Improved Modular Multiplication Algorithms Using Solely IEEE 754 Binary Floating-Point Operations

In this paper, we propose three modular multiplication algorithms that use only the IEEE 754 binary floating-point operations. Several previous studies have used floating-point operations to perform modular multiplication. However, they considered only positive integers and did not utilize the dedic...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on emerging topics in computing Vol. 13; no. 3; pp. 1259 - 1271
Main Authors Sugizaki, Yukimasa, Takahashi, Daisuke
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-6750
2168-6750
DOI10.1109/TETC.2025.3582551

Cover

Abstract In this paper, we propose three modular multiplication algorithms that use only the IEEE 754 binary floating-point operations. Several previous studies have used floating-point operations to perform modular multiplication. However, they considered only positive integers and did not utilize the dedicated sign bit in the floating-point representation. Our first algorithm is an extension of these studies, which are based on Shoup multiplication. By allowing operands to be negative, we increased the maximum supported modulus size by approximately 1.21 times. Our remaining two algorithms are based on Montgomery multiplication for positive and signed integers, respectively. Although these algorithms require more round-to-integral operations, they support a modulus size of up to twice as large as that for Shoup multiplication for positive integers. For processors with relatively low round-to-integral performance, we propose versions of the three algorithms without the round-to-integral operation. Evaluations on four CPUs with different levels of instruction performance show that floating-point-based algorithms, including the proposed algorithms, can be regarded as alternatives to integer-based algorithms for mid-sized moduli, especially when floating-point operations are faster on the processors.
AbstractList In this paper, we propose three modular multiplication algorithms that use only the IEEE 754 binary floating-point operations. Several previous studies have used floating-point operations to perform modular multiplication. However, they considered only positive integers and did not utilize the dedicated sign bit in the floating-point representation. Our first algorithm is an extension of these studies, which are based on Shoup multiplication. By allowing operands to be negative, we increased the maximum supported modulus size by approximately 1.21 times. Our remaining two algorithms are based on Montgomery multiplication for positive and signed integers, respectively. Although these algorithms require more round-to-integral operations, they support a modulus size of up to twice as large as that for Shoup multiplication for positive integers. For processors with relatively low round-to-integral performance, we propose versions of the three algorithms without the round-to-integral operation. Evaluations on four CPUs with different levels of instruction performance show that floating-point-based algorithms, including the proposed algorithms, can be regarded as alternatives to integer-based algorithms for mid-sized moduli, especially when floating-point operations are faster on the processors.
Author Takahashi, Daisuke
Sugizaki, Yukimasa
Author_xml – sequence: 1
  givenname: Yukimasa
  orcidid: 0000-0002-7349-1491
  surname: Sugizaki
  fullname: Sugizaki, Yukimasa
  email: sugizaki.yukimasa.tkb_gw@u.tsukuba.ac.jp
  organization: Secure System Platform Research Laboratories, NEC Corporation, Minato, Japan
– sequence: 2
  givenname: Daisuke
  orcidid: 0000-0003-1357-5770
  surname: Takahashi
  fullname: Takahashi, Daisuke
  organization: Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
BookMark eNpNUE1rAjEQDcVCrfUHFHoI9Lw239kcbdFWUCxUz0vcjTYSN9tkt-C_b6xCOzDMHN57M-_dgl7tawPAPUYjjJF6Wk1WLyOCCB9RnhPO8RXoEyzyTEiOev_2GzCMcY9S5VgoIftAzw5N8N-mggtfdU4HuOhcaxtnS91aX8Ox2_lg289DhOto6x388M64I5xNJhMoOYPPttbhCKfOJ0K9y969rVu4bEz4FYh34HqrXTTDyxyA9TT9-5bNl6-zl_E8KwnL2wwLIVmOuJSilFVlDNloLZTm1LBKSkY1Y_lGcIJSb2RZUkURNUJvhWESUToAj2fd5OerM7Et9r4LdTpZUMKUygWmOKHwGVUGH2Mw26IJ9pAMFBgVpzCLU5jFKcziEmbiPJw51hjzh8eIKyoV_QG6QXD2
CODEN ITETBT
Cites_doi 10.2307/2007970
10.1007/978-3-030-58814-4_52
10.1145/3297858.3304062
10.1109/ARITH54963.2022.00026
10.1017/S0962492922000101
10.1007/978-0-8176-4705-6
10.1109/ieeestd.2020.9091348
10.1007/3-540-47721-7_24
10.1109/ARITH.1991.145529
10.1016/j.jsc.2013.09.002
10.1145/3474366.3486926
10.1007/978-3-662-43414-7_24
10.1007/BF01386233
10.1007/978-3-030-60239-0_25
10.1109/IPDPS54959.2023.00085
10.1145/2876503
10.1002/cpe.6270
10.1109/ACCESS.2021.3096189
10.1109/ARITH.2018.8464792
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TETC.2025.3582551
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-6750
EndPage 1271
ExternalDocumentID 10_1109_TETC_2025_3582551
11059379
Genre orig-research
GrantInformation_xml – fundername: Japan Society for the Promotion of Science; Japan Society for the Promotion of Science KAKENHI
  grantid: JP22K12045
  funderid: 10.13039/501100001691
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
KQ8
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c248t-16674805776c7ddee2baa69a53e4d7743a448b6520652b7cc39303e6af6e47033
IEDL.DBID RIE
ISSN 2168-6750
IngestDate Sat Sep 13 17:40:44 EDT 2025
Wed Oct 01 05:23:42 EDT 2025
Wed Sep 17 06:31:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-16674805776c7ddee2baa69a53e4d7743a448b6520652b7cc39303e6af6e47033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1357-5770
0000-0002-7349-1491
PQID 3249986131
PQPubID 4437215
PageCount 13
ParticipantIDs crossref_primary_10_1109_TETC_2025_3582551
proquest_journals_3249986131
ieee_primary_11059379
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on emerging topics in computing
PublicationTitleAbbrev TETC
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref11
ref2
ref16
ref19
(ref10) 2025
ref18
Seiler (ref22) 2018
Hoeven (ref14) 2024
Shoup (ref12) 2025
Bradbury (ref8) 2021
ref24
Bradbury (ref25) 2021
ref23
ref26
ref20
ref21
Fog (ref28) 2025
ref27
ref29
Färnqvist (ref1) 2005
ref7
(ref30) 2022
ref4
ref3
ref6
ref5
(ref9) 2025
Hwang (ref17) 2023
References_xml – ident: ref3
  doi: 10.2307/2007970
– ident: ref5
  doi: 10.1007/978-3-030-58814-4_52
– ident: ref29
  doi: 10.1145/3297858.3304062
– year: 2023
  ident: ref17
  article-title: A survey of polynomial multiplications for lattice-based cryptosystems
– ident: ref16
  doi: 10.1109/ARITH54963.2022.00026
– ident: ref18
  doi: 10.1017/S0962492922000101
– ident: ref19
  doi: 10.1007/978-0-8176-4705-6
– ident: ref15
  doi: 10.1109/ieeestd.2020.9091348
– ident: ref23
  doi: 10.1007/3-540-47721-7_24
– year: 2025
  ident: ref28
  article-title: Software optimization resources
– ident: ref21
  doi: 10.1109/ARITH.1991.145529
– year: 2021
  ident: ref25
  article-title: NTT software optimization using an extended Harvey butterfly
– ident: ref2
  doi: 10.1016/j.jsc.2013.09.002
– year: 2025
  ident: ref9
  article-title: SVE
– ident: ref7
  doi: 10.1145/3474366.3486926
– ident: ref4
  doi: 10.1007/978-3-662-43414-7_24
– year: 2025
  ident: ref12
  article-title: NTL: A library for doing number theory
– ident: ref20
  doi: 10.1007/BF01386233
– ident: ref24
  doi: 10.1007/978-3-030-60239-0_25
– ident: ref27
  doi: 10.1109/IPDPS54959.2023.00085
– ident: ref11
  doi: 10.1145/2876503
– ident: ref13
  doi: 10.1002/cpe.6270
– year: 2005
  ident: ref1
  article-title: Number theory meets cache locality–efficient implementation of a small prime FFT for the GNU multiple precision arithmetic library
– year: 2018
  ident: ref22
  article-title: Faster AVX2 optimized NTT multiplication for ring-LWE lattice cryptography
– ident: ref6
  doi: 10.1109/ACCESS.2021.3096189
– year: 2024
  ident: ref14
  article-title: Implementing number theoretic transforms
– start-page: 7
  volume-title: Proc. 3rd NIST PQC Standardization Conf.
  year: 2021
  ident: ref8
  article-title: Fast quantum-safe cryptography on IBM Z
– ident: ref26
  doi: 10.1109/ARITH.2018.8464792
– year: 2022
  ident: ref30
  article-title: A64FX microarchitecture manual
– year: 2025
  ident: ref10
  article-title: Arm Neoverse
SSID ssj0000816967
Score 2.3405318
Snippet In this paper, we propose three modular multiplication algorithms that use only the IEEE 754 binary floating-point operations. Several previous studies have...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1259
SubjectTerms Algorithms
Approximation algorithms
Arithmetic
Codes
Computer arithmetic
Floating point arithmetic
Instruction sets
Integers
Libraries
multiple precision arithmetic
numerical algorithms
Polynomials
Processors
Training
Transforms
Vectors
Title Improved Modular Multiplication Algorithms Using Solely IEEE 754 Binary Floating-Point Operations
URI https://ieeexplore.ieee.org/document/11059379
https://www.proquest.com/docview/3249986131
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2168-6750
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816967
  issn: 2168-6750
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-6750
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816967
  issn: 2168-6750
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxh4FlEoyAMTktM8HDseC6JCSC1ItFK3yHZcqAhJ1aYD_Hpsx-UpJLYMSWT57LvvO3_nA-B8mvGpCjlDgnGKcIgJ4hGLkAYTDIdTHSSkIYqDIbkZ49tJPHHF6rYWRillxWfKM4_2LD8r5cqkyrqBAQMRZQ3QoAmpi7U-EiqmgwQj1J1cBj7rjq5HV5oBhrFnykHjOPgWe2wzlV8e2IaV_g4YrgdUq0mevVUlPPn2467Gf494F2w7gAl79YrYAxuq2AdbX64dPAC8ziSoDA7KzMhQ4aCWFbr8Hezlj-ViVj29LKGVFMCHMlf5KzTMENIYw0tbxQv7ecmNbBrdl7OigndzVa-nZQuM-3pabpBrtYBkiJMKBcQ0HdHYjRJJtcdToeCcMB5HCmcaIUZc0zhB4lAjllBQKbU9_UgRPiUKa6cRHYJmURbqCEDKAyx9SgRLMOZYcCY1TUqwZCTgVMZtcLE2Qjqvb9RILRPxWWoslhqLpc5ibdAyk_r5opvPNuis7Za6TbdMNTbU5FHjk-D4j89OwKb5ey237YBmtVipUw0qKnFmF9M7RXfIwg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6JQwAMTUtom8aMeC6Iq0BQkWqlb5DguVISmatMBfj22k_IUEluGRLF89t33nb_zAZwNYzFUnuBOxAVzsIepI3zuOxpMcOwNdZCQhigGXdru45sBGRTF6rYWRillxWeqah7tWX6cyrlJldVcAwZ8xpdhhWCMSV6u9ZFSMT0kOGXF2aVb57XeVe9Sc0CPVE1BKCHut-hj26n88sE2sLQ2obsYUq4nea7Os6gq337c1vjvMW_BRgExUTNfE9uwpMY7sP7l4sFdEHkuQcUoSGMjREVBLiwsMniomTym01H29DJDVlSAHtJEJa_IcEPECEYXto4XtZJUGOG0c5-Oxhm6m6h8Rc32oN_S09J2imYLjvRwI3NcatqOaPTGqGTa5ykvEoJyQXyFY40RfaGJXESJpzGLFzEptUXrvqJiSBXWbsPfh9I4HasDQEy4WNYZjXgDY4EjwaUmSg0sOXUFk6QM5wsjhJP8To3QcpE6D43FQmOxsLBYGfbMpH6-WMxnGSoLu4XFtpuFGh1q-qgRinv4x2ensNruBZ2wc929PYI186dcfFuBUjadq2MNMbLoxC6sd_R_zA8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Modular+Multiplication+Algorithms+Using+Solely+IEEE+754+Binary+Floating-Point+Operations&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computing&rft.au=Sugizaki%2C+Yukimasa&rft.au=Takahashi%2C+Daisuke&rft.date=2025-07-01&rft.pub=IEEE&rft.eissn=2168-6750&rft.volume=13&rft.issue=3&rft.spage=1259&rft.epage=1271&rft_id=info:doi/10.1109%2FTETC.2025.3582551&rft.externalDocID=11059379
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-6750&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-6750&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-6750&client=summon