075
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref19
ref18
Kingma (ref43) 2014
Shankar (ref38) 2022
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
Zhou (ref42) 2024; 45
ref5
ref40
References_xml – ident: ref13
  doi: 10.1016/j.apacoust.2024.110442
– ident: ref22
  doi: 10.1109/JSEN.2023.3296670
– ident: ref29
  doi: 10.1109/JSEN.2024.3496693
– ident: ref11
  doi: 10.1007/978-981-19-1111-8_22
– ident: ref35
  doi: 10.1109/JSEN.2024.3386679
– ident: ref3
  doi: 10.1007/s42417-022-00498-9
– ident: ref10
  doi: 10.1016/j.asoc.2024.111506
– ident: ref40
  doi: 10.5555/3045118.3045167
– ident: ref33
  doi: 10.3390/machines10111105
– ident: ref12
  doi: 10.1109/TFUZZ.2024.3470960
– ident: ref41
  doi: 10.36001/phme.2016.v3i1.1577
– ident: ref30
  doi: 10.1109/PHM-Paris.2019.00061
– ident: ref1
  doi: 10.1016/j.ymssp.2017.06.012
– ident: ref2
  doi: 10.1016/j.measurement.2020.108502
– ident: ref5
  doi: 10.1016/j.engappai.2022.105317
– ident: ref18
  doi: 10.1080/10589759.2024.2425813
– ident: ref28
  doi: 10.1016/j.ress.2024.110556
– volume: 45
  start-page: 3744
  issue: 10
  year: 2024
  ident: ref42
  article-title: Study of JUST slewing bearing failure test data
  publication-title: Acta Armamentarii
– ident: ref37
  doi: 10.1007/s11760-024-03129-w
– ident: ref20
  doi: 10.1016/j.inffus.2024.102554
– ident: ref6
  doi: 10.1109/ICAIIC51459.2021.9415249
– ident: ref16
  doi: 10.1016/j.jsv.2016.05.027
– year: 2014
  ident: ref43
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref17
  doi: 10.1016/j.isatra.2021.11.024
– ident: ref7
  doi: 10.1016/j.eswa.2009.11.006
– ident: ref24
  doi: 10.1109/CVPR.2016.90
– ident: ref19
  doi: 10.1007/s10462-021-09993-z
– ident: ref25
  doi: 10.1016/j.isatra.2018.12.025
– ident: ref26
  doi: 10.3390/s23063068
– ident: ref27
  doi: 10.1007/s00521-021-06668-2
– ident: ref34
  doi: 10.1007/978-3-030-11018-5_26
– ident: ref23
  doi: 10.1016/j.ress.2023.109793
– ident: ref14
  doi: 10.1016/j.ymssp.2022.109605
– ident: ref15
  doi: 10.1016/j.ymssp.2022.109896
– ident: ref21
  doi: 10.1109/JIOT.2024.3377731
– ident: ref39
  doi: 10.1109/5.726791
– ident: ref31
  doi: 10.1016/j.measurement.2020.108522
– ident: ref8
  doi: 10.1080/10589759.2023.2228979
– ident: ref32
  doi: 10.1007/s11760-023-02715-8
– year: 2022
  ident: ref38
  article-title: Progressive fusion for multimodal integration
  publication-title: arXiv:2209.00302
– ident: ref4
  doi: 10.21595/jve.2022.22366
– ident: ref9
  doi: 10.3390/en15093340
– ident: ref36
  doi: 10.1007/s11071-024-10157-1
SSID ssj0019757
Score 2.4352114
Snippet Bearings are crucial components of rotating machinery in critical industrial equipment such as wind turbines, high-speed trains, and aerospace engines....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 23857
SubjectTerms Aerospace engines
Algorithms
Bearing fault diagnosis
Convolution
Convolutional neural networks
Data mining
Data models
Downtime
Effectiveness
Fault diagnosis
Feature extraction
High speed rail
Industrial applications
Industrial Internet of Things
Maintenance costs
multimodal
Nickel
Predictive maintenance
progressive feature fusion
Representations
residual networks
Residual neural networks
Rotating machinery
Time-frequency analysis
Training
Wind turbines
Title A Multimodal Progressive Fusion Bearing Fault Diagnosis Algorithm Based on Residual Network
URI https://ieeexplore.ieee.org/document/11014574
https://www.proquest.com/docview/3227093075
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyQxEC5WL-se1FUXxxc57EnosR_JpHMcH4MIOyy6wsAemnRSUdl1RpweQX-9lXRmFUXYW9NUmtBfUo_kqyqA7-SDl4U1ZWKklgl3FLAqChMStGSOUKVaGH_e8WPYO73kZyMxisnqIRcGEQP5DLv-Mdzl24mZ-aOygyw0lpV8ARZk2WuTtf5dGSgZynrSDk4TXshRvMLMUnVwdnEypFAwF91CyCyPDWDmRih0VXmnioN9GazAcD6zllbypztr6q55elO08b-nvgrL0dNk_XZpfIVPOF6DL6_qD67B59gC_fpxHX73WUjGvZ1YGvXT07Y8Q_YB2WDmT9TYIe0JGsUGmsTYcUvRu5my_t-ryf1Nc33LDskiWkai5zgNOV5s2JLMN-BycPLr6DSJnRcSk_OySQqNjht0qdA1gVmWGdY2zQxpTiOMzoxTOu85Y7lWvKcFOnpZGkXOb1aUXBXfYHE8GeMmMGcxdQS8yA2F4iSH0gnrJDl-Uum67sD-HIrqri2wUYXAJFWVx63yuFURtw5s-F_7Ihj_agd25uhVcQ9OK1JVMlWkw8TWB8O2Ycl_vWXf7sBicz_DXfIxmnovrK1n8qHObg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dTxQxEJ8oPKAPgojxBLQPPpnssR_tdft4fFxOhI1RSC7xYdNtp0KUO8PtmcBfz7TbQ6Ix8W2zmWab_bXz0f5mBuAd-eBlYU2ZGKllwh0FrIrChAQtmSNUqRbGn3ecVoPxOT-eiElMVg-5MIgYyGfY94_hLt_OzMIfle1lobGs5I9hVXDORZeudX9poGQo7El7OE14ISfxEjNL1d7xl6OKgsFc9Ashszy2gFmaodBX5S9lHCzMaB2q5dw6Ysn3_qJt-ub2j7KN_z35DXgWfU027BbHc3iE0014-qAC4SasxSboFzcv4OuQhXTcq5mlUZ88cctzZH8hGy38mRrbp11Bo9hIkxg77Eh6l3M2_PFtdn3ZXlyxfbKJlpHoZ5yHLC9WdTTzLTgfHZ0djJPYeyExOS_bpNDouEGXCt0QnGWZYWPTzJDuNMLozDil84EzlmvFB1qgo5elUeT-ZkXJVfESVqazKb4C5iymjqAXuaFgnORQOmGdJNdPKt00PXi_hKL-2ZXYqENokqra41Z73OqIWw-2_K_9LRj_ag92lujVcRfOa1JWMlWkxcTrfwx7C2vjs9OT-uRD9XEbnvgvdVzcHVhprxe4Sx5H27wJ6-wO6zfRuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multimodal+Progressive+Fusion+Bearing+Fault+Diagnosis+Algorithm+Based+on+Residual+Network&rft.jtitle=IEEE+sensors+journal&rft.au=Zhu%2C+Wenbing&rft.au=Ni%2C+Haibin&rft.au=Li%2C+Zhuo&rft.au=Cao%2C+Ji&rft.date=2025-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=15&rft.spage=23857&rft.epage=23868&rft_id=info:doi/10.1109%2FJSEN.2025.3571201&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon