AIoT: Artificial Intelligence and the Internet of Things for Monitoring and Prognosis of Systems and Structures
The Internet of Things (IoT) and artificial intelligence (AI) are revolutionizing the operation of systems, processes, infrastructure, and society, especially in the context of monitoring and prognosis. In these applications, it is crucial to adopt various types of sensors that can accurately assess...
Saved in:
| Published in | IEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 32 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9456 1557-9662 |
| DOI | 10.1109/TIM.2025.3557124 |
Cover
| Abstract | The Internet of Things (IoT) and artificial intelligence (AI) are revolutionizing the operation of systems, processes, infrastructure, and society, especially in the context of monitoring and prognosis. In these applications, it is crucial to adopt various types of sensors that can accurately assess the condition of systems and structures across extensive areas in a distributed manner and to effectively process multimodal sensing data using AI algorithms. This enables the autonomous and intelligent operation of systems and structures in a safe and efficient way. To summarize recent progress and challenges, this article presents a comprehensive review of the fundamentals of AI and IoT, their recent advancements, and their integration in monitoring and prognosis applications. Current issues, challenges, and future directions are discussed and summarized to highlight potential advancements in this rapidly evolving area. Overall, the combination of AI and IoT will significantly enhance the autonomy and intelligence in the monitoring and prognosis of systems and structures, leading to the era of the Artificial Intelligence of Things (AIoT). |
|---|---|
| AbstractList | The Internet of Things (IoT) and artificial intelligence (AI) are revolutionizing the operation of systems, processes, infrastructure, and society, especially in the context of monitoring and prognosis. In these applications, it is crucial to adopt various types of sensors that can accurately assess the condition of systems and structures across extensive areas in a distributed manner and to effectively process multimodal sensing data using AI algorithms. This enables the autonomous and intelligent operation of systems and structures in a safe and efficient way. To summarize recent progress and challenges, this article presents a comprehensive review of the fundamentals of AI and IoT, their recent advancements, and their integration in monitoring and prognosis applications. Current issues, challenges, and future directions are discussed and summarized to highlight potential advancements in this rapidly evolving area. Overall, the combination of AI and IoT will significantly enhance the autonomy and intelligence in the monitoring and prognosis of systems and structures, leading to the era of the Artificial Intelligence of Things (AIoT). |
| Author | Fu, Hailing Rao, Jing Guan, Hong Zhao, Bowen Malinowski, Pawel H. Xu, Lijun Deng, Fang Wang, Yihan Liu, Zhuowen |
| Author_xml | – sequence: 1 givenname: Hailing orcidid: 0000-0002-7557-3853 surname: Fu fullname: Fu, Hailing email: hailing.fu@bit.edu.cn organization: School of Automation, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Jing orcidid: 0000-0002-3105-7259 surname: Rao fullname: Rao, Jing email: jingrao@buaa.edu.cn organization: Hangzhou International Innovation Institute, Beihang University, Hangzhou, China – sequence: 3 givenname: Fang orcidid: 0000-0002-1111-7285 surname: Deng fullname: Deng, Fang email: dengfang@bit.edu.cn organization: School of Automation, Beijing Institute of Technology, Beijing, China – sequence: 4 givenname: Yihan orcidid: 0000-0003-1089-4370 surname: Wang fullname: Wang, Yihan email: 35120210156248@stu.xmu.edu.cn organization: School of Aerospace Engineering, Xiamen University, Xiamen, China – sequence: 5 givenname: Bowen orcidid: 0000-0003-3749-3761 surname: Zhao fullname: Zhao, Bowen email: zhaobowen@stu.xmu.edu.cn organization: School of Aerospace Engineering, Xiamen University, Xiamen, China – sequence: 6 givenname: Zhuowen orcidid: 0009-0001-3091-8555 surname: Liu fullname: Liu, Zhuowen email: liuzhuowen0629@163.com organization: School of Automation, Beijing Institute of Technology, Beijing, China – sequence: 7 givenname: Hong orcidid: 0000-0002-9192-4457 surname: Guan fullname: Guan, Hong email: h.guan@griffith.edu.au organization: School of Engineering and Built Environment, Griffith University, Gold Coast Campus, Southport, QLD, Australia – sequence: 8 givenname: Pawel H. surname: Malinowski fullname: Malinowski, Pawel H. email: pmalinowski@imp.gda.pl organization: Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdańsk, Poland – sequence: 9 givenname: Lijun orcidid: 0000-0003-0488-9604 surname: Xu fullname: Xu, Lijun email: lijunxu@buaa.edu.cn organization: School of Instrumentation and Opto-Electronic Engineering, Beihang University, Beijing, China |
| BookMark | eNpNkLtvwjAQxq2KSgXavUOHSJ1D_YxJN4T6iARqJdLZyuMCRsGmtjPw3zcBhk73-n13um-CRsYaQOiR4BkhOH3Js_WMYipmTAhJKL9BY9JncZokdITGGJN5nHKR3KGJ93uMsUy4HCO7yGz-Gi1c0I2udNFGmQnQtnoLpoKoMHUUdnBuOgMhsk2U77TZ-qixLlpbo4N1fX0mv53dGuu1H7DNyQc4-PNgE1xXhc6Bv0e3TdF6eLjGKfp5f8uXn_Hq6yNbLlZxRbkMcUNw1aRlwRJWV1wWskgSWQvCiUiB1ZSVNfTvMckaUfOKUzYXBCglZVISKSWboufL3qOzvx34oPa2c6Y_qRglPUzndKDwhaqc9d5Bo45OHwp3UgSrwVbV26oGW9XV1l7ydJFoAPiHp1wKRtkfhxx1Vw |
| CODEN | IEIMAO |
| Cites_doi | 10.1016/j.cie.2023.109032 10.1038/s41551-020-0518-9 10.1016/j.jcsr.2016.08.002 10.1088/0964-1726/17/5/055019 10.3390/app11199345 10.1177/1045389X16657428 10.1007/978-3-319-95450-9_8 10.1109/TIV.2023.3309548 10.1016/j.matdes.2022.110529 10.1016/j.yofte.2019.102127 10.1177/14759217211023934 10.1063/5.0200625 10.1016/j.ymssp.2021.108519 10.1109/JIOT.2021.3135200 10.1109/TBCAS.2020.3038599 10.1016/j.ymssp.2022.108918 10.1111/j.1467-9868.2008.00674.x 10.1115/1.1924536 10.1007/978-3-030-60470-7_14 10.1016/j.inffus.2020.02.003 10.3390/signals1020012 10.1038/s41551-017-0051 10.12783/shm2023/37068 10.1016/j.suscom.2021.100582 10.1109/JIOT.2023.3290833 10.1002/9781118875568.ch2 10.1016/j.compstruc.2012.05.003 10.1145/3006386.3006388 10.1177/1045389X07084713 10.1177/14759217221119537 10.1088/1361-665X/ac66aa 10.1016/j.artmed.2022.102431 10.1016/j.corsci.2005.05.017 10.1016/j.measurement.2021.109038 10.1109/ICPHM.2016.7542838 10.1016/j.measurement.2020.108052 10.1038/s43018-022-00436-4 10.1111/mice.12799 10.1021/acssensors.0c01299 10.1109/I2MTC48687.2022.9806560 10.3390/s23052519 10.1007/s11831-020-09471-9 10.1109/JIOT.2018.2867722 10.1126/scirobotics.aar7650 10.1002/mus.20512 10.3390/s22155724 10.1198/jasa.2011.tm10563 10.1016/j.apenergy.2020.114902 10.1007/BF02985802 10.1109/TPEL.2013.2249670 10.1016/j.corsci.2009.09.001 10.1007/s10776-020-00483-7 10.1061/(asce)cp.1943-5487.0000890 10.1016/j.ymssp.2012.07.005 10.1109/TMSCS.2018.2864297 10.1016/j.future.2021.08.030 10.1016/j.compstruct.2022.115305 10.1016/j.jsv.2007.07.035 10.1016/j.ymssp.2022.109878 10.1177/1475921719854528 10.1109/TIM.2018.2890187 10.1007/s00366-023-01790-2 10.1007/978-3-030-76653-5_15 10.1117/12.2219406 10.1109/JMW.2020.3034648 10.1038/d41586-017-08660-0 10.1109/JIOT.2022.3199085 10.1038/s41587-021-00866-y 10.1016/j.acme.2016.11.005 10.1109/TASE.2019.2950958 10.1016/j.micpro.2023.104905 10.1002/stc.1747 10.1016/j.jsv.2022.117418 10.1109/FTC.2016.7821686 10.1016/j.compstruct.2021.115136 10.1016/j.engstruct.2021.113089 10.1109/JIOT.2020.3044031 10.1002/tee.23671 10.1016/j.ins.2020.05.090 10.1109/JIOT.2020.2981924 10.1177/0142331210366643 10.1109/JIOT.2023.3268316 10.1109/IOTM.0011.2000045 10.1016/j.nanoen.2024.109506 10.1109/TTE.2017.2780627 10.1002/stc.1800 10.1109/ACCESS.2022.3164717 10.1109/OJCOMS.2021.3071496 10.1061/(ASCE)1076-0342(1996)2:3(108) 10.1145/3555308 10.1007/s42107-024-01193-8 10.1016/j.measurement.2022.111543 10.1109/IGARSS39084.2020.9324236 10.1109/JIOT.2014.2337336 10.1007/s00779-014-0800-5 10.1063/1.5074184 10.1214/10-AOS798 10.1016/j.inffus.2023.01.025 10.1016/j.compstruct.2022.115502 10.1109/JIOT.2017.2647881 10.1016/j.enconman.2019.111973 10.1177/1475921719887109 10.1016/j.jappgeo.2012.12.010 10.1080/01621459.2014.887012 10.1109/TIE.2018.2835378 10.1177/1475921718764873 10.1049/trit.2018.1008 10.1007/s13349-022-00565-5 10.1016/j.engstruct.2018.05.109 10.1155/2013/823603 10.1061/(ASCE)CF.1943-5509.0001256 10.1016/j.engappai.2022.105520 10.1177/1475921714521269 10.1016/j.apenergy.2021.117556 10.1088/1361-665X/abc6b9 10.1198/jasa.2011.tm09779 10.1007/s10921-019-0601-x 10.1063/5.0033952 10.1016/j.ultras.2019.04.005 10.3390/s19040877 10.1177/14759217211068107 10.1039/D1NR04508C 10.1007/s11029-022-10025-2 10.2514/6.2016-4134 10.1016/j.engstruct.2021.113479 10.1109/JSEN.2023.3240092 10.1016/j.measurement.2021.109099 10.1080/10589759.2020.1758099 10.1016/j.engstruct.2017.10.070 10.1016/j.ymssp.2021.107758 10.1109/TBDATA.2015.2465959 10.4028/www.scientific.net/AMM.80-81.490 10.1016/j.jnca.2022.103464 10.1111/mice.12741 10.1126/sciadv.abb7043 10.1016/j.ultras.2021.106395 10.1007/978-3-319-07782-6_22 10.1016/j.measurement.2020.107869 10.1016/j.dcan.2016.05.002 10.1016/j.comcom.2023.08.007 10.1117/12.2257296 10.1021/acsami.0c09590 10.4271/2015-01-2583 10.3390/s140304364 10.1109/MNET.011.1900636 10.3844/jcssp.2021.984.999 10.1109/TKDE.2009.191 10.1016/j.ymssp.2015.01.017 10.1080/01621459.2013.879828 10.3390/s19030545 10.3390/s22197675 10.1016/j.engfracmech.2015.07.058 10.1061/(ASCE)ST.1943-541X.0002402 10.1016/j.ymssp.2019.02.062 10.1109/JSEN.2022.3192307 10.1109/JSEN.2022.3158090 10.1109/CIVEMSA.2017.7995313 10.3390/s21062140 10.1038/nature14539 10.1016/j.ymssp.2021.108147 10.1007/978-3-030-64594-6_6 10.1002/stc.2997 10.3390/su12125106 10.1126/science.aba5504 10.3390/s18010262 10.1177/1475921720967157 10.1016/j.measurement.2021.109658 10.1117/1.OE.58.7.072009 10.1177/14759217211036880 10.1016/j.measurement.2020.107858 10.1111/mice.12428 10.1049/iet-wss.2018.5099 10.1007/s12205-018-0318-x 10.1016/j.jsv.2021.116245 10.1109/MIM.2003.1200279 10.1088/1361-665X/ac099f 10.1016/j.compstruct.2018.04.033 10.1016/j.measurement.2022.112351 10.1016/j.strusafe.2022.102186 10.1016/j.ymssp.2019.03.050 10.1098/rsta.2006.1928 10.1109/TENSYMP.2015.17 10.3390/rs14112532 10.1177/1475921717717311 10.1111/mice.12633 10.1016/j.cscm.2022.e01383 10.1109/JIOT.2018.2867086 10.1088/1361-665X/aba81c 10.1109/JIOT.2021.3081772 10.1109/TASE.2016.2542186 10.1016/j.jsamd.2022.100430 10.3390/s23031352 10.1007/978-3-642-27645-3 10.1080/17415977.2016.1169277 10.3390/s19163567 10.1016/j.ymssp.2019.106550 10.1109/TR.2017.2713760 10.1016/j.engfailanal.2013.07.015 10.3390/app10030839 10.1038/s41467-021-27733-3 10.1109/ACCESS.2022.3199443 10.1243/09544100JAERO428 10.1109/JIOT.2021.3057835 10.1088/1361-6501/ac065c 10.1109/ICMLA.2019.00060 10.3390/agriculture12101745 10.3390/s19224933 10.1007/s40430-018-1445-5 10.1109/JSEN.2022.3216736 10.1061/(ASCE)BE.1943-5592.0001085 10.1098/rsta.2006.1927 10.1016/j.ijfatigue.2007.01.023 10.1177/1369433219898058 10.1002/stc.412 10.3390/su141610050 10.1007/978-981-13-8331-1_1 10.1038/s41551-021-00719-8 10.1016/j.neunet.2014.10.001 10.1109/JSEN.2020.3019986 10.1016/j.measurement.2020.107863 10.1007/978-0-387-84858-7_2 10.1109/GreenCom-iThings-CPSCom.2013.130 10.1109/JIOT.2017.2705560 10.1007/978-0-387-68282-2 10.1016/j.jsv.2021.116072 10.1111/j.1467-8667.2010.00713.x 10.1088/1361-6501/ab79c8 10.1007/978-3-031-07322-9_53 10.1016/j.engstruct.2023.116243 10.1111/j.1467-8667.2012.00760.x 10.1016/j.ultras.2021.106355 10.1016/j.engstruct.2005.02.020 10.1007/s00158-022-03381-z 10.1016/j.matpr.2021.07.273 10.1016/j.apenergy.2019.113871 10.1080/1064119X.2024.2349801 10.1214/13-AOS1087 10.1177/1475921720935837 10.3390/s20030911 10.1016/j.jii.2017.06.004 10.1007/s00158-022-03210-3 10.1016/j.renene.2019.06.135 10.1109/JIOT.2022.3200431 10.1016/j.compstruct.2020.113243 10.1080/01621459.2012.695654 10.1038/nbt1004-1315 10.1109/JSEN.2022.3186885 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2025.3557124 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 32 |
| ExternalDocumentID | 10_1109_TIM_2025_3557124 10947532 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Research Funding of Hangzhou International Innovation Institute of Beihang University grantid: 015731201-2024KQ126 – fundername: National Key Research and Development Program of China grantid: 2024YFB3409500 funderid: 10.13039/501100012166 – fundername: Aeronautical Science Foundation of China grantid: 20230009072004 – fundername: National Natural Science Foundation of China grantid: 62473051; 62271021; 62303053; 61933002 funderid: 10.13039/501100001809 – fundername: Beijing Natural Science Foundation, China grantid: L233003 funderid: 10.13039/501100005089 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c247t-f10cf9ba363dc47a7a667d514159e3d23bde155373f5d4c423851e221b6b17773 |
| IEDL.DBID | RIE |
| ISSN | 0018-9456 |
| IngestDate | Tue Jul 22 22:53:04 EDT 2025 Wed Oct 01 05:50:59 EDT 2025 Wed Aug 27 01:47:39 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c247t-f10cf9ba363dc47a7a667d514159e3d23bde155373f5d4c423851e221b6b17773 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0488-9604 0000-0002-3105-7259 0009-0001-3091-8555 0000-0003-1089-4370 0000-0002-7557-3853 0000-0002-9192-4457 0000-0003-3749-3761 0000-0002-1111-7285 |
| PQID | 3218512827 |
| PQPubID | 85462 |
| PageCount | 32 |
| ParticipantIDs | ieee_primary_10947532 crossref_primary_10_1109_TIM_2025_3557124 proquest_journals_3218512827 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref207 ref56 ref208 ref59 ref205 Ye (ref236) 2017; 20 ref58 ref206 ref53 ref203 ref52 ref204 ref55 ref201 ref54 ref202 ref209 ref210 ref211 ref51 ref50 Wu (ref179) 2022; 29 ref46 ref218 Ma (ref250) 2019; 24 ref45 ref219 ref48 ref216 ref47 ref217 ref42 ref214 ref41 ref215 ref44 ref212 ref43 ref213 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref221 ref101 ref222 ref40 ref220 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref200 Wang (ref243) 2018; 10598 ref128 ref249 ref97 ref247 ref96 ref127 ref248 ref99 ref124 ref245 ref98 ref125 ref246 ref93 ref133 ref254 ref92 ref134 ref255 ref95 ref131 ref252 ref94 ref132 ref253 ref251 ref91 ref90 ref89 ref139 ref86 ref137 ref85 ref138 ref88 ref135 ref256 ref87 ref136 ref82 Lécué (ref129) ref144 ref81 ref145 ref84 ref142 ref83 ref143 ref140 ref141 ref80 ref79 ref108 ref229 ref78 ref109 ref106 ref227 ref107 ref228 ref75 ref104 ref225 ref74 ref105 ref226 ref77 ref102 ref223 ref76 ref103 ref224 ref71 ref111 ref232 ref70 ref112 ref233 ref73 ref230 ref72 ref110 ref231 ref68 ref119 ref67 ref117 ref238 ref69 ref118 ref239 ref64 ref115 ref63 ref116 ref66 ref113 ref234 ref65 ref114 ref235 ref60 ref122 ref123 ref244 ref62 ref120 ref241 ref61 ref121 ref242 ref240 ref168 ref169 ref170 ref177 ref178 ref175 ref176 ref173 ref174 ref171 ref172 ref180 ref181 ref188 Lakhwani (ref29) 2020 ref189 ref186 ref187 ref184 ref185 ref182 ref183 ref148 ref149 ref146 ref147 ref155 ref156 ref153 ref154 ref151 ref152 ref150 ref159 Marino (ref130) 2016 ref157 ref158 ref166 ref167 ref164 ref165 ref162 ref163 ref160 ref161 ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 Tang (ref126) 2017; 6 Li (ref237) ref2 ref1 ref191 ref192 ref190 ref199 ref197 ref198 ref195 ref196 ref193 ref194 Jensen (ref35) 2007; 2 |
| References_xml | – ident: ref117 doi: 10.1016/j.cie.2023.109032 – ident: ref49 doi: 10.1038/s41551-020-0518-9 – ident: ref142 doi: 10.1016/j.jcsr.2016.08.002 – ident: ref171 doi: 10.1088/0964-1726/17/5/055019 – ident: ref197 doi: 10.3390/app11199345 – ident: ref169 doi: 10.1177/1045389X16657428 – ident: ref113 doi: 10.1007/978-3-319-95450-9_8 – ident: ref18 doi: 10.1109/TIV.2023.3309548 – ident: ref64 doi: 10.1016/j.matdes.2022.110529 – volume: 10598 start-page: 380 year: 2018 ident: ref243 article-title: Automated damage-sensitive feature extraction using unsupervised convolutional neural networks publication-title: Proc. SPIE – ident: ref72 doi: 10.1016/j.yofte.2019.102127 – ident: ref198 doi: 10.1177/14759217211023934 – ident: ref147 doi: 10.1063/5.0200625 – ident: ref214 doi: 10.1016/j.ymssp.2021.108519 – ident: ref23 doi: 10.1109/JIOT.2021.3135200 – ident: ref99 doi: 10.1109/TBCAS.2020.3038599 – ident: ref216 doi: 10.1016/j.ymssp.2022.108918 – ident: ref118 doi: 10.1111/j.1467-9868.2008.00674.x – ident: ref187 doi: 10.1115/1.1924536 – ident: ref220 doi: 10.1007/978-3-030-60470-7_14 – ident: ref239 doi: 10.1016/j.inffus.2020.02.003 – ident: ref105 doi: 10.3390/signals1020012 – ident: ref101 doi: 10.1038/s41551-017-0051 – ident: ref188 doi: 10.12783/shm2023/37068 – ident: ref111 doi: 10.1016/j.suscom.2021.100582 – ident: ref19 doi: 10.1109/JIOT.2023.3290833 – ident: ref39 doi: 10.1002/9781118875568.ch2 – ident: ref238 doi: 10.1016/j.compstruc.2012.05.003 – ident: ref131 doi: 10.1145/3006386.3006388 – ident: ref165 doi: 10.1177/1045389X07084713 – ident: ref229 doi: 10.1177/14759217221119537 – ident: ref221 doi: 10.1088/1361-665X/ac66aa – ident: ref25 doi: 10.1016/j.artmed.2022.102431 – ident: ref137 doi: 10.1016/j.corsci.2005.05.017 – ident: ref55 doi: 10.1016/j.measurement.2021.109038 – ident: ref160 doi: 10.1109/ICPHM.2016.7542838 – ident: ref5 doi: 10.1016/j.measurement.2020.108052 – ident: ref6 doi: 10.1038/s43018-022-00436-4 – ident: ref230 doi: 10.1111/mice.12799 – ident: ref107 doi: 10.1021/acssensors.0c01299 – ident: ref176 doi: 10.1109/I2MTC48687.2022.9806560 – ident: ref20 doi: 10.3390/s23052519 – ident: ref195 doi: 10.1007/s11831-020-09471-9 – ident: ref46 doi: 10.1109/JIOT.2018.2867722 – ident: ref93 doi: 10.1126/scirobotics.aar7650 – ident: ref213 doi: 10.1002/mus.20512 – ident: ref88 doi: 10.3390/s22155724 – ident: ref122 doi: 10.1198/jasa.2011.tm10563 – ident: ref95 doi: 10.1016/j.apenergy.2020.114902 – ident: ref36 doi: 10.1007/BF02985802 – ident: ref103 doi: 10.1109/TPEL.2013.2249670 – ident: ref138 doi: 10.1016/j.corsci.2009.09.001 – ident: ref110 doi: 10.1007/s10776-020-00483-7 – ident: ref202 doi: 10.1061/(asce)cp.1943-5487.0000890 – ident: ref241 doi: 10.1016/j.ymssp.2012.07.005 – ident: ref79 doi: 10.1109/TMSCS.2018.2864297 – ident: ref10 doi: 10.1016/j.future.2021.08.030 – ident: ref204 doi: 10.1016/j.compstruct.2022.115305 – ident: ref173 doi: 10.1016/j.jsv.2007.07.035 – ident: ref205 doi: 10.1016/j.ymssp.2022.109878 – ident: ref3 doi: 10.1177/1475921719854528 – ident: ref78 doi: 10.1109/TIM.2018.2890187 – ident: ref248 doi: 10.1007/s00366-023-01790-2 – ident: ref9 doi: 10.1007/978-3-030-76653-5_15 – ident: ref252 doi: 10.1117/12.2219406 – volume: 6 start-page: 1 issue: 3 year: 2017 ident: ref126 article-title: A survey on multi-view learning publication-title: Math. Model. Appl. – ident: ref30 doi: 10.1109/JMW.2020.3034648 – ident: ref2 doi: 10.1038/d41586-017-08660-0 – ident: ref57 doi: 10.1109/JIOT.2022.3199085 – ident: ref100 doi: 10.1038/s41587-021-00866-y – ident: ref164 doi: 10.1016/j.acme.2016.11.005 – ident: ref190 doi: 10.1109/TASE.2019.2950958 – ident: ref11 doi: 10.1016/j.micpro.2023.104905 – ident: ref136 doi: 10.1002/stc.1747 – ident: ref208 doi: 10.1016/j.jsv.2022.117418 – ident: ref44 doi: 10.1109/FTC.2016.7821686 – ident: ref222 doi: 10.1016/j.compstruct.2021.115136 – ident: ref232 doi: 10.1016/j.engstruct.2021.113089 – ident: ref21 doi: 10.1109/JIOT.2020.3044031 – ident: ref224 doi: 10.1002/tee.23671 – ident: ref234 doi: 10.1016/j.ins.2020.05.090 – ident: ref81 doi: 10.1109/JIOT.2020.2981924 – ident: ref182 doi: 10.1177/0142331210366643 – ident: ref8 doi: 10.1109/JIOT.2023.3268316 – ident: ref76 doi: 10.1109/IOTM.0011.2000045 – ident: ref92 doi: 10.1016/j.nanoen.2024.109506 – ident: ref104 doi: 10.1109/TTE.2017.2780627 – ident: ref135 doi: 10.1002/stc.1800 – ident: ref192 doi: 10.1109/ACCESS.2022.3164717 – ident: ref31 doi: 10.1109/OJCOMS.2021.3071496 – ident: ref235 doi: 10.1061/(ASCE)1076-0342(1996)2:3(108) – ident: ref115 doi: 10.1145/3555308 – ident: ref194 doi: 10.1007/s42107-024-01193-8 – ident: ref65 doi: 10.1016/j.measurement.2022.111543 – ident: ref228 doi: 10.1109/IGARSS39084.2020.9324236 – ident: ref4 doi: 10.1109/JIOT.2014.2337336 – ident: ref200 doi: 10.1007/s00779-014-0800-5 – ident: ref94 doi: 10.1063/1.5074184 – ident: ref119 doi: 10.1214/10-AOS798 – ident: ref75 doi: 10.1016/j.inffus.2023.01.025 – ident: ref203 doi: 10.1016/j.compstruct.2022.115502 – ident: ref22 doi: 10.1109/JIOT.2017.2647881 – ident: ref97 doi: 10.1016/j.enconman.2019.111973 – ident: ref51 doi: 10.1177/1475921719887109 – ident: ref141 doi: 10.1016/j.jappgeo.2012.12.010 – ident: ref125 doi: 10.1080/01621459.2014.887012 – ident: ref98 doi: 10.1109/TIE.2018.2835378 – ident: ref245 doi: 10.1177/1475921718764873 – ident: ref33 doi: 10.1049/trit.2018.1008 – ident: ref226 doi: 10.1007/s13349-022-00565-5 – ident: ref247 doi: 10.1016/j.engstruct.2018.05.109 – ident: ref168 doi: 10.1155/2013/823603 – ident: ref159 doi: 10.1061/(ASCE)CF.1943-5509.0001256 – ident: ref175 doi: 10.1016/j.engappai.2022.105520 – ident: ref240 doi: 10.1177/1475921714521269 – ident: ref108 doi: 10.1016/j.apenergy.2021.117556 – ident: ref48 doi: 10.1088/1361-665X/abc6b9 – ident: ref120 doi: 10.1198/jasa.2011.tm09779 – ident: ref174 doi: 10.1007/s10921-019-0601-x – ident: ref83 doi: 10.1063/5.0033952 – ident: ref47 doi: 10.1016/j.ultras.2019.04.005 – ident: ref71 doi: 10.3390/s19040877 – ident: ref162 doi: 10.1177/14759217211068107 – ident: ref60 doi: 10.1039/D1NR04508C – ident: ref145 doi: 10.1007/s11029-022-10025-2 – ident: ref184 doi: 10.2514/6.2016-4134 – ident: ref231 doi: 10.1016/j.engstruct.2021.113479 – ident: ref28 doi: 10.1109/JSEN.2023.3240092 – ident: ref66 doi: 10.1016/j.measurement.2021.109099 – ident: ref219 doi: 10.1080/10589759.2020.1758099 – ident: ref246 doi: 10.1016/j.engstruct.2017.10.070 – ident: ref67 doi: 10.1016/j.ymssp.2021.107758 – ident: ref127 doi: 10.1109/TBDATA.2015.2465959 – ident: ref166 doi: 10.4028/www.scientific.net/AMM.80-81.490 – ident: ref24 doi: 10.1016/j.jnca.2022.103464 – ident: ref225 doi: 10.1111/mice.12741 – ident: ref58 doi: 10.1126/sciadv.abb7043 – year: 2016 ident: ref130 article-title: The more you know: Using knowledge graphs for image classification publication-title: arXiv:1612.04844 – ident: ref102 doi: 10.1016/j.ultras.2021.106395 – ident: ref242 doi: 10.1007/978-3-319-07782-6_22 – volume-title: Internet of Things (IoT): Principles, Paradigms and Applications of IoT year: 2020 ident: ref29 – ident: ref151 doi: 10.1016/j.measurement.2020.107869 – ident: ref251 doi: 10.1016/j.dcan.2016.05.002 – ident: ref13 doi: 10.1016/j.comcom.2023.08.007 – ident: ref150 doi: 10.1117/12.2257296 – ident: ref61 doi: 10.1021/acsami.0c09590 – ident: ref185 doi: 10.4271/2015-01-2583 – ident: ref152 doi: 10.3390/s140304364 – ident: ref116 doi: 10.1109/MNET.011.1900636 – ident: ref15 doi: 10.3844/jcssp.2021.984.999 – ident: ref211 doi: 10.1109/TKDE.2009.191 – ident: ref161 doi: 10.1016/j.ymssp.2015.01.017 – ident: ref121 doi: 10.1080/01621459.2013.879828 – ident: ref45 doi: 10.3390/s19030545 – ident: ref14 doi: 10.3390/s22197675 – ident: ref140 doi: 10.1016/j.engfracmech.2015.07.058 – ident: ref178 doi: 10.1061/(ASCE)ST.1943-541X.0002402 – ident: ref54 doi: 10.1016/j.ymssp.2019.02.062 – ident: ref227 doi: 10.1109/JSEN.2022.3192307 – ident: ref69 doi: 10.1109/JSEN.2022.3158090 – ident: ref193 doi: 10.1109/CIVEMSA.2017.7995313 – ident: ref74 doi: 10.3390/s21062140 – ident: ref41 doi: 10.1038/nature14539 – ident: ref183 doi: 10.1016/j.ymssp.2021.108147 – ident: ref7 doi: 10.1007/978-3-030-64594-6_6 – ident: ref149 doi: 10.1002/stc.2997 – ident: ref158 doi: 10.3390/su12125106 – ident: ref63 doi: 10.1126/science.aba5504 – ident: ref84 doi: 10.3390/s18010262 – ident: ref144 doi: 10.1177/1475921720967157 – ident: ref77 doi: 10.1016/j.measurement.2021.109658 – ident: ref73 doi: 10.1117/1.OE.58.7.072009 – volume: 24 start-page: 507 issue: 4 year: 2019 ident: ref250 article-title: Bayesian forecasting approach for structure response prediction and load effect separation of a revolving auditorium publication-title: Smart Struct. Syst. – ident: ref256 doi: 10.1177/14759217211036880 – ident: ref156 doi: 10.1016/j.measurement.2020.107858 – ident: ref206 doi: 10.1111/mice.12428 – volume: 20 start-page: 139 issue: 2 year: 2017 ident: ref236 article-title: Strain-based structural condition assessment of an instrumented arch bridge using FBG monitoring data publication-title: Smart Struct. Syst., Int. J. – ident: ref53 doi: 10.1049/iet-wss.2018.5099 – ident: ref181 doi: 10.1007/s12205-018-0318-x – ident: ref218 doi: 10.1016/j.jsv.2021.116245 – ident: ref139 doi: 10.1109/MIM.2003.1200279 – ident: ref37 doi: 10.1088/1361-665X/ac099f – ident: ref254 doi: 10.1016/j.compstruct.2018.04.033 – ident: ref17 doi: 10.1016/j.measurement.2022.112351 – ident: ref249 doi: 10.1016/j.strusafe.2022.102186 – ident: ref90 doi: 10.1016/j.ymssp.2019.03.050 – ident: ref42 doi: 10.1098/rsta.2006.1928 – ident: ref112 doi: 10.1109/TENSYMP.2015.17 – ident: ref233 doi: 10.3390/rs14112532 – ident: ref244 doi: 10.1177/1475921717717311 – ident: ref153 doi: 10.1111/mice.12633 – ident: ref177 doi: 10.1016/j.cscm.2022.e01383 – ident: ref82 doi: 10.1109/JIOT.2018.2867086 – ident: ref62 doi: 10.1088/1361-665X/aba81c – ident: ref26 doi: 10.1109/JIOT.2021.3081772 – ident: ref186 doi: 10.1109/TASE.2016.2542186 – ident: ref91 doi: 10.1016/j.jsamd.2022.100430 – ident: ref16 doi: 10.3390/s23031352 – ident: ref40 doi: 10.1007/978-3-642-27645-3 – ident: ref167 doi: 10.1080/17415977.2016.1169277 – ident: ref207 doi: 10.3390/s19163567 – ident: ref215 doi: 10.1016/j.ymssp.2019.106550 – ident: ref255 doi: 10.1109/TR.2017.2713760 – ident: ref133 doi: 10.1016/j.engfailanal.2013.07.015 – ident: ref172 doi: 10.3390/app10030839 – ident: ref87 doi: 10.1038/s41467-021-27733-3 – ident: ref27 doi: 10.1109/ACCESS.2022.3199443 – ident: ref155 doi: 10.1243/09544100JAERO428 – ident: ref56 doi: 10.1109/JIOT.2021.3057835 – ident: ref70 doi: 10.1088/1361-6501/ac065c – ident: ref212 doi: 10.1109/ICMLA.2019.00060 – ident: ref32 doi: 10.3390/agriculture12101745 – ident: ref199 doi: 10.3390/s19224933 – ident: ref52 doi: 10.1007/s40430-018-1445-5 – ident: ref85 doi: 10.1109/JSEN.2022.3216736 – ident: ref170 doi: 10.1061/(ASCE)BE.1943-5592.0001085 – ident: ref43 doi: 10.1098/rsta.2006.1927 – ident: ref132 doi: 10.1016/j.ijfatigue.2007.01.023 – ident: ref201 doi: 10.1177/1369433219898058 – ident: ref157 doi: 10.1002/stc.412 – ident: ref209 doi: 10.3390/su141610050 – ident: ref189 doi: 10.1007/978-981-13-8331-1_1 – ident: ref86 doi: 10.1038/s41551-021-00719-8 – ident: ref128 doi: 10.1016/j.neunet.2014.10.001 – ident: ref106 doi: 10.1109/JSEN.2020.3019986 – start-page: 2662 volume-title: Proc. 33rd Int. Joint Conf. Artif. Intell. ident: ref129 article-title: Predicting knowledge in an ontology stream – ident: ref59 doi: 10.1016/j.measurement.2020.107863 – ident: ref38 doi: 10.1007/978-0-387-84858-7_2 – ident: ref109 doi: 10.1109/GreenCom-iThings-CPSCom.2013.130 – volume-title: Proc. Int. Symp. Struct. Eng. ident: ref237 article-title: Condition assessment of stay cables based on structural health monitoring techniques – ident: ref1 doi: 10.1109/JIOT.2017.2705560 – volume: 2 volume-title: Bayesian Networks and Decision Graphs year: 2007 ident: ref35 doi: 10.1007/978-0-387-68282-2 – ident: ref217 doi: 10.1016/j.jsv.2021.116072 – ident: ref134 doi: 10.1111/j.1467-8667.2010.00713.x – ident: ref180 doi: 10.1088/1361-6501/ab79c8 – ident: ref148 doi: 10.1007/978-3-031-07322-9_53 – ident: ref154 doi: 10.1016/j.engstruct.2023.116243 – ident: ref143 doi: 10.1111/j.1467-8667.2012.00760.x – ident: ref50 doi: 10.1016/j.ultras.2021.106355 – ident: ref163 doi: 10.1016/j.engstruct.2005.02.020 – volume: 29 start-page: 221 issue: 1 year: 2022 ident: ref179 article-title: Crack segmentation in high-resolution images using cascaded deep convolutional neural networks and Bayesian data fusion publication-title: Smart Struct. Syst., Int. J. – ident: ref253 doi: 10.1007/s00158-022-03381-z – ident: ref12 doi: 10.1016/j.matpr.2021.07.273 – ident: ref96 doi: 10.1016/j.apenergy.2019.113871 – ident: ref191 doi: 10.1080/1064119X.2024.2349801 – ident: ref124 doi: 10.1214/13-AOS1087 – ident: ref89 doi: 10.1177/1475921720935837 – ident: ref196 doi: 10.3390/s20030911 – ident: ref80 doi: 10.1016/j.jii.2017.06.004 – ident: ref210 doi: 10.1007/s00158-022-03210-3 – ident: ref146 doi: 10.1016/j.renene.2019.06.135 – ident: ref114 doi: 10.1109/JIOT.2022.3200431 – ident: ref68 doi: 10.1016/j.compstruct.2020.113243 – ident: ref123 doi: 10.1080/01621459.2012.695654 – ident: ref34 doi: 10.1038/nbt1004-1315 – ident: ref223 doi: 10.1109/JSEN.2022.3186885 |
| SSID | ssj0007647 |
| Score | 2.4387116 |
| Snippet | The Internet of Things (IoT) and artificial intelligence (AI) are revolutionizing the operation of systems, processes, infrastructure, and society, especially... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Artificial intelligence Artificial intelligence (AI) Autonomy Cloud computing condition monitoring and prognosis edge computing Internet of Things Internet of Things (IoT) Monitoring Prognosis Prognostics and health management Real-time systems Reviews Sensors structural health monitoring (SHM) Supervised learning Temperature sensors |
| Title | AIoT: Artificial Intelligence and the Internet of Things for Monitoring and Prognosis of Systems and Structures |
| URI | https://ieeexplore.ieee.org/document/10947532 https://www.proquest.com/docview/3218512827 |
| Volume | 74 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86EPTgx5w4nZKDFw-tbZImq7chjk1wCG6wW2k-CiK04rqLf70vSStTEbwV-vIIecl7vyQvv4fQFYvTIpYqCShRKmB5ogLJaRTYKkmCKWmYdAmyMz5ZsIdlsmweq7u3MMYYl3xmQvvp7vJ1pdb2qAxWeMoAXoPH3RZD7h9rfbldwZknyIxhBQMsaO8ko_RmPn2EnSBJQgiuIibsWwxyRVV-eWIXXsYHaNZ2zGeVvIbrWobq4wdn4797foj2G6CJR35mHKEtU3bR3gb9YBftuPRPtTpG1WhazW-dsGeUwNMNqk6clxoDUMT--NDUuCqwL_iJAfNi7xesTif59F7Z7L2XlRVrGNHdj2fHVbuGDX4PLcb387tJ0JRiCBRhog6KOFJFKnPKqVZM5CLnXGgAW4CGDNWESm1sBSJBi0QzBRgNkJwhJJbc8lsJeoI6ZVWaU4QLk5goNuBWDaiOuBQ60kzrRA0jWXDWR9etcbI3z7iRuZ1KlGZgyMwaMmsM2Uc9O9Ybcn6Y-2jQmjNr1uQqo4BmAN4MiTj7o9k52rXa_QnLAHVgVMwFYI5aXrq59gnhKtMf |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5EEfXgoypWq-bgxcPW3c2r662I0qotghW8LZvHgghdse3FX-8k2UpVBG8LO5sNmczMl2TyDcAZS7IyUZpHNNU6YgXXkRI0jlyVJMm0skz5BNmh6D2x22f-XF9W93dhrLU--cy23aM_yzeVnrmtMrTwjCG8Ro-7whljPFzX-nK8UrBAkZmgDSMwmJ9KxtnFqD_AtWDK2xheZZKyb1HIl1X55Yt9gLnZguG8ayGv5LU9m6q2_vjB2vjvvm_DZg01STfMjR1YsuMGbCwQEDZg1SeA6skuVN1-Nbr0woFTgvQXyDpJMTYEoSIJG4h2SqqShJKfBFEvCZ7BteklH94rl7_3MnFiNSe6f_Ho2WpnuMTfg6eb69FVL6qLMUQ6ZXIalUmsy0wVVFCjmSxkIYQ0CLcQD1lqUqqMdTWIJC25YRpRGmI5m6aJEo7hStJ9WB5XY3sApLTcxolFx2qx6VgoaWLDjOG6E6tSsCacz5WTvwXOjdyvVeIsR0XmTpF5rcgm7LmxXpALw9yE1lydeW2Vk5winkGA00nl4R-fncJabzS4z-_7w7sjWHd_CvstLVjGEbLHiECm6sTPu08ZL9Zs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AIoT%3A+Artificial+Intelligence+and+the+Internet+of+Things+for+Monitoring+and+Prognosis+of+Systems+and+Structures&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Fu%2C+Hailing&rft.au=Rao%2C+Jing&rft.au=Deng%2C+Fang&rft.au=Wang%2C+Yihan&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=74&rft.spage=1&rft.epage=32&rft_id=info:doi/10.1109%2FTIM.2025.3557124&rft.externalDocID=10947532 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |