Auto-Regressive Exogeneous Structure Based Predictive Torque Control of Induction Motor Drive With Improved Flux Estimation

The accuracy of conventional predictive torque control (CPTC) of an induction machine relies on precise machine parameters and combinatory estimation of these parameters is tedious since they are coupled and continuously varying with operating conditions. To make control robust against imprecise mod...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industry applications Vol. 61; no. 5; pp. 7281 - 7291
Main Authors V, Kousalya, Singh, Bhim
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0093-9994
1939-9367
DOI10.1109/TIA.2025.3550152

Cover

Abstract The accuracy of conventional predictive torque control (CPTC) of an induction machine relies on precise machine parameters and combinatory estimation of these parameters is tedious since they are coupled and continuously varying with operating conditions. To make control robust against imprecise models and variations in machine parameters, autoregressive exogenous structure-based predictive torque control (ARX-PTC) is presented in this work. ARX structure is formed by relating discrete time input and output samples using a linear difference equation, in which coefficients are tuned online with the help of the recursive least square (RLS) method. Adaptive dual second order generalized integrator (DSOGI) along with gain normalized improved frequency locked loop (IFLL) is employed for precise flux estimation that nullifies the issues of DC drift and harmonics present in sensed signal. To accurately track frequency ramp references (acceleration and deceleration mode), an improved structure of FLL is used. The presented control algorithm is simulated in Matlab/Simulink platform and effectiveness of control is verified with the experimental results.
AbstractList The accuracy of conventional predictive torque control (CPTC) of an induction machine relies on precise machine parameters and combinatory estimation of these parameters is tedious since they are coupled and continuously varying with operating conditions. To make control robust against imprecise models and variations in machine parameters, autoregressive exogenous structure-based predictive torque control (ARX-PTC) is presented in this work. ARX structure is formed by relating discrete time input and output samples using a linear difference equation, in which coefficients are tuned online with the help of the recursive least square (RLS) method. Adaptive dual second order generalized integrator (DSOGI) along with gain normalized improved frequency locked loop (IFLL) is employed for precise flux estimation that nullifies the issues of DC drift and harmonics present in sensed signal. To accurately track frequency ramp references (acceleration and deceleration mode), an improved structure of FLL is used. The presented control algorithm is simulated in Matlab/Simulink platform and effectiveness of control is verified with the experimental results.
Author V, Kousalya
Singh, Bhim
Author_xml – sequence: 1
  givenname: Kousalya
  orcidid: 0000-0002-0120-6137
  surname: V
  fullname: V, Kousalya
  email: vkousalya03@gmail.com
  organization: Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India
– sequence: 2
  givenname: Bhim
  orcidid: 0000-0003-4759-7484
  surname: Singh
  fullname: Singh, Bhim
  email: bsingh@ee.iitd.ac.in
  organization: Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India
BookMark eNpNkM9PwjAYhhuDiYDePXho4nnYrj-2HhFBl2A0ivG4lO0bjsCKbUcw_vN2gYOn7_J87_vmGaBeYxpA6JqSEaVE3S2y8SgmsRgxIQgV8RnqU8VUpJhMeqhPiGKRUopfoIFza0IoF5T30e-49SZ6g5UF5-o94OnBrKAB0zr87m1b-NYCvtcOSvxqoawL31ELY79bwBPTeGs22FQ4a8oA16bBz8Ybix9sx33W_gtn2501-xAw27QHPHW-3uqOvETnld44uDrdIfqYTReTp2j-8phNxvOoiHniozJdUi61EIzxFDikwAQkjIo00aqSVcUlXyZVmjCdgmKaFEtFpOaqZLGWULEhuj3mhhlhtfP52rS2CZU5Cw1MpHEiA0WOVGGNcxaqfGfDUPuTU5J3ivOgOO8U5yfF4eXm-FIDwD9chVSp2B9idHsW
CODEN ITIACR
Cites_doi 10.1109/TIE.2022.3169831
10.1109/TIE.2023.3239879
10.1109/TIE.2022.3210563
10.1109/TIE.2021.3063867
10.1109/TPEL.2021.3086636
10.1109/IPEMC-ECCEAsia48364.2020.9368240
10.1109/TIE.2023.3319745
10.1109/TIA.2021.3131973
10.1109/JESTPE.2016.2623668
10.1109/TPEL.2021.3117697
10.1109/TIE.2022.3212371
10.1109/ACCESS.2022.3156694
10.1109/TPEL.2019.2920439
10.1109/TPEL.2016.2636746
10.1109/TIE.2019.2956407
10.1109/TPEL.2022.3206598
10.1109/PRECEDE57319.2023.10174296
10.1109/TPEL.2016.2620428
10.1109/SeFeT57834.2023.10244781
10.1109/TII.2017.2758393
10.1109/TPEL.2022.3169708
10.1109/ACCESS.2021.3115782
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIA.2025.3550152
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9367
EndPage 7291
ExternalDocumentID 10_1109_TIA_2025_3550152
10924769
Genre orig-research
GrantInformation_xml – fundername: ANRF - National Science Chair
– fundername: Department of Science and Technology, Ministry of Science and Technology, India; Department of Science and Technology, Government of India
  grantid: RP03195
  funderid: 10.13039/501100001409
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c247t-d8b146a553348e4e8e35e731587a9f6ff464b7f873a8e93a0cb906a49d32a6ef3
IEDL.DBID RIE
ISSN 0093-9994
IngestDate Sun Sep 21 03:40:25 EDT 2025
Wed Oct 01 05:36:08 EDT 2025
Wed Aug 27 07:36:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-d8b146a553348e4e8e35e731587a9f6ff464b7f873a8e93a0cb906a49d32a6ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0120-6137
0000-0003-4759-7484
PQID 3247358276
PQPubID 85463
PageCount 11
ParticipantIDs crossref_primary_10_1109_TIA_2025_3550152
ieee_primary_10924769
proquest_journals_3247358276
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industry applications
PublicationTitleAbbrev TIA
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref20
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1109/TIE.2022.3169831
– ident: ref21
  doi: 10.1109/TIE.2023.3239879
– ident: ref15
  doi: 10.1109/TIE.2022.3210563
– ident: ref2
  doi: 10.1109/TIE.2021.3063867
– ident: ref5
  doi: 10.1109/TPEL.2021.3086636
– ident: ref9
  doi: 10.1109/IPEMC-ECCEAsia48364.2020.9368240
– ident: ref11
  doi: 10.1109/TIE.2023.3319745
– ident: ref8
  doi: 10.1109/TIA.2021.3131973
– ident: ref19
  doi: 10.1109/JESTPE.2016.2623668
– ident: ref18
  doi: 10.1109/TPEL.2021.3117697
– ident: ref4
  doi: 10.1109/TIE.2022.3212371
– ident: ref3
  doi: 10.1109/ACCESS.2022.3156694
– ident: ref6
  doi: 10.1109/TPEL.2019.2920439
– ident: ref20
  doi: 10.1109/TPEL.2016.2636746
– ident: ref12
  doi: 10.1109/TIE.2019.2956407
– ident: ref14
  doi: 10.1109/TPEL.2022.3206598
– ident: ref7
  doi: 10.1109/PRECEDE57319.2023.10174296
– ident: ref16
  doi: 10.1109/TPEL.2016.2620428
– ident: ref22
  doi: 10.1109/SeFeT57834.2023.10244781
– ident: ref1
  doi: 10.1109/TII.2017.2758393
– ident: ref17
  doi: 10.1109/TPEL.2022.3169708
– ident: ref10
  doi: 10.1109/ACCESS.2021.3115782
SSID ssj0014514
Score 2.479698
Snippet The accuracy of conventional predictive torque control (CPTC) of an induction machine relies on precise machine parameters and combinatory estimation of these...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 7281
SubjectTerms Adaptation models
Auto regressive exogeneous structure (ARX)
Control algorithms
Control theory
Difference equations
Estimation
Frequency estimation
frequency locked loop (FLL)
Frequency locked loops
Frequency locking
induction motor
Induction motors
model free predictive torque control
Motors
Parameters
Predictive control
Predictive models
recursive least square (RLS) algorithm
Resonant frequency
Robust control
second order generalized integrator (SOGI)
Stators
Torque
Torque control
Vectors
Title Auto-Regressive Exogeneous Structure Based Predictive Torque Control of Induction Motor Drive With Improved Flux Estimation
URI https://ieeexplore.ieee.org/document/10924769
https://www.proquest.com/docview/3247358276
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9367
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014514
  issn: 0093-9994
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKp_ZQaAvq8qh86KUHb0P8zHGBXdFKoKpdVG6RHY8FarVBSyIh-POM7SyiRZV6ixTHcmbG8_DMNybkozbSc2hKVpjgmLBSMGcbz1zhtC88APAIcD49Uyfn4uuFvBjA6gkLg29T8RmM42PK5fu26eNRGe5wjBa0qtbImjYqg7UeUwZiaOSNITpDr0escpJF9Xn-ZYKRYCnHaFzR_JV_2KB0qcozTZzMy2yDnK0WlqtKfo37zo2bu796Nv73yjfJ68HRpJMsGW_IC1i8Ja-etB98R-4nfdey75BCbtR6dHrbojxB29_QH6mvbL8Eeoh2ztNvy5jRibqRztsl_gI9ykXutA003v-R8BH0tMUYnh4v47ifV90lzYcWOMHsd39Lp6hQMlZyi5zPpvOjEzZcxsAaXHnHvHGoVK1M0F0QYIBL0PxAGm2roEIQSjgdjObWQMVt0biqUFZUnpdWQeDbZH3RLuA9oaUzaDm9sqGRwruAHlKhvGlM6UrupR2RTyv21Ne550adYpWiqpGVdWRlPbByRLYitZ-My4Qekb0VQ-thV97U6DzqiAzWaucfn-2Sl3H2XES2R9aR1rCPXkfnPiRpewA1PNaD
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOQAHnkUsFPCBCwcvafzMcWl3tYXuCsFW9BbZsS0QaIO2iVS1f56xnUUtCIlbpDjJxGPPwzPfDMBrpYVjvilpoYOl3AhOrWkctYVVrnDeexYBzoulnJ_w96fidACrJywM3k3JZ34cL1Ms37VNH4_KcIejt6BkdRNuCc65yHCt30EDPpTyRiedot3Dt1HJonq7OpqgL1iKMapXVIDlNS2U2qr8JYuTgpndh-WWtJxX8n3cd3bcXPxRtfG_aX8A9wZTk0zy2ngIN_z6Edy9UoDwMVxO-q6ln3xyulHukel5iyvKt_0Z-Zwqy_YbT96hpnPk4ybGdKJ0JKt2g79ADnKaO2kDiR1AEkKCLFr04snhJo778q37SvKxBb5g9qM_J1MUKRktuQsns-nqYE6Hdgy0Qco76rRFsWpEAu967rVnwiu2L7QyVZAhcMmtCloxo33FTNHYqpCGV46VRvrAnsDOul37p0BKq1F3OmlCI7izAW2kQjrd6NKWzAkzgjdb9tQ_c9WNOnkrRVUjK-vIynpg5Qh242xfGZcnegR7W4bWw748q9F8VBEbrOSzfzz2Cm7PV4vj-vho-eE53Ilfyille7CD8-5foA3S2Zdp5f0CmJLZ0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auto-Regressive+Exogeneous+Structure+Based+Predictive+Torque+Control+of+Induction+Motor+Drive+With+Improved+Flux+Estimation&rft.jtitle=IEEE+transactions+on+industry+applications&rft.au=Kousalya%2C+V&rft.au=Singh%2C+Bhim&rft.date=2025-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0093-9994&rft.eissn=1939-9367&rft.volume=61&rft.issue=6&rft.spage=7281&rft.epage=7291&rft_id=info:doi/10.1109%2FTIA.2025.3550152&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-9994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-9994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-9994&client=summon