Auto-Regressive Exogeneous Structure Based Predictive Torque Control of Induction Motor Drive With Improved Flux Estimation
The accuracy of conventional predictive torque control (CPTC) of an induction machine relies on precise machine parameters and combinatory estimation of these parameters is tedious since they are coupled and continuously varying with operating conditions. To make control robust against imprecise mod...
Saved in:
| Published in | IEEE transactions on industry applications Vol. 61; no. 5; pp. 7281 - 7291 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0093-9994 1939-9367 |
| DOI | 10.1109/TIA.2025.3550152 |
Cover
| Abstract | The accuracy of conventional predictive torque control (CPTC) of an induction machine relies on precise machine parameters and combinatory estimation of these parameters is tedious since they are coupled and continuously varying with operating conditions. To make control robust against imprecise models and variations in machine parameters, autoregressive exogenous structure-based predictive torque control (ARX-PTC) is presented in this work. ARX structure is formed by relating discrete time input and output samples using a linear difference equation, in which coefficients are tuned online with the help of the recursive least square (RLS) method. Adaptive dual second order generalized integrator (DSOGI) along with gain normalized improved frequency locked loop (IFLL) is employed for precise flux estimation that nullifies the issues of DC drift and harmonics present in sensed signal. To accurately track frequency ramp references (acceleration and deceleration mode), an improved structure of FLL is used. The presented control algorithm is simulated in Matlab/Simulink platform and effectiveness of control is verified with the experimental results. |
|---|---|
| AbstractList | The accuracy of conventional predictive torque control (CPTC) of an induction machine relies on precise machine parameters and combinatory estimation of these parameters is tedious since they are coupled and continuously varying with operating conditions. To make control robust against imprecise models and variations in machine parameters, autoregressive exogenous structure-based predictive torque control (ARX-PTC) is presented in this work. ARX structure is formed by relating discrete time input and output samples using a linear difference equation, in which coefficients are tuned online with the help of the recursive least square (RLS) method. Adaptive dual second order generalized integrator (DSOGI) along with gain normalized improved frequency locked loop (IFLL) is employed for precise flux estimation that nullifies the issues of DC drift and harmonics present in sensed signal. To accurately track frequency ramp references (acceleration and deceleration mode), an improved structure of FLL is used. The presented control algorithm is simulated in Matlab/Simulink platform and effectiveness of control is verified with the experimental results. |
| Author | V, Kousalya Singh, Bhim |
| Author_xml | – sequence: 1 givenname: Kousalya orcidid: 0000-0002-0120-6137 surname: V fullname: V, Kousalya email: vkousalya03@gmail.com organization: Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India – sequence: 2 givenname: Bhim orcidid: 0000-0003-4759-7484 surname: Singh fullname: Singh, Bhim email: bsingh@ee.iitd.ac.in organization: Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India |
| BookMark | eNpNkM9PwjAYhhuDiYDePXho4nnYrj-2HhFBl2A0ivG4lO0bjsCKbUcw_vN2gYOn7_J87_vmGaBeYxpA6JqSEaVE3S2y8SgmsRgxIQgV8RnqU8VUpJhMeqhPiGKRUopfoIFza0IoF5T30e-49SZ6g5UF5-o94OnBrKAB0zr87m1b-NYCvtcOSvxqoawL31ELY79bwBPTeGs22FQ4a8oA16bBz8Ybix9sx33W_gtn2501-xAw27QHPHW-3uqOvETnld44uDrdIfqYTReTp2j-8phNxvOoiHniozJdUi61EIzxFDikwAQkjIo00aqSVcUlXyZVmjCdgmKaFEtFpOaqZLGWULEhuj3mhhlhtfP52rS2CZU5Cw1MpHEiA0WOVGGNcxaqfGfDUPuTU5J3ivOgOO8U5yfF4eXm-FIDwD9chVSp2B9idHsW |
| CODEN | ITIACR |
| Cites_doi | 10.1109/TIE.2022.3169831 10.1109/TIE.2023.3239879 10.1109/TIE.2022.3210563 10.1109/TIE.2021.3063867 10.1109/TPEL.2021.3086636 10.1109/IPEMC-ECCEAsia48364.2020.9368240 10.1109/TIE.2023.3319745 10.1109/TIA.2021.3131973 10.1109/JESTPE.2016.2623668 10.1109/TPEL.2021.3117697 10.1109/TIE.2022.3212371 10.1109/ACCESS.2022.3156694 10.1109/TPEL.2019.2920439 10.1109/TPEL.2016.2636746 10.1109/TIE.2019.2956407 10.1109/TPEL.2022.3206598 10.1109/PRECEDE57319.2023.10174296 10.1109/TPEL.2016.2620428 10.1109/SeFeT57834.2023.10244781 10.1109/TII.2017.2758393 10.1109/TPEL.2022.3169708 10.1109/ACCESS.2021.3115782 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TIA.2025.3550152 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-9367 |
| EndPage | 7291 |
| ExternalDocumentID | 10_1109_TIA_2025_3550152 10924769 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: ANRF - National Science Chair – fundername: Department of Science and Technology, Ministry of Science and Technology, India; Department of Science and Technology, Government of India grantid: RP03195 funderid: 10.13039/501100001409 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c247t-d8b146a553348e4e8e35e731587a9f6ff464b7f873a8e93a0cb906a49d32a6ef3 |
| IEDL.DBID | RIE |
| ISSN | 0093-9994 |
| IngestDate | Sun Sep 21 03:40:25 EDT 2025 Wed Oct 01 05:36:08 EDT 2025 Wed Aug 27 07:36:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c247t-d8b146a553348e4e8e35e731587a9f6ff464b7f873a8e93a0cb906a49d32a6ef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0120-6137 0000-0003-4759-7484 |
| PQID | 3247358276 |
| PQPubID | 85463 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_TIA_2025_3550152 ieee_primary_10924769 proquest_journals_3247358276 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on industry applications |
| PublicationTitleAbbrev | TIA |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref20 ref11 ref22 ref10 ref21 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref13 doi: 10.1109/TIE.2022.3169831 – ident: ref21 doi: 10.1109/TIE.2023.3239879 – ident: ref15 doi: 10.1109/TIE.2022.3210563 – ident: ref2 doi: 10.1109/TIE.2021.3063867 – ident: ref5 doi: 10.1109/TPEL.2021.3086636 – ident: ref9 doi: 10.1109/IPEMC-ECCEAsia48364.2020.9368240 – ident: ref11 doi: 10.1109/TIE.2023.3319745 – ident: ref8 doi: 10.1109/TIA.2021.3131973 – ident: ref19 doi: 10.1109/JESTPE.2016.2623668 – ident: ref18 doi: 10.1109/TPEL.2021.3117697 – ident: ref4 doi: 10.1109/TIE.2022.3212371 – ident: ref3 doi: 10.1109/ACCESS.2022.3156694 – ident: ref6 doi: 10.1109/TPEL.2019.2920439 – ident: ref20 doi: 10.1109/TPEL.2016.2636746 – ident: ref12 doi: 10.1109/TIE.2019.2956407 – ident: ref14 doi: 10.1109/TPEL.2022.3206598 – ident: ref7 doi: 10.1109/PRECEDE57319.2023.10174296 – ident: ref16 doi: 10.1109/TPEL.2016.2620428 – ident: ref22 doi: 10.1109/SeFeT57834.2023.10244781 – ident: ref1 doi: 10.1109/TII.2017.2758393 – ident: ref17 doi: 10.1109/TPEL.2022.3169708 – ident: ref10 doi: 10.1109/ACCESS.2021.3115782 |
| SSID | ssj0014514 |
| Score | 2.479698 |
| Snippet | The accuracy of conventional predictive torque control (CPTC) of an induction machine relies on precise machine parameters and combinatory estimation of these... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 7281 |
| SubjectTerms | Adaptation models Auto regressive exogeneous structure (ARX) Control algorithms Control theory Difference equations Estimation Frequency estimation frequency locked loop (FLL) Frequency locked loops Frequency locking induction motor Induction motors model free predictive torque control Motors Parameters Predictive control Predictive models recursive least square (RLS) algorithm Resonant frequency Robust control second order generalized integrator (SOGI) Stators Torque Torque control Vectors |
| Title | Auto-Regressive Exogeneous Structure Based Predictive Torque Control of Induction Motor Drive With Improved Flux Estimation |
| URI | https://ieeexplore.ieee.org/document/10924769 https://www.proquest.com/docview/3247358276 |
| Volume | 61 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9367 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014514 issn: 0093-9994 databaseCode: RIE dateStart: 19720101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKp_ZQaAvq8qh86KUHb0P8zHGBXdFKoKpdVG6RHY8FarVBSyIh-POM7SyiRZV6ixTHcmbG8_DMNybkozbSc2hKVpjgmLBSMGcbz1zhtC88APAIcD49Uyfn4uuFvBjA6gkLg29T8RmM42PK5fu26eNRGe5wjBa0qtbImjYqg7UeUwZiaOSNITpDr0escpJF9Xn-ZYKRYCnHaFzR_JV_2KB0qcozTZzMy2yDnK0WlqtKfo37zo2bu796Nv73yjfJ68HRpJMsGW_IC1i8Ja-etB98R-4nfdey75BCbtR6dHrbojxB29_QH6mvbL8Eeoh2ztNvy5jRibqRztsl_gI9ykXutA003v-R8BH0tMUYnh4v47ifV90lzYcWOMHsd39Lp6hQMlZyi5zPpvOjEzZcxsAaXHnHvHGoVK1M0F0QYIBL0PxAGm2roEIQSjgdjObWQMVt0biqUFZUnpdWQeDbZH3RLuA9oaUzaDm9sqGRwruAHlKhvGlM6UrupR2RTyv21Ne550adYpWiqpGVdWRlPbByRLYitZ-My4Qekb0VQ-thV97U6DzqiAzWaucfn-2Sl3H2XES2R9aR1rCPXkfnPiRpewA1PNaD |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOQAHnkUsFPCBCwcvafzMcWl3tYXuCsFW9BbZsS0QaIO2iVS1f56xnUUtCIlbpDjJxGPPwzPfDMBrpYVjvilpoYOl3AhOrWkctYVVrnDeexYBzoulnJ_w96fidACrJywM3k3JZ34cL1Ms37VNH4_KcIejt6BkdRNuCc65yHCt30EDPpTyRiedot3Dt1HJonq7OpqgL1iKMapXVIDlNS2U2qr8JYuTgpndh-WWtJxX8n3cd3bcXPxRtfG_aX8A9wZTk0zy2ngIN_z6Edy9UoDwMVxO-q6ln3xyulHukel5iyvKt_0Z-Zwqy_YbT96hpnPk4ybGdKJ0JKt2g79ADnKaO2kDiR1AEkKCLFr04snhJo778q37SvKxBb5g9qM_J1MUKRktuQsns-nqYE6Hdgy0Qco76rRFsWpEAu967rVnwiu2L7QyVZAhcMmtCloxo33FTNHYqpCGV46VRvrAnsDOul37p0BKq1F3OmlCI7izAW2kQjrd6NKWzAkzgjdb9tQ_c9WNOnkrRVUjK-vIynpg5Qh242xfGZcnegR7W4bWw748q9F8VBEbrOSzfzz2Cm7PV4vj-vho-eE53Ilfyille7CD8-5foA3S2Zdp5f0CmJLZ0A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auto-Regressive+Exogeneous+Structure+Based+Predictive+Torque+Control+of+Induction+Motor+Drive+With+Improved+Flux+Estimation&rft.jtitle=IEEE+transactions+on+industry+applications&rft.au=Kousalya%2C+V&rft.au=Singh%2C+Bhim&rft.date=2025-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0093-9994&rft.eissn=1939-9367&rft.volume=61&rft.issue=6&rft.spage=7281&rft.epage=7291&rft_id=info:doi/10.1109%2FTIA.2025.3550152&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-9994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-9994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-9994&client=summon |