RP-CFANet: An Adaptive Photovoltaic Hot-Spot Fault Detection Network Based on Region Perception and Cross-Channel Feature Aggregation
In the process of utilizing thermal infrared sensors to identify photovoltaic (PV) hot-spot faults, due to the diverse shapes of hot-spot faults and environmental interferences, fault characteristics cannot be effectively expressed, which poses a challenge for traditional detection networks in achie...
Saved in:
| Published in | IEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 14 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9456 1557-9662 |
| DOI | 10.1109/TIM.2025.3555674 |
Cover
| Abstract | In the process of utilizing thermal infrared sensors to identify photovoltaic (PV) hot-spot faults, due to the diverse shapes of hot-spot faults and environmental interferences, fault characteristics cannot be effectively expressed, which poses a challenge for traditional detection networks in achieving accurate detection. Consequently, an adaptive PV hot-spot fault detection network based on region perception and cross-channel feature aggregation is proposed. First, to reduce the interference of pseudo-highlight features in complex backgrounds, a lite-UNet segmentation network is designed to remove background redundant information and enable the detection network to concentrate on the region of the PV panel. Second, to fully capture the geometric deformations and weak edge characteristics of hot-spot faults, a C2f_DCN module is designed, which enhances the feature extraction capabilities by adaptively adjusting the receptive field. Subsequently, to address the problem of feature coupling often encountered in extracting dense hot-spot fault features, a dense object visual enhancement (DOVE) module is proposed. Through the dynamic aggregation of cross-space features, the feature information of different channels is integrated to improve the detection accuracy of hot-spot faults. Additionally, to further enhance the effective fusion of multiscale features, an adaptive scale converter module (ASCM) detection head is designed. Finally, seven traditional detection methods are chosen for comparison to confirm the benefits of the proposed method. According to the experimental results, the suggested method can detect hot-spot faults with an accuracy of up to 86.5% in complicated inspection environments, which is an increase of 5.6% compared with the basis of the original network. |
|---|---|
| AbstractList | In the process of utilizing thermal infrared sensors to identify photovoltaic (PV) hot-spot faults, due to the diverse shapes of hot-spot faults and environmental interferences, fault characteristics cannot be effectively expressed, which poses a challenge for traditional detection networks in achieving accurate detection. Consequently, an adaptive PV hot-spot fault detection network based on region perception and cross-channel feature aggregation is proposed. First, to reduce the interference of pseudo-highlight features in complex backgrounds, a lite-UNet segmentation network is designed to remove background redundant information and enable the detection network to concentrate on the region of the PV panel. Second, to fully capture the geometric deformations and weak edge characteristics of hot-spot faults, a C2f_DCN module is designed, which enhances the feature extraction capabilities by adaptively adjusting the receptive field. Subsequently, to address the problem of feature coupling often encountered in extracting dense hot-spot fault features, a dense object visual enhancement (DOVE) module is proposed. Through the dynamic aggregation of cross-space features, the feature information of different channels is integrated to improve the detection accuracy of hot-spot faults. Additionally, to further enhance the effective fusion of multiscale features, an adaptive scale converter module (ASCM) detection head is designed. Finally, seven traditional detection methods are chosen for comparison to confirm the benefits of the proposed method. According to the experimental results, the suggested method can detect hot-spot faults with an accuracy of up to 86.5% in complicated inspection environments, which is an increase of 5.6% compared with the basis of the original network. |
| Author | Li, Jiahao Ma, Xu Li, Tianqi Hao, Shuai Qi, Tianrui |
| Author_xml | – sequence: 1 givenname: Shuai orcidid: 0000-0002-6133-0324 surname: Hao fullname: Hao, Shuai email: haoxust@163.com organization: College of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an, China – sequence: 2 givenname: Tianrui orcidid: 0009-0003-4578-6553 surname: Qi fullname: Qi, Tianrui email: qitianrui821@163.com organization: College of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an, China – sequence: 3 givenname: Xu orcidid: 0000-0002-6765-2025 surname: Ma fullname: Ma, Xu email: maxu@xust.edu.cn organization: College of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an, China – sequence: 4 givenname: Jiahao orcidid: 0009-0008-6829-1859 surname: Li fullname: Li, Jiahao email: lijhxa@163.com organization: College of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an, China – sequence: 5 givenname: Tianqi orcidid: 0009-0003-5210-2906 surname: Li fullname: Li, Tianqi email: altq8792@163.com organization: College of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an, China |
| BookMark | eNpNkE1PwkAQhjcGEwG9e_CwiefifrTdrrdarZCgEsRzs2ynUMRu3S4Yf4D_21Y4eJrkzfPOTJ4B6lWmAoQuKRlRSuTNYvI0YoQFIx4EQSj8E9SnQSA8GYash_qE0MiTfhCeoUHTbAghIvRFH_3MZ16Sxs_gbnFc4ThXtSv3gGdr48zebJ0qNR4b573WxuFU7bYO34MD7UpT4bb2Zew7vlMN5LgN5rDq8hlYDfUfoqocJ9Y0jZesVVXBFqeg3M4CjlcrCyvVUefotFDbBi6Oc4je0odFMvamL4-TJJ56mvnCeeALxaUEScKIUL-I-JIyHSmqNQuKHARnZCmVkoSrYrkkSkoWasgjzVuO53yIrg97a2s-d9C4bGN2tmpPZpxKX4SUCdZS5EDp7m8LRVbb8kPZ74ySrJOdtbKzTnZ2lN1Wrg6VEgD-4a1xX1L-C9QtfVk |
| CODEN | IEIMAO |
| Cites_doi | 10.1007/978-3-319-46448-0_2 10.1007/978-3-030-01264-9_8 10.1109/TGRS.2024.3506564 10.1109/ICCV.2017.324 10.1109/TPWRD.2023.3274823 10.1109/CVPR.2018.00474 10.1002/cta.3629 10.48550/arXiv.1802.02611 10.1109/CVPR.2015.7298965 10.1016/j.enconman.2022.115666 10.1109/ICCV.2017.89 10.1109/CVPR46437.2021.00841 10.1016/j.solener.2020.08.027 10.1007/978-3-319-24574-4_28 10.1109/TII.2022.3162846 10.1109/TDEI.2016.7736846 10.1109/CVPR.2017.660 10.1109/ICASSP49357.2023.10096516 10.1016/j.enconman.2022.116376 10.1109/CVPR.2018.00745 10.1109/JPHOTOV.2019.2955183 10.1109/ICAIBD57115.2023.10206126 10.1109/TIE.2020.3047066 10.1007/s11554-024-01415-x 10.1109/TIM.2012.2199196 10.1109/ICCV.2019.00667 10.1049/iet-rpg.2016.1041 10.1109/TIM.2023.3335509 10.1016/j.apenergy.2024.123759 10.1109/TIM.2023.3269099 10.1109/ACCESS.2021.3130889 10.1109/TIM.2019.2900961 10.1016/j.engappai.2024.107866 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2025.3555674 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 14 |
| ExternalDocumentID | 10_1109_TIM_2025_3555674 10945491 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Basic Research Program of Shaanxi grantid: 2024JC-YBMS-490 funderid: 10.13039/501100017596 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c247t-e47a399e9068014f83b12c8a1cc25fde7320b9aa903afbb0a9926ced8c312c3d3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:16:50 EDT 2025 Wed Oct 01 06:29:41 EDT 2025 Wed Aug 27 02:03:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c247t-e47a399e9068014f83b12c8a1cc25fde7320b9aa903afbb0a9926ced8c312c3d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0008-6829-1859 0009-0003-5210-2906 0000-0002-6765-2025 0009-0003-4578-6553 0000-0002-6133-0324 |
| PQID | 3194761272 |
| PQPubID | 85462 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TIM_2025_3555674 proquest_journals_3194761272 ieee_primary_10945491 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref31 ref30 ref11 ref33 ref10 ref32 Tan (ref36) 2019 ref2 ref1 SYin (ref24) 2023; 43 ref17 ref16 ref38 ref19 Liu (ref28) 2022; 49 ref23 ref26 ref25 ref20 Guan (ref21) 2022; 45 ref22 ref27 ref29 ref8 Wang (ref18) 2023; 29 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – volume: 45 start-page: 7 issue: 22 year: 2022 ident: ref21 article-title: Photovoltaic hot spot detection of aerial infrared image based on deep learning publication-title: Electric Meas. Technol. – ident: ref14 doi: 10.1007/978-3-319-46448-0_2 – ident: ref27 doi: 10.1007/978-3-030-01264-9_8 – ident: ref2 doi: 10.1109/TGRS.2024.3506564 – ident: ref37 doi: 10.1109/ICCV.2017.324 – ident: ref13 doi: 10.1109/TPWRD.2023.3274823 – volume: 43 start-page: 191 issue: S2 year: 2023 ident: ref24 article-title: Thermal spot object detection method for infrared images of photovoltaic modules based on improved YOLOv7 publication-title: J. Comput. Appl. – ident: ref32 doi: 10.1109/CVPR.2018.00474 – ident: ref5 doi: 10.1002/cta.3629 – ident: ref33 doi: 10.48550/arXiv.1802.02611 – ident: ref35 doi: 10.1109/CVPR.2015.7298965 – ident: ref3 doi: 10.1016/j.enconman.2022.115666 – ident: ref30 doi: 10.1109/ICCV.2017.89 – ident: ref38 doi: 10.1109/CVPR46437.2021.00841 – ident: ref10 doi: 10.1016/j.solener.2020.08.027 – ident: ref26 doi: 10.1007/978-3-319-24574-4_28 – volume: 29 start-page: 420 issue: 4 year: 2023 ident: ref18 article-title: Improved SSD of photovoltaic module hotspot defect detection method publication-title: Trans. Tianjin Univ. – ident: ref20 doi: 10.1109/TII.2022.3162846 – ident: ref6 doi: 10.1109/TDEI.2016.7736846 – volume: 49 start-page: 514 issue: 3 year: 2022 ident: ref28 article-title: Detection of small targets in UAV aerial imagery based on inverted residual attention publication-title: J. Beijing Univ. Aeronaut. Astronaut. – ident: ref34 doi: 10.1109/CVPR.2017.660 – ident: ref31 doi: 10.1109/ICASSP49357.2023.10096516 – ident: ref4 doi: 10.1016/j.enconman.2022.116376 – ident: ref29 doi: 10.1109/CVPR.2018.00745 – ident: ref12 doi: 10.1109/JPHOTOV.2019.2955183 – ident: ref25 doi: 10.1109/ICAIBD57115.2023.10206126 – ident: ref7 doi: 10.1109/TIE.2020.3047066 – year: 2019 ident: ref36 article-title: EfficientNet: Rethinking model scaling for convolutional neural networks publication-title: arXiv:1905.11946 – ident: ref22 doi: 10.1007/s11554-024-01415-x – ident: ref1 doi: 10.1109/TIM.2012.2199196 – ident: ref15 doi: 10.1109/ICCV.2019.00667 – ident: ref9 doi: 10.1049/iet-rpg.2016.1041 – ident: ref19 doi: 10.1109/TIM.2023.3335509 – ident: ref23 doi: 10.1016/j.apenergy.2024.123759 – ident: ref16 doi: 10.1109/TIM.2023.3269099 – ident: ref8 doi: 10.1109/ACCESS.2021.3130889 – ident: ref11 doi: 10.1109/TIM.2019.2900961 – ident: ref17 doi: 10.1016/j.engappai.2024.107866 |
| SSID | ssj0007647 |
| Score | 2.439025 |
| Snippet | In the process of utilizing thermal infrared sensors to identify photovoltaic (PV) hot-spot faults, due to the diverse shapes of hot-spot faults and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Attention mechanism Attention mechanisms Autonomous aerial vehicles Classification algorithms cross-channel feature aggregation Data mining Fault detection Fault diagnosis Faults Feature extraction Heuristic algorithms hot-spot fault detection Infrared detectors infrared sensors Modules Perception Photovoltaic cells Shape U-Net |
| Title | RP-CFANet: An Adaptive Photovoltaic Hot-Spot Fault Detection Network Based on Region Perception and Cross-Channel Feature Aggregation |
| URI | https://ieeexplore.ieee.org/document/10945491 https://www.proquest.com/docview/3194761272 |
| Volume | 74 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagEhIceJQiFgrygQsHL07i2DG3sLBakLpalVbqLbKdcYuoklXrXLjzvxk72aqAkLhFkRNZ_ux5-ZsZQt54j2oERMYq4YAJAMlMphzzeQm89C13NsY7jtZydSq-nJVnU7J6yoUBgEQ-g3l8THf5be-GGCrDE64F-jPo7NxVlRyTtW7ErpJiLJCZ4QlGs2B3J8n1u5PPR-gJ5uUclWsplfhNB6WmKn9J4qRelo_IejexkVXyfT4EO3c__qjZ-N8zf0weToYmrced8YTcgW6fPLhVfnCf3Ev0T3f9lPw83rDFsl5DeE_rjtat2UYxSDcXfehRgAXzzdFVH9jXbR_o0gyXgX6EkGhcHV2PVHL6ATViS_HFMUSWM93ckGao6Vq6iIvBYjpDB5c02p7DFdD6HD3-87Q_Dsjp8tPJYsWmBg3M5UIFBkIZNHBAxwYemfBVYbPcVSZzLkecQRU5t9oYzQvjreVG61w6aCtX4LiiLZ6Rva7v4DmhmXall5WXYJXgXlqneGbRl7GFt62XM_J2B1mzHetwNMl_4bpBeJsIbzPBOyMHEYFb48bFn5HDHcjNdFKvGxRBQqGZp_IX__jsJbkf_z7GXQ7JXrga4BVaIsG-TjvwF1SM22o |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQEYIeeJRWbCngAxcOXvJw4phbWFhtoRutylbqLbKdcUFUyap1Ltz534ydbFVASNyiyFEsf_a8_M0MIa-tRTUCPGYFN8A4QM5ULAyzSQZRZpvIaB_vWFb54ox_Os_Ox2T1kAsDAIF8BlP_GO7ym870PlSGJ1xy9GfQ2bmbcc6zIV3rRvCKnA8lMmM8w2gYbG8lI_l2fbxEXzDJpqhes1zw37RQaKvylywOCmb-iFTbqQ28ku_T3ump-fFH1cb_nvtj8nA0NWk57I0n5A60e2T3VgHCPXIvEEDN9VPy83TFZvOyAveOli0tG7XxgpCuvnauQxHm1DdDF51jXzado3PVXzr6AVwgcrW0Gsjk9D3qxIbii1PwPGe6uqHNUNU2dOYXg_mEhhYuqbc--yug5QX6_Bdhh-yTs_nH9WzBxhYNzCRcOAZcKDRxQPoWHjG3RarjxBQqNiZBpEGkSaSlUjJKldU6UlImuYGmMCmOS5v0gOy0XQvPCI2lyWxe2By04JHNtRFRrNGb0anVjc0n5M0WsnozVOKogwcTyRrhrT289QjvhOx7BG6NGxZ_Qo62INfjWb2uUQhxgYaeSA7_8dkrcn-xXp7UJ8fV5-fkgf_TEIU5IjvuqocXaJc4_TLsxl_5tN63 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RP-CFANet%3A+An+Adaptive+Photovoltaic+Hot-Spot+Fault+Detection+Network+Based+on+Region+Perception+and+Cross-Channel+Feature+Aggregation&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Hao%2C+Shuai&rft.au=Qi%2C+Tianrui&rft.au=Ma%2C+Xu&rft.au=Li%2C+Jiahao&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=74&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTIM.2025.3555674&rft.externalDocID=10945491 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |