AIoT: Artificial Intelligence and the Internet of Things for Monitoring and Prognosis of Systems and Structures

The Internet of Things (IoT) and artificial intelligence (AI) are revolutionizing the operation of systems, processes, infrastructure, and society, especially in the context of monitoring and prognosis. In these applications, it is crucial to adopt various types of sensors that can accurately assess...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 32
Main Authors Fu, Hailing, Rao, Jing, Deng, Fang, Wang, Yihan, Zhao, Bowen, Liu, Zhuowen, Guan, Hong, Malinowski, Pawel H., Xu, Lijun
Format Journal Article
LanguageEnglish
Published New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2025.3557124

Cover

Abstract The Internet of Things (IoT) and artificial intelligence (AI) are revolutionizing the operation of systems, processes, infrastructure, and society, especially in the context of monitoring and prognosis. In these applications, it is crucial to adopt various types of sensors that can accurately assess the condition of systems and structures across extensive areas in a distributed manner and to effectively process multimodal sensing data using AI algorithms. This enables the autonomous and intelligent operation of systems and structures in a safe and efficient way. To summarize recent progress and challenges, this article presents a comprehensive review of the fundamentals of AI and IoT, their recent advancements, and their integration in monitoring and prognosis applications. Current issues, challenges, and future directions are discussed and summarized to highlight potential advancements in this rapidly evolving area. Overall, the combination of AI and IoT will significantly enhance the autonomy and intelligence in the monitoring and prognosis of systems and structures, leading to the era of the Artificial Intelligence of Things (AIoT).
AbstractList The Internet of Things (IoT) and artificial intelligence (AI) are revolutionizing the operation of systems, processes, infrastructure, and society, especially in the context of monitoring and prognosis. In these applications, it is crucial to adopt various types of sensors that can accurately assess the condition of systems and structures across extensive areas in a distributed manner and to effectively process multimodal sensing data using AI algorithms. This enables the autonomous and intelligent operation of systems and structures in a safe and efficient way. To summarize recent progress and challenges, this article presents a comprehensive review of the fundamentals of AI and IoT, their recent advancements, and their integration in monitoring and prognosis applications. Current issues, challenges, and future directions are discussed and summarized to highlight potential advancements in this rapidly evolving area. Overall, the combination of AI and IoT will significantly enhance the autonomy and intelligence in the monitoring and prognosis of systems and structures, leading to the era of the Artificial Intelligence of Things (AIoT).
Author Fu, Hailing
Rao, Jing
Guan, Hong
Zhao, Bowen
Malinowski, Pawel H.
Xu, Lijun
Deng, Fang
Wang, Yihan
Liu, Zhuowen
Author_xml – sequence: 1
  givenname: Hailing
  orcidid: 0000-0002-7557-3853
  surname: Fu
  fullname: Fu, Hailing
  email: hailing.fu@bit.edu.cn
  organization: School of Automation, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Jing
  orcidid: 0000-0002-3105-7259
  surname: Rao
  fullname: Rao, Jing
  email: jingrao@buaa.edu.cn
  organization: Hangzhou International Innovation Institute, Beihang University, Hangzhou, China
– sequence: 3
  givenname: Fang
  orcidid: 0000-0002-1111-7285
  surname: Deng
  fullname: Deng, Fang
  email: dengfang@bit.edu.cn
  organization: School of Automation, Beijing Institute of Technology, Beijing, China
– sequence: 4
  givenname: Yihan
  orcidid: 0000-0003-1089-4370
  surname: Wang
  fullname: Wang, Yihan
  email: 35120210156248@stu.xmu.edu.cn
  organization: School of Aerospace Engineering, Xiamen University, Xiamen, China
– sequence: 5
  givenname: Bowen
  orcidid: 0000-0003-3749-3761
  surname: Zhao
  fullname: Zhao, Bowen
  email: zhaobowen@stu.xmu.edu.cn
  organization: School of Aerospace Engineering, Xiamen University, Xiamen, China
– sequence: 6
  givenname: Zhuowen
  orcidid: 0009-0001-3091-8555
  surname: Liu
  fullname: Liu, Zhuowen
  email: liuzhuowen0629@163.com
  organization: School of Automation, Beijing Institute of Technology, Beijing, China
– sequence: 7
  givenname: Hong
  orcidid: 0000-0002-9192-4457
  surname: Guan
  fullname: Guan, Hong
  email: h.guan@griffith.edu.au
  organization: School of Engineering and Built Environment, Griffith University, Gold Coast Campus, Southport, QLD, Australia
– sequence: 8
  givenname: Pawel H.
  surname: Malinowski
  fullname: Malinowski, Pawel H.
  email: pmalinowski@imp.gda.pl
  organization: Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdańsk, Poland
– sequence: 9
  givenname: Lijun
  orcidid: 0000-0003-0488-9604
  surname: Xu
  fullname: Xu, Lijun
  email: lijunxu@buaa.edu.cn
  organization: School of Instrumentation and Opto-Electronic Engineering, Beihang University, Beijing, China
BookMark eNpNkLtvwjAQxq2KSgXavUOHSJ1D_YxJN4T6iARqJdLZyuMCRsGmtjPw3zcBhk73-n13um-CRsYaQOiR4BkhOH3Js_WMYipmTAhJKL9BY9JncZokdITGGJN5nHKR3KGJ93uMsUy4HCO7yGz-Gi1c0I2udNFGmQnQtnoLpoKoMHUUdnBuOgMhsk2U77TZ-qixLlpbo4N1fX0mv53dGuu1H7DNyQc4-PNgE1xXhc6Bv0e3TdF6eLjGKfp5f8uXn_Hq6yNbLlZxRbkMcUNw1aRlwRJWV1wWskgSWQvCiUiB1ZSVNfTvMckaUfOKUzYXBCglZVISKSWboufL3qOzvx34oPa2c6Y_qRglPUzndKDwhaqc9d5Bo45OHwp3UgSrwVbV26oGW9XV1l7ydJFoAPiHp1wKRtkfhxx1Vw
CODEN IEIMAO
Cites_doi 10.1016/j.cie.2023.109032
10.1038/s41551-020-0518-9
10.1016/j.jcsr.2016.08.002
10.1088/0964-1726/17/5/055019
10.3390/app11199345
10.1177/1045389X16657428
10.1007/978-3-319-95450-9_8
10.1109/TIV.2023.3309548
10.1016/j.matdes.2022.110529
10.1016/j.yofte.2019.102127
10.1177/14759217211023934
10.1063/5.0200625
10.1016/j.ymssp.2021.108519
10.1109/JIOT.2021.3135200
10.1109/TBCAS.2020.3038599
10.1016/j.ymssp.2022.108918
10.1111/j.1467-9868.2008.00674.x
10.1115/1.1924536
10.1007/978-3-030-60470-7_14
10.1016/j.inffus.2020.02.003
10.3390/signals1020012
10.1038/s41551-017-0051
10.12783/shm2023/37068
10.1016/j.suscom.2021.100582
10.1109/JIOT.2023.3290833
10.1002/9781118875568.ch2
10.1016/j.compstruc.2012.05.003
10.1145/3006386.3006388
10.1177/1045389X07084713
10.1177/14759217221119537
10.1088/1361-665X/ac66aa
10.1016/j.artmed.2022.102431
10.1016/j.corsci.2005.05.017
10.1016/j.measurement.2021.109038
10.1109/ICPHM.2016.7542838
10.1016/j.measurement.2020.108052
10.1038/s43018-022-00436-4
10.1111/mice.12799
10.1021/acssensors.0c01299
10.1109/I2MTC48687.2022.9806560
10.3390/s23052519
10.1007/s11831-020-09471-9
10.1109/JIOT.2018.2867722
10.1126/scirobotics.aar7650
10.1002/mus.20512
10.3390/s22155724
10.1198/jasa.2011.tm10563
10.1016/j.apenergy.2020.114902
10.1007/BF02985802
10.1109/TPEL.2013.2249670
10.1016/j.corsci.2009.09.001
10.1007/s10776-020-00483-7
10.1061/(asce)cp.1943-5487.0000890
10.1016/j.ymssp.2012.07.005
10.1109/TMSCS.2018.2864297
10.1016/j.future.2021.08.030
10.1016/j.compstruct.2022.115305
10.1016/j.jsv.2007.07.035
10.1016/j.ymssp.2022.109878
10.1177/1475921719854528
10.1109/TIM.2018.2890187
10.1007/s00366-023-01790-2
10.1007/978-3-030-76653-5_15
10.1117/12.2219406
10.1109/JMW.2020.3034648
10.1038/d41586-017-08660-0
10.1109/JIOT.2022.3199085
10.1038/s41587-021-00866-y
10.1016/j.acme.2016.11.005
10.1109/TASE.2019.2950958
10.1016/j.micpro.2023.104905
10.1002/stc.1747
10.1016/j.jsv.2022.117418
10.1109/FTC.2016.7821686
10.1016/j.compstruct.2021.115136
10.1016/j.engstruct.2021.113089
10.1109/JIOT.2020.3044031
10.1002/tee.23671
10.1016/j.ins.2020.05.090
10.1109/JIOT.2020.2981924
10.1177/0142331210366643
10.1109/JIOT.2023.3268316
10.1109/IOTM.0011.2000045
10.1016/j.nanoen.2024.109506
10.1109/TTE.2017.2780627
10.1002/stc.1800
10.1109/ACCESS.2022.3164717
10.1109/OJCOMS.2021.3071496
10.1061/(ASCE)1076-0342(1996)2:3(108)
10.1145/3555308
10.1007/s42107-024-01193-8
10.1016/j.measurement.2022.111543
10.1109/IGARSS39084.2020.9324236
10.1109/JIOT.2014.2337336
10.1007/s00779-014-0800-5
10.1063/1.5074184
10.1214/10-AOS798
10.1016/j.inffus.2023.01.025
10.1016/j.compstruct.2022.115502
10.1109/JIOT.2017.2647881
10.1016/j.enconman.2019.111973
10.1177/1475921719887109
10.1016/j.jappgeo.2012.12.010
10.1080/01621459.2014.887012
10.1109/TIE.2018.2835378
10.1177/1475921718764873
10.1049/trit.2018.1008
10.1007/s13349-022-00565-5
10.1016/j.engstruct.2018.05.109
10.1155/2013/823603
10.1061/(ASCE)CF.1943-5509.0001256
10.1016/j.engappai.2022.105520
10.1177/1475921714521269
10.1016/j.apenergy.2021.117556
10.1088/1361-665X/abc6b9
10.1198/jasa.2011.tm09779
10.1007/s10921-019-0601-x
10.1063/5.0033952
10.1016/j.ultras.2019.04.005
10.3390/s19040877
10.1177/14759217211068107
10.1039/D1NR04508C
10.1007/s11029-022-10025-2
10.2514/6.2016-4134
10.1016/j.engstruct.2021.113479
10.1109/JSEN.2023.3240092
10.1016/j.measurement.2021.109099
10.1080/10589759.2020.1758099
10.1016/j.engstruct.2017.10.070
10.1016/j.ymssp.2021.107758
10.1109/TBDATA.2015.2465959
10.4028/www.scientific.net/AMM.80-81.490
10.1016/j.jnca.2022.103464
10.1111/mice.12741
10.1126/sciadv.abb7043
10.1016/j.ultras.2021.106395
10.1007/978-3-319-07782-6_22
10.1016/j.measurement.2020.107869
10.1016/j.dcan.2016.05.002
10.1016/j.comcom.2023.08.007
10.1117/12.2257296
10.1021/acsami.0c09590
10.4271/2015-01-2583
10.3390/s140304364
10.1109/MNET.011.1900636
10.3844/jcssp.2021.984.999
10.1109/TKDE.2009.191
10.1016/j.ymssp.2015.01.017
10.1080/01621459.2013.879828
10.3390/s19030545
10.3390/s22197675
10.1016/j.engfracmech.2015.07.058
10.1061/(ASCE)ST.1943-541X.0002402
10.1016/j.ymssp.2019.02.062
10.1109/JSEN.2022.3192307
10.1109/JSEN.2022.3158090
10.1109/CIVEMSA.2017.7995313
10.3390/s21062140
10.1038/nature14539
10.1016/j.ymssp.2021.108147
10.1007/978-3-030-64594-6_6
10.1002/stc.2997
10.3390/su12125106
10.1126/science.aba5504
10.3390/s18010262
10.1177/1475921720967157
10.1016/j.measurement.2021.109658
10.1117/1.OE.58.7.072009
10.1177/14759217211036880
10.1016/j.measurement.2020.107858
10.1111/mice.12428
10.1049/iet-wss.2018.5099
10.1007/s12205-018-0318-x
10.1016/j.jsv.2021.116245
10.1109/MIM.2003.1200279
10.1088/1361-665X/ac099f
10.1016/j.compstruct.2018.04.033
10.1016/j.measurement.2022.112351
10.1016/j.strusafe.2022.102186
10.1016/j.ymssp.2019.03.050
10.1098/rsta.2006.1928
10.1109/TENSYMP.2015.17
10.3390/rs14112532
10.1177/1475921717717311
10.1111/mice.12633
10.1016/j.cscm.2022.e01383
10.1109/JIOT.2018.2867086
10.1088/1361-665X/aba81c
10.1109/JIOT.2021.3081772
10.1109/TASE.2016.2542186
10.1016/j.jsamd.2022.100430
10.3390/s23031352
10.1007/978-3-642-27645-3
10.1080/17415977.2016.1169277
10.3390/s19163567
10.1016/j.ymssp.2019.106550
10.1109/TR.2017.2713760
10.1016/j.engfailanal.2013.07.015
10.3390/app10030839
10.1038/s41467-021-27733-3
10.1109/ACCESS.2022.3199443
10.1243/09544100JAERO428
10.1109/JIOT.2021.3057835
10.1088/1361-6501/ac065c
10.1109/ICMLA.2019.00060
10.3390/agriculture12101745
10.3390/s19224933
10.1007/s40430-018-1445-5
10.1109/JSEN.2022.3216736
10.1061/(ASCE)BE.1943-5592.0001085
10.1098/rsta.2006.1927
10.1016/j.ijfatigue.2007.01.023
10.1177/1369433219898058
10.1002/stc.412
10.3390/su141610050
10.1007/978-981-13-8331-1_1
10.1038/s41551-021-00719-8
10.1016/j.neunet.2014.10.001
10.1109/JSEN.2020.3019986
10.1016/j.measurement.2020.107863
10.1007/978-0-387-84858-7_2
10.1109/GreenCom-iThings-CPSCom.2013.130
10.1109/JIOT.2017.2705560
10.1007/978-0-387-68282-2
10.1016/j.jsv.2021.116072
10.1111/j.1467-8667.2010.00713.x
10.1088/1361-6501/ab79c8
10.1007/978-3-031-07322-9_53
10.1016/j.engstruct.2023.116243
10.1111/j.1467-8667.2012.00760.x
10.1016/j.ultras.2021.106355
10.1016/j.engstruct.2005.02.020
10.1007/s00158-022-03381-z
10.1016/j.matpr.2021.07.273
10.1016/j.apenergy.2019.113871
10.1080/1064119X.2024.2349801
10.1214/13-AOS1087
10.1177/1475921720935837
10.3390/s20030911
10.1016/j.jii.2017.06.004
10.1007/s00158-022-03210-3
10.1016/j.renene.2019.06.135
10.1109/JIOT.2022.3200431
10.1016/j.compstruct.2020.113243
10.1080/01621459.2012.695654
10.1038/nbt1004-1315
10.1109/JSEN.2022.3186885
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2025.3557124
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 32
ExternalDocumentID 10_1109_TIM_2025_3557124
10947532
Genre orig-research
GrantInformation_xml – fundername: Research Funding of Hangzhou International Innovation Institute of Beihang University
  grantid: 015731201-2024KQ126
– fundername: National Key Research and Development Program of China
  grantid: 2024YFB3409500
  funderid: 10.13039/501100012166
– fundername: Aeronautical Science Foundation of China
  grantid: 20230009072004
– fundername: National Natural Science Foundation of China
  grantid: 62473051; 62271021; 62303053; 61933002
  funderid: 10.13039/501100001809
– fundername: Beijing Natural Science Foundation, China
  grantid: L233003
  funderid: 10.13039/501100005089
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c247t-f10cf9ba363dc47a7a667d514159e3d23bde155373f5d4c423851e221b6b17773
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Tue Jul 22 22:53:04 EDT 2025
Wed Oct 01 05:50:59 EDT 2025
Wed Aug 27 01:47:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-f10cf9ba363dc47a7a667d514159e3d23bde155373f5d4c423851e221b6b17773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0488-9604
0000-0002-3105-7259
0009-0001-3091-8555
0000-0003-1089-4370
0000-0002-7557-3853
0000-0002-9192-4457
0000-0003-3749-3761
0000-0002-1111-7285
PQID 3218512827
PQPubID 85462
PageCount 32
ParticipantIDs ieee_primary_10947532
crossref_primary_10_1109_TIM_2025_3557124
proquest_journals_3218512827
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref207
ref56
ref208
ref59
ref205
Ye (ref236) 2017; 20
ref58
ref206
ref53
ref203
ref52
ref204
ref55
ref201
ref54
ref202
ref209
ref210
ref211
ref51
ref50
Wu (ref179) 2022; 29
ref46
ref218
Ma (ref250) 2019; 24
ref45
ref219
ref48
ref216
ref47
ref217
ref42
ref214
ref41
ref215
ref44
ref212
ref43
ref213
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref221
ref101
ref222
ref40
ref220
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref200
Wang (ref243) 2018; 10598
ref128
ref249
ref97
ref247
ref96
ref127
ref248
ref99
ref124
ref245
ref98
ref125
ref246
ref93
ref133
ref254
ref92
ref134
ref255
ref95
ref131
ref252
ref94
ref132
ref253
ref251
ref91
ref90
ref89
ref139
ref86
ref137
ref85
ref138
ref88
ref135
ref256
ref87
ref136
ref82
Lécué (ref129)
ref144
ref81
ref145
ref84
ref142
ref83
ref143
ref140
ref141
ref80
ref79
ref108
ref229
ref78
ref109
ref106
ref227
ref107
ref228
ref75
ref104
ref225
ref74
ref105
ref226
ref77
ref102
ref223
ref76
ref103
ref224
ref71
ref111
ref232
ref70
ref112
ref233
ref73
ref230
ref72
ref110
ref231
ref68
ref119
ref67
ref117
ref238
ref69
ref118
ref239
ref64
ref115
ref63
ref116
ref66
ref113
ref234
ref65
ref114
ref235
ref60
ref122
ref123
ref244
ref62
ref120
ref241
ref61
ref121
ref242
ref240
ref168
ref169
ref170
ref177
ref178
ref175
ref176
ref173
ref174
ref171
ref172
ref180
ref181
ref188
Lakhwani (ref29) 2020
ref189
ref186
ref187
ref184
ref185
ref182
ref183
ref148
ref149
ref146
ref147
ref155
ref156
ref153
ref154
ref151
ref152
ref150
ref159
Marino (ref130) 2016
ref157
ref158
ref166
ref167
ref164
ref165
ref162
ref163
ref160
ref161
ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
Tang (ref126) 2017; 6
Li (ref237)
ref2
ref1
ref191
ref192
ref190
ref199
ref197
ref198
ref195
ref196
ref193
ref194
Jensen (ref35) 2007; 2
References_xml – ident: ref117
  doi: 10.1016/j.cie.2023.109032
– ident: ref49
  doi: 10.1038/s41551-020-0518-9
– ident: ref142
  doi: 10.1016/j.jcsr.2016.08.002
– ident: ref171
  doi: 10.1088/0964-1726/17/5/055019
– ident: ref197
  doi: 10.3390/app11199345
– ident: ref169
  doi: 10.1177/1045389X16657428
– ident: ref113
  doi: 10.1007/978-3-319-95450-9_8
– ident: ref18
  doi: 10.1109/TIV.2023.3309548
– ident: ref64
  doi: 10.1016/j.matdes.2022.110529
– volume: 10598
  start-page: 380
  year: 2018
  ident: ref243
  article-title: Automated damage-sensitive feature extraction using unsupervised convolutional neural networks
  publication-title: Proc. SPIE
– ident: ref72
  doi: 10.1016/j.yofte.2019.102127
– ident: ref198
  doi: 10.1177/14759217211023934
– ident: ref147
  doi: 10.1063/5.0200625
– ident: ref214
  doi: 10.1016/j.ymssp.2021.108519
– ident: ref23
  doi: 10.1109/JIOT.2021.3135200
– ident: ref99
  doi: 10.1109/TBCAS.2020.3038599
– ident: ref216
  doi: 10.1016/j.ymssp.2022.108918
– ident: ref118
  doi: 10.1111/j.1467-9868.2008.00674.x
– ident: ref187
  doi: 10.1115/1.1924536
– ident: ref220
  doi: 10.1007/978-3-030-60470-7_14
– ident: ref239
  doi: 10.1016/j.inffus.2020.02.003
– ident: ref105
  doi: 10.3390/signals1020012
– ident: ref101
  doi: 10.1038/s41551-017-0051
– ident: ref188
  doi: 10.12783/shm2023/37068
– ident: ref111
  doi: 10.1016/j.suscom.2021.100582
– ident: ref19
  doi: 10.1109/JIOT.2023.3290833
– ident: ref39
  doi: 10.1002/9781118875568.ch2
– ident: ref238
  doi: 10.1016/j.compstruc.2012.05.003
– ident: ref131
  doi: 10.1145/3006386.3006388
– ident: ref165
  doi: 10.1177/1045389X07084713
– ident: ref229
  doi: 10.1177/14759217221119537
– ident: ref221
  doi: 10.1088/1361-665X/ac66aa
– ident: ref25
  doi: 10.1016/j.artmed.2022.102431
– ident: ref137
  doi: 10.1016/j.corsci.2005.05.017
– ident: ref55
  doi: 10.1016/j.measurement.2021.109038
– ident: ref160
  doi: 10.1109/ICPHM.2016.7542838
– ident: ref5
  doi: 10.1016/j.measurement.2020.108052
– ident: ref6
  doi: 10.1038/s43018-022-00436-4
– ident: ref230
  doi: 10.1111/mice.12799
– ident: ref107
  doi: 10.1021/acssensors.0c01299
– ident: ref176
  doi: 10.1109/I2MTC48687.2022.9806560
– ident: ref20
  doi: 10.3390/s23052519
– ident: ref195
  doi: 10.1007/s11831-020-09471-9
– ident: ref46
  doi: 10.1109/JIOT.2018.2867722
– ident: ref93
  doi: 10.1126/scirobotics.aar7650
– ident: ref213
  doi: 10.1002/mus.20512
– ident: ref88
  doi: 10.3390/s22155724
– ident: ref122
  doi: 10.1198/jasa.2011.tm10563
– ident: ref95
  doi: 10.1016/j.apenergy.2020.114902
– ident: ref36
  doi: 10.1007/BF02985802
– ident: ref103
  doi: 10.1109/TPEL.2013.2249670
– ident: ref138
  doi: 10.1016/j.corsci.2009.09.001
– ident: ref110
  doi: 10.1007/s10776-020-00483-7
– ident: ref202
  doi: 10.1061/(asce)cp.1943-5487.0000890
– ident: ref241
  doi: 10.1016/j.ymssp.2012.07.005
– ident: ref79
  doi: 10.1109/TMSCS.2018.2864297
– ident: ref10
  doi: 10.1016/j.future.2021.08.030
– ident: ref204
  doi: 10.1016/j.compstruct.2022.115305
– ident: ref173
  doi: 10.1016/j.jsv.2007.07.035
– ident: ref205
  doi: 10.1016/j.ymssp.2022.109878
– ident: ref3
  doi: 10.1177/1475921719854528
– ident: ref78
  doi: 10.1109/TIM.2018.2890187
– ident: ref248
  doi: 10.1007/s00366-023-01790-2
– ident: ref9
  doi: 10.1007/978-3-030-76653-5_15
– ident: ref252
  doi: 10.1117/12.2219406
– volume: 6
  start-page: 1
  issue: 3
  year: 2017
  ident: ref126
  article-title: A survey on multi-view learning
  publication-title: Math. Model. Appl.
– ident: ref30
  doi: 10.1109/JMW.2020.3034648
– ident: ref2
  doi: 10.1038/d41586-017-08660-0
– ident: ref57
  doi: 10.1109/JIOT.2022.3199085
– ident: ref100
  doi: 10.1038/s41587-021-00866-y
– ident: ref164
  doi: 10.1016/j.acme.2016.11.005
– ident: ref190
  doi: 10.1109/TASE.2019.2950958
– ident: ref11
  doi: 10.1016/j.micpro.2023.104905
– ident: ref136
  doi: 10.1002/stc.1747
– ident: ref208
  doi: 10.1016/j.jsv.2022.117418
– ident: ref44
  doi: 10.1109/FTC.2016.7821686
– ident: ref222
  doi: 10.1016/j.compstruct.2021.115136
– ident: ref232
  doi: 10.1016/j.engstruct.2021.113089
– ident: ref21
  doi: 10.1109/JIOT.2020.3044031
– ident: ref224
  doi: 10.1002/tee.23671
– ident: ref234
  doi: 10.1016/j.ins.2020.05.090
– ident: ref81
  doi: 10.1109/JIOT.2020.2981924
– ident: ref182
  doi: 10.1177/0142331210366643
– ident: ref8
  doi: 10.1109/JIOT.2023.3268316
– ident: ref76
  doi: 10.1109/IOTM.0011.2000045
– ident: ref92
  doi: 10.1016/j.nanoen.2024.109506
– ident: ref104
  doi: 10.1109/TTE.2017.2780627
– ident: ref135
  doi: 10.1002/stc.1800
– ident: ref192
  doi: 10.1109/ACCESS.2022.3164717
– ident: ref31
  doi: 10.1109/OJCOMS.2021.3071496
– ident: ref235
  doi: 10.1061/(ASCE)1076-0342(1996)2:3(108)
– ident: ref115
  doi: 10.1145/3555308
– ident: ref194
  doi: 10.1007/s42107-024-01193-8
– ident: ref65
  doi: 10.1016/j.measurement.2022.111543
– ident: ref228
  doi: 10.1109/IGARSS39084.2020.9324236
– ident: ref4
  doi: 10.1109/JIOT.2014.2337336
– ident: ref200
  doi: 10.1007/s00779-014-0800-5
– ident: ref94
  doi: 10.1063/1.5074184
– ident: ref119
  doi: 10.1214/10-AOS798
– ident: ref75
  doi: 10.1016/j.inffus.2023.01.025
– ident: ref203
  doi: 10.1016/j.compstruct.2022.115502
– ident: ref22
  doi: 10.1109/JIOT.2017.2647881
– ident: ref97
  doi: 10.1016/j.enconman.2019.111973
– ident: ref51
  doi: 10.1177/1475921719887109
– ident: ref141
  doi: 10.1016/j.jappgeo.2012.12.010
– ident: ref125
  doi: 10.1080/01621459.2014.887012
– ident: ref98
  doi: 10.1109/TIE.2018.2835378
– ident: ref245
  doi: 10.1177/1475921718764873
– ident: ref33
  doi: 10.1049/trit.2018.1008
– ident: ref226
  doi: 10.1007/s13349-022-00565-5
– ident: ref247
  doi: 10.1016/j.engstruct.2018.05.109
– ident: ref168
  doi: 10.1155/2013/823603
– ident: ref159
  doi: 10.1061/(ASCE)CF.1943-5509.0001256
– ident: ref175
  doi: 10.1016/j.engappai.2022.105520
– ident: ref240
  doi: 10.1177/1475921714521269
– ident: ref108
  doi: 10.1016/j.apenergy.2021.117556
– ident: ref48
  doi: 10.1088/1361-665X/abc6b9
– ident: ref120
  doi: 10.1198/jasa.2011.tm09779
– ident: ref174
  doi: 10.1007/s10921-019-0601-x
– ident: ref83
  doi: 10.1063/5.0033952
– ident: ref47
  doi: 10.1016/j.ultras.2019.04.005
– ident: ref71
  doi: 10.3390/s19040877
– ident: ref162
  doi: 10.1177/14759217211068107
– ident: ref60
  doi: 10.1039/D1NR04508C
– ident: ref145
  doi: 10.1007/s11029-022-10025-2
– ident: ref184
  doi: 10.2514/6.2016-4134
– ident: ref231
  doi: 10.1016/j.engstruct.2021.113479
– ident: ref28
  doi: 10.1109/JSEN.2023.3240092
– ident: ref66
  doi: 10.1016/j.measurement.2021.109099
– ident: ref219
  doi: 10.1080/10589759.2020.1758099
– ident: ref246
  doi: 10.1016/j.engstruct.2017.10.070
– ident: ref67
  doi: 10.1016/j.ymssp.2021.107758
– ident: ref127
  doi: 10.1109/TBDATA.2015.2465959
– ident: ref166
  doi: 10.4028/www.scientific.net/AMM.80-81.490
– ident: ref24
  doi: 10.1016/j.jnca.2022.103464
– ident: ref225
  doi: 10.1111/mice.12741
– ident: ref58
  doi: 10.1126/sciadv.abb7043
– year: 2016
  ident: ref130
  article-title: The more you know: Using knowledge graphs for image classification
  publication-title: arXiv:1612.04844
– ident: ref102
  doi: 10.1016/j.ultras.2021.106395
– ident: ref242
  doi: 10.1007/978-3-319-07782-6_22
– volume-title: Internet of Things (IoT): Principles, Paradigms and Applications of IoT
  year: 2020
  ident: ref29
– ident: ref151
  doi: 10.1016/j.measurement.2020.107869
– ident: ref251
  doi: 10.1016/j.dcan.2016.05.002
– ident: ref13
  doi: 10.1016/j.comcom.2023.08.007
– ident: ref150
  doi: 10.1117/12.2257296
– ident: ref61
  doi: 10.1021/acsami.0c09590
– ident: ref185
  doi: 10.4271/2015-01-2583
– ident: ref152
  doi: 10.3390/s140304364
– ident: ref116
  doi: 10.1109/MNET.011.1900636
– ident: ref15
  doi: 10.3844/jcssp.2021.984.999
– ident: ref211
  doi: 10.1109/TKDE.2009.191
– ident: ref161
  doi: 10.1016/j.ymssp.2015.01.017
– ident: ref121
  doi: 10.1080/01621459.2013.879828
– ident: ref45
  doi: 10.3390/s19030545
– ident: ref14
  doi: 10.3390/s22197675
– ident: ref140
  doi: 10.1016/j.engfracmech.2015.07.058
– ident: ref178
  doi: 10.1061/(ASCE)ST.1943-541X.0002402
– ident: ref54
  doi: 10.1016/j.ymssp.2019.02.062
– ident: ref227
  doi: 10.1109/JSEN.2022.3192307
– ident: ref69
  doi: 10.1109/JSEN.2022.3158090
– ident: ref193
  doi: 10.1109/CIVEMSA.2017.7995313
– ident: ref74
  doi: 10.3390/s21062140
– ident: ref41
  doi: 10.1038/nature14539
– ident: ref183
  doi: 10.1016/j.ymssp.2021.108147
– ident: ref7
  doi: 10.1007/978-3-030-64594-6_6
– ident: ref149
  doi: 10.1002/stc.2997
– ident: ref158
  doi: 10.3390/su12125106
– ident: ref63
  doi: 10.1126/science.aba5504
– ident: ref84
  doi: 10.3390/s18010262
– ident: ref144
  doi: 10.1177/1475921720967157
– ident: ref77
  doi: 10.1016/j.measurement.2021.109658
– ident: ref73
  doi: 10.1117/1.OE.58.7.072009
– volume: 24
  start-page: 507
  issue: 4
  year: 2019
  ident: ref250
  article-title: Bayesian forecasting approach for structure response prediction and load effect separation of a revolving auditorium
  publication-title: Smart Struct. Syst.
– ident: ref256
  doi: 10.1177/14759217211036880
– ident: ref156
  doi: 10.1016/j.measurement.2020.107858
– ident: ref206
  doi: 10.1111/mice.12428
– volume: 20
  start-page: 139
  issue: 2
  year: 2017
  ident: ref236
  article-title: Strain-based structural condition assessment of an instrumented arch bridge using FBG monitoring data
  publication-title: Smart Struct. Syst., Int. J.
– ident: ref53
  doi: 10.1049/iet-wss.2018.5099
– ident: ref181
  doi: 10.1007/s12205-018-0318-x
– ident: ref218
  doi: 10.1016/j.jsv.2021.116245
– ident: ref139
  doi: 10.1109/MIM.2003.1200279
– ident: ref37
  doi: 10.1088/1361-665X/ac099f
– ident: ref254
  doi: 10.1016/j.compstruct.2018.04.033
– ident: ref17
  doi: 10.1016/j.measurement.2022.112351
– ident: ref249
  doi: 10.1016/j.strusafe.2022.102186
– ident: ref90
  doi: 10.1016/j.ymssp.2019.03.050
– ident: ref42
  doi: 10.1098/rsta.2006.1928
– ident: ref112
  doi: 10.1109/TENSYMP.2015.17
– ident: ref233
  doi: 10.3390/rs14112532
– ident: ref244
  doi: 10.1177/1475921717717311
– ident: ref153
  doi: 10.1111/mice.12633
– ident: ref177
  doi: 10.1016/j.cscm.2022.e01383
– ident: ref82
  doi: 10.1109/JIOT.2018.2867086
– ident: ref62
  doi: 10.1088/1361-665X/aba81c
– ident: ref26
  doi: 10.1109/JIOT.2021.3081772
– ident: ref186
  doi: 10.1109/TASE.2016.2542186
– ident: ref91
  doi: 10.1016/j.jsamd.2022.100430
– ident: ref16
  doi: 10.3390/s23031352
– ident: ref40
  doi: 10.1007/978-3-642-27645-3
– ident: ref167
  doi: 10.1080/17415977.2016.1169277
– ident: ref207
  doi: 10.3390/s19163567
– ident: ref215
  doi: 10.1016/j.ymssp.2019.106550
– ident: ref255
  doi: 10.1109/TR.2017.2713760
– ident: ref133
  doi: 10.1016/j.engfailanal.2013.07.015
– ident: ref172
  doi: 10.3390/app10030839
– ident: ref87
  doi: 10.1038/s41467-021-27733-3
– ident: ref27
  doi: 10.1109/ACCESS.2022.3199443
– ident: ref155
  doi: 10.1243/09544100JAERO428
– ident: ref56
  doi: 10.1109/JIOT.2021.3057835
– ident: ref70
  doi: 10.1088/1361-6501/ac065c
– ident: ref212
  doi: 10.1109/ICMLA.2019.00060
– ident: ref32
  doi: 10.3390/agriculture12101745
– ident: ref199
  doi: 10.3390/s19224933
– ident: ref52
  doi: 10.1007/s40430-018-1445-5
– ident: ref85
  doi: 10.1109/JSEN.2022.3216736
– ident: ref170
  doi: 10.1061/(ASCE)BE.1943-5592.0001085
– ident: ref43
  doi: 10.1098/rsta.2006.1927
– ident: ref132
  doi: 10.1016/j.ijfatigue.2007.01.023
– ident: ref201
  doi: 10.1177/1369433219898058
– ident: ref157
  doi: 10.1002/stc.412
– ident: ref209
  doi: 10.3390/su141610050
– ident: ref189
  doi: 10.1007/978-981-13-8331-1_1
– ident: ref86
  doi: 10.1038/s41551-021-00719-8
– ident: ref128
  doi: 10.1016/j.neunet.2014.10.001
– ident: ref106
  doi: 10.1109/JSEN.2020.3019986
– start-page: 2662
  volume-title: Proc. 33rd Int. Joint Conf. Artif. Intell.
  ident: ref129
  article-title: Predicting knowledge in an ontology stream
– ident: ref59
  doi: 10.1016/j.measurement.2020.107863
– ident: ref38
  doi: 10.1007/978-0-387-84858-7_2
– ident: ref109
  doi: 10.1109/GreenCom-iThings-CPSCom.2013.130
– volume-title: Proc. Int. Symp. Struct. Eng.
  ident: ref237
  article-title: Condition assessment of stay cables based on structural health monitoring techniques
– ident: ref1
  doi: 10.1109/JIOT.2017.2705560
– volume: 2
  volume-title: Bayesian Networks and Decision Graphs
  year: 2007
  ident: ref35
  doi: 10.1007/978-0-387-68282-2
– ident: ref217
  doi: 10.1016/j.jsv.2021.116072
– ident: ref134
  doi: 10.1111/j.1467-8667.2010.00713.x
– ident: ref180
  doi: 10.1088/1361-6501/ab79c8
– ident: ref148
  doi: 10.1007/978-3-031-07322-9_53
– ident: ref154
  doi: 10.1016/j.engstruct.2023.116243
– ident: ref143
  doi: 10.1111/j.1467-8667.2012.00760.x
– ident: ref50
  doi: 10.1016/j.ultras.2021.106355
– ident: ref163
  doi: 10.1016/j.engstruct.2005.02.020
– volume: 29
  start-page: 221
  issue: 1
  year: 2022
  ident: ref179
  article-title: Crack segmentation in high-resolution images using cascaded deep convolutional neural networks and Bayesian data fusion
  publication-title: Smart Struct. Syst., Int. J.
– ident: ref253
  doi: 10.1007/s00158-022-03381-z
– ident: ref12
  doi: 10.1016/j.matpr.2021.07.273
– ident: ref96
  doi: 10.1016/j.apenergy.2019.113871
– ident: ref191
  doi: 10.1080/1064119X.2024.2349801
– ident: ref124
  doi: 10.1214/13-AOS1087
– ident: ref89
  doi: 10.1177/1475921720935837
– ident: ref196
  doi: 10.3390/s20030911
– ident: ref80
  doi: 10.1016/j.jii.2017.06.004
– ident: ref210
  doi: 10.1007/s00158-022-03210-3
– ident: ref146
  doi: 10.1016/j.renene.2019.06.135
– ident: ref114
  doi: 10.1109/JIOT.2022.3200431
– ident: ref68
  doi: 10.1016/j.compstruct.2020.113243
– ident: ref123
  doi: 10.1080/01621459.2012.695654
– ident: ref34
  doi: 10.1038/nbt1004-1315
– ident: ref223
  doi: 10.1109/JSEN.2022.3186885
SSID ssj0007647
Score 2.4387116
Snippet The Internet of Things (IoT) and artificial intelligence (AI) are revolutionizing the operation of systems, processes, infrastructure, and society, especially...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial intelligence
Artificial intelligence (AI)
Autonomy
Cloud computing
condition monitoring and prognosis
edge computing
Internet of Things
Internet of Things (IoT)
Monitoring
Prognosis
Prognostics and health management
Real-time systems
Reviews
Sensors
structural health monitoring (SHM)
Supervised learning
Temperature sensors
Title AIoT: Artificial Intelligence and the Internet of Things for Monitoring and Prognosis of Systems and Structures
URI https://ieeexplore.ieee.org/document/10947532
https://www.proquest.com/docview/3218512827
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86EPTgx5w4nZKDFw-tbZImq7chjk1wCG6wW2k-CiK04rqLf70vSStTEbwV-vIIecl7vyQvv4fQFYvTIpYqCShRKmB5ogLJaRTYKkmCKWmYdAmyMz5ZsIdlsmweq7u3MMYYl3xmQvvp7vJ1pdb2qAxWeMoAXoPH3RZD7h9rfbldwZknyIxhBQMsaO8ko_RmPn2EnSBJQgiuIibsWwxyRVV-eWIXXsYHaNZ2zGeVvIbrWobq4wdn4797foj2G6CJR35mHKEtU3bR3gb9YBftuPRPtTpG1WhazW-dsGeUwNMNqk6clxoDUMT--NDUuCqwL_iJAfNi7xesTif59F7Z7L2XlRVrGNHdj2fHVbuGDX4PLcb387tJ0JRiCBRhog6KOFJFKnPKqVZM5CLnXGgAW4CGDNWESm1sBSJBi0QzBRgNkJwhJJbc8lsJeoI6ZVWaU4QLk5goNuBWDaiOuBQ60kzrRA0jWXDWR9etcbI3z7iRuZ1KlGZgyMwaMmsM2Uc9O9Ybcn6Y-2jQmjNr1uQqo4BmAN4MiTj7o9k52rXa_QnLAHVgVMwFYI5aXrq59gnhKtMf
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5EEfXgoypWq-bgxcPW3c2r662I0qotghW8LZvHgghdse3FX-8k2UpVBG8LO5sNmczMl2TyDcAZS7IyUZpHNNU6YgXXkRI0jlyVJMm0skz5BNmh6D2x22f-XF9W93dhrLU--cy23aM_yzeVnrmtMrTwjCG8Ro-7whljPFzX-nK8UrBAkZmgDSMwmJ9KxtnFqD_AtWDK2xheZZKyb1HIl1X55Yt9gLnZguG8ayGv5LU9m6q2_vjB2vjvvm_DZg01STfMjR1YsuMGbCwQEDZg1SeA6skuVN1-Nbr0woFTgvQXyDpJMTYEoSIJG4h2SqqShJKfBFEvCZ7BteklH94rl7_3MnFiNSe6f_Ho2WpnuMTfg6eb69FVL6qLMUQ6ZXIalUmsy0wVVFCjmSxkIYQ0CLcQD1lqUqqMdTWIJC25YRpRGmI5m6aJEo7hStJ9WB5XY3sApLTcxolFx2qx6VgoaWLDjOG6E6tSsCacz5WTvwXOjdyvVeIsR0XmTpF5rcgm7LmxXpALw9yE1lydeW2Vk5winkGA00nl4R-fncJabzS4z-_7w7sjWHd_CvstLVjGEbLHiECm6sTPu08ZL9Zs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AIoT%3A+Artificial+Intelligence+and+the+Internet+of+Things+for+Monitoring+and+Prognosis+of+Systems+and+Structures&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Fu%2C+Hailing&rft.au=Rao%2C+Jing&rft.au=Deng%2C+Fang&rft.au=Wang%2C+Yihan&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=74&rft.spage=1&rft.epage=32&rft_id=info:doi/10.1109%2FTIM.2025.3557124&rft.externalDocID=10947532
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon