RP-CFANet: An Adaptive Photovoltaic Hot-Spot Fault Detection Network Based on Region Perception and Cross-Channel Feature Aggregation

In the process of utilizing thermal infrared sensors to identify photovoltaic (PV) hot-spot faults, due to the diverse shapes of hot-spot faults and environmental interferences, fault characteristics cannot be effectively expressed, which poses a challenge for traditional detection networks in achie...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 14
Main Authors Hao, Shuai, Qi, Tianrui, Ma, Xu, Li, Jiahao, Li, Tianqi
Format Journal Article
LanguageEnglish
Published New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2025.3555674

Cover

Abstract In the process of utilizing thermal infrared sensors to identify photovoltaic (PV) hot-spot faults, due to the diverse shapes of hot-spot faults and environmental interferences, fault characteristics cannot be effectively expressed, which poses a challenge for traditional detection networks in achieving accurate detection. Consequently, an adaptive PV hot-spot fault detection network based on region perception and cross-channel feature aggregation is proposed. First, to reduce the interference of pseudo-highlight features in complex backgrounds, a lite-UNet segmentation network is designed to remove background redundant information and enable the detection network to concentrate on the region of the PV panel. Second, to fully capture the geometric deformations and weak edge characteristics of hot-spot faults, a C2f_DCN module is designed, which enhances the feature extraction capabilities by adaptively adjusting the receptive field. Subsequently, to address the problem of feature coupling often encountered in extracting dense hot-spot fault features, a dense object visual enhancement (DOVE) module is proposed. Through the dynamic aggregation of cross-space features, the feature information of different channels is integrated to improve the detection accuracy of hot-spot faults. Additionally, to further enhance the effective fusion of multiscale features, an adaptive scale converter module (ASCM) detection head is designed. Finally, seven traditional detection methods are chosen for comparison to confirm the benefits of the proposed method. According to the experimental results, the suggested method can detect hot-spot faults with an accuracy of up to 86.5% in complicated inspection environments, which is an increase of 5.6% compared with the basis of the original network.
AbstractList In the process of utilizing thermal infrared sensors to identify photovoltaic (PV) hot-spot faults, due to the diverse shapes of hot-spot faults and environmental interferences, fault characteristics cannot be effectively expressed, which poses a challenge for traditional detection networks in achieving accurate detection. Consequently, an adaptive PV hot-spot fault detection network based on region perception and cross-channel feature aggregation is proposed. First, to reduce the interference of pseudo-highlight features in complex backgrounds, a lite-UNet segmentation network is designed to remove background redundant information and enable the detection network to concentrate on the region of the PV panel. Second, to fully capture the geometric deformations and weak edge characteristics of hot-spot faults, a C2f_DCN module is designed, which enhances the feature extraction capabilities by adaptively adjusting the receptive field. Subsequently, to address the problem of feature coupling often encountered in extracting dense hot-spot fault features, a dense object visual enhancement (DOVE) module is proposed. Through the dynamic aggregation of cross-space features, the feature information of different channels is integrated to improve the detection accuracy of hot-spot faults. Additionally, to further enhance the effective fusion of multiscale features, an adaptive scale converter module (ASCM) detection head is designed. Finally, seven traditional detection methods are chosen for comparison to confirm the benefits of the proposed method. According to the experimental results, the suggested method can detect hot-spot faults with an accuracy of up to 86.5% in complicated inspection environments, which is an increase of 5.6% compared with the basis of the original network.
Author Li, Jiahao
Ma, Xu
Li, Tianqi
Hao, Shuai
Qi, Tianrui
Author_xml – sequence: 1
  givenname: Shuai
  orcidid: 0000-0002-6133-0324
  surname: Hao
  fullname: Hao, Shuai
  email: haoxust@163.com
  organization: College of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an, China
– sequence: 2
  givenname: Tianrui
  orcidid: 0009-0003-4578-6553
  surname: Qi
  fullname: Qi, Tianrui
  email: qitianrui821@163.com
  organization: College of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an, China
– sequence: 3
  givenname: Xu
  orcidid: 0000-0002-6765-2025
  surname: Ma
  fullname: Ma, Xu
  email: maxu@xust.edu.cn
  organization: College of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an, China
– sequence: 4
  givenname: Jiahao
  orcidid: 0009-0008-6829-1859
  surname: Li
  fullname: Li, Jiahao
  email: lijhxa@163.com
  organization: College of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an, China
– sequence: 5
  givenname: Tianqi
  orcidid: 0009-0003-5210-2906
  surname: Li
  fullname: Li, Tianqi
  email: altq8792@163.com
  organization: College of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an, China
BookMark eNpNkE1PwkAQhjcGEwG9e_CwiefifrTdrrdarZCgEsRzs2ynUMRu3S4Yf4D_21Y4eJrkzfPOTJ4B6lWmAoQuKRlRSuTNYvI0YoQFIx4EQSj8E9SnQSA8GYash_qE0MiTfhCeoUHTbAghIvRFH_3MZ16Sxs_gbnFc4ThXtSv3gGdr48zebJ0qNR4b573WxuFU7bYO34MD7UpT4bb2Zew7vlMN5LgN5rDq8hlYDfUfoqocJ9Y0jZesVVXBFqeg3M4CjlcrCyvVUefotFDbBi6Oc4je0odFMvamL4-TJJ56mvnCeeALxaUEScKIUL-I-JIyHSmqNQuKHARnZCmVkoSrYrkkSkoWasgjzVuO53yIrg97a2s-d9C4bGN2tmpPZpxKX4SUCdZS5EDp7m8LRVbb8kPZ74ySrJOdtbKzTnZ2lN1Wrg6VEgD-4a1xX1L-C9QtfVk
CODEN IEIMAO
Cites_doi 10.1007/978-3-319-46448-0_2
10.1007/978-3-030-01264-9_8
10.1109/TGRS.2024.3506564
10.1109/ICCV.2017.324
10.1109/TPWRD.2023.3274823
10.1109/CVPR.2018.00474
10.1002/cta.3629
10.48550/arXiv.1802.02611
10.1109/CVPR.2015.7298965
10.1016/j.enconman.2022.115666
10.1109/ICCV.2017.89
10.1109/CVPR46437.2021.00841
10.1016/j.solener.2020.08.027
10.1007/978-3-319-24574-4_28
10.1109/TII.2022.3162846
10.1109/TDEI.2016.7736846
10.1109/CVPR.2017.660
10.1109/ICASSP49357.2023.10096516
10.1016/j.enconman.2022.116376
10.1109/CVPR.2018.00745
10.1109/JPHOTOV.2019.2955183
10.1109/ICAIBD57115.2023.10206126
10.1109/TIE.2020.3047066
10.1007/s11554-024-01415-x
10.1109/TIM.2012.2199196
10.1109/ICCV.2019.00667
10.1049/iet-rpg.2016.1041
10.1109/TIM.2023.3335509
10.1016/j.apenergy.2024.123759
10.1109/TIM.2023.3269099
10.1109/ACCESS.2021.3130889
10.1109/TIM.2019.2900961
10.1016/j.engappai.2024.107866
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2025.3555674
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 14
ExternalDocumentID 10_1109_TIM_2025_3555674
10945491
Genre orig-research
GrantInformation_xml – fundername: Natural Science Basic Research Program of Shaanxi
  grantid: 2024JC-YBMS-490
  funderid: 10.13039/501100017596
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c247t-e47a399e9068014f83b12c8a1cc25fde7320b9aa903afbb0a9926ced8c312c3d3
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:16:50 EDT 2025
Wed Oct 01 06:29:41 EDT 2025
Wed Aug 27 02:03:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-e47a399e9068014f83b12c8a1cc25fde7320b9aa903afbb0a9926ced8c312c3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-6829-1859
0009-0003-5210-2906
0000-0002-6765-2025
0009-0003-4578-6553
0000-0002-6133-0324
PQID 3194761272
PQPubID 85462
PageCount 14
ParticipantIDs crossref_primary_10_1109_TIM_2025_3555674
proquest_journals_3194761272
ieee_primary_10945491
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref32
Tan (ref36) 2019
ref2
ref1
SYin (ref24) 2023; 43
ref17
ref16
ref38
ref19
Liu (ref28) 2022; 49
ref23
ref26
ref25
ref20
Guan (ref21) 2022; 45
ref22
ref27
ref29
ref8
Wang (ref18) 2023; 29
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – volume: 45
  start-page: 7
  issue: 22
  year: 2022
  ident: ref21
  article-title: Photovoltaic hot spot detection of aerial infrared image based on deep learning
  publication-title: Electric Meas. Technol.
– ident: ref14
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref27
  doi: 10.1007/978-3-030-01264-9_8
– ident: ref2
  doi: 10.1109/TGRS.2024.3506564
– ident: ref37
  doi: 10.1109/ICCV.2017.324
– ident: ref13
  doi: 10.1109/TPWRD.2023.3274823
– volume: 43
  start-page: 191
  issue: S2
  year: 2023
  ident: ref24
  article-title: Thermal spot object detection method for infrared images of photovoltaic modules based on improved YOLOv7
  publication-title: J. Comput. Appl.
– ident: ref32
  doi: 10.1109/CVPR.2018.00474
– ident: ref5
  doi: 10.1002/cta.3629
– ident: ref33
  doi: 10.48550/arXiv.1802.02611
– ident: ref35
  doi: 10.1109/CVPR.2015.7298965
– ident: ref3
  doi: 10.1016/j.enconman.2022.115666
– ident: ref30
  doi: 10.1109/ICCV.2017.89
– ident: ref38
  doi: 10.1109/CVPR46437.2021.00841
– ident: ref10
  doi: 10.1016/j.solener.2020.08.027
– ident: ref26
  doi: 10.1007/978-3-319-24574-4_28
– volume: 29
  start-page: 420
  issue: 4
  year: 2023
  ident: ref18
  article-title: Improved SSD of photovoltaic module hotspot defect detection method
  publication-title: Trans. Tianjin Univ.
– ident: ref20
  doi: 10.1109/TII.2022.3162846
– ident: ref6
  doi: 10.1109/TDEI.2016.7736846
– volume: 49
  start-page: 514
  issue: 3
  year: 2022
  ident: ref28
  article-title: Detection of small targets in UAV aerial imagery based on inverted residual attention
  publication-title: J. Beijing Univ. Aeronaut. Astronaut.
– ident: ref34
  doi: 10.1109/CVPR.2017.660
– ident: ref31
  doi: 10.1109/ICASSP49357.2023.10096516
– ident: ref4
  doi: 10.1016/j.enconman.2022.116376
– ident: ref29
  doi: 10.1109/CVPR.2018.00745
– ident: ref12
  doi: 10.1109/JPHOTOV.2019.2955183
– ident: ref25
  doi: 10.1109/ICAIBD57115.2023.10206126
– ident: ref7
  doi: 10.1109/TIE.2020.3047066
– year: 2019
  ident: ref36
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
  publication-title: arXiv:1905.11946
– ident: ref22
  doi: 10.1007/s11554-024-01415-x
– ident: ref1
  doi: 10.1109/TIM.2012.2199196
– ident: ref15
  doi: 10.1109/ICCV.2019.00667
– ident: ref9
  doi: 10.1049/iet-rpg.2016.1041
– ident: ref19
  doi: 10.1109/TIM.2023.3335509
– ident: ref23
  doi: 10.1016/j.apenergy.2024.123759
– ident: ref16
  doi: 10.1109/TIM.2023.3269099
– ident: ref8
  doi: 10.1109/ACCESS.2021.3130889
– ident: ref11
  doi: 10.1109/TIM.2019.2900961
– ident: ref17
  doi: 10.1016/j.engappai.2024.107866
SSID ssj0007647
Score 2.439025
Snippet In the process of utilizing thermal infrared sensors to identify photovoltaic (PV) hot-spot faults, due to the diverse shapes of hot-spot faults and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Attention mechanism
Attention mechanisms
Autonomous aerial vehicles
Classification algorithms
cross-channel feature aggregation
Data mining
Fault detection
Fault diagnosis
Faults
Feature extraction
Heuristic algorithms
hot-spot fault detection
Infrared detectors
infrared sensors
Modules
Perception
Photovoltaic cells
Shape
U-Net
Title RP-CFANet: An Adaptive Photovoltaic Hot-Spot Fault Detection Network Based on Region Perception and Cross-Channel Feature Aggregation
URI https://ieeexplore.ieee.org/document/10945491
https://www.proquest.com/docview/3194761272
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagEhIceJQiFgrygQsHL07i2DG3sLBakLpalVbqLbKdcYuoklXrXLjzvxk72aqAkLhFkRNZ_ux5-ZsZQt54j2oERMYq4YAJAMlMphzzeQm89C13NsY7jtZydSq-nJVnU7J6yoUBgEQ-g3l8THf5be-GGCrDE64F-jPo7NxVlRyTtW7ErpJiLJCZ4QlGs2B3J8n1u5PPR-gJ5uUclWsplfhNB6WmKn9J4qRelo_IejexkVXyfT4EO3c__qjZ-N8zf0weToYmrced8YTcgW6fPLhVfnCf3Ev0T3f9lPw83rDFsl5DeE_rjtat2UYxSDcXfehRgAXzzdFVH9jXbR_o0gyXgX6EkGhcHV2PVHL6ATViS_HFMUSWM93ckGao6Vq6iIvBYjpDB5c02p7DFdD6HD3-87Q_Dsjp8tPJYsWmBg3M5UIFBkIZNHBAxwYemfBVYbPcVSZzLkecQRU5t9oYzQvjreVG61w6aCtX4LiiLZ6Rva7v4DmhmXall5WXYJXgXlqneGbRl7GFt62XM_J2B1mzHetwNMl_4bpBeJsIbzPBOyMHEYFb48bFn5HDHcjNdFKvGxRBQqGZp_IX__jsJbkf_z7GXQ7JXrga4BVaIsG-TjvwF1SM22o
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQEYIeeJRWbCngAxcOXvJw4phbWFhtoRutylbqLbKdcUFUyap1Ltz534ydbFVASNyiyFEsf_a8_M0MIa-tRTUCPGYFN8A4QM5ULAyzSQZRZpvIaB_vWFb54ox_Os_Ox2T1kAsDAIF8BlP_GO7ym870PlSGJ1xy9GfQ2bmbcc6zIV3rRvCKnA8lMmM8w2gYbG8lI_l2fbxEXzDJpqhes1zw37RQaKvylywOCmb-iFTbqQ28ku_T3ump-fFH1cb_nvtj8nA0NWk57I0n5A60e2T3VgHCPXIvEEDN9VPy83TFZvOyAveOli0tG7XxgpCuvnauQxHm1DdDF51jXzado3PVXzr6AVwgcrW0Gsjk9D3qxIbii1PwPGe6uqHNUNU2dOYXg_mEhhYuqbc--yug5QX6_Bdhh-yTs_nH9WzBxhYNzCRcOAZcKDRxQPoWHjG3RarjxBQqNiZBpEGkSaSlUjJKldU6UlImuYGmMCmOS5v0gOy0XQvPCI2lyWxe2By04JHNtRFRrNGb0anVjc0n5M0WsnozVOKogwcTyRrhrT289QjvhOx7BG6NGxZ_Qo62INfjWb2uUQhxgYaeSA7_8dkrcn-xXp7UJ8fV5-fkgf_TEIU5IjvuqocXaJc4_TLsxl_5tN63
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RP-CFANet%3A+An+Adaptive+Photovoltaic+Hot-Spot+Fault+Detection+Network+Based+on+Region+Perception+and+Cross-Channel+Feature+Aggregation&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Hao%2C+Shuai&rft.au=Qi%2C+Tianrui&rft.au=Ma%2C+Xu&rft.au=Li%2C+Jiahao&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=74&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTIM.2025.3555674&rft.externalDocID=10945491
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon