BCRNet-SNN: Body Channel Response-Aware Spiking Neural Network for User Recognition

Spiking neural networks (SNNs) have been recently highlighted as an attractive approach for implementing artificial intelligence models in resource-constrained edge devices for various industrial applications. These SNNs leverage low-power and wide dynamic range processing through biologically inspi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 21; no. 8; pp. 6017 - 6027
Main Authors Kang, Taewook, Shin, Chanwoo, Lee, Jongseok, Lee, Jae-Jin, Sim, Donggyu, Kim, Seong-Eun
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1551-3203
1941-0050
DOI10.1109/TII.2025.3558309

Cover

Abstract Spiking neural networks (SNNs) have been recently highlighted as an attractive approach for implementing artificial intelligence models in resource-constrained edge devices for various industrial applications. These SNNs leverage low-power and wide dynamic range processing through biologically inspired event-driven operations in a massively parallel manner. In this respect, we propose BCRNet-SNN, an SNN model designed to utilize an electric body channel response (BCR) as a biometric feature for user recognition, where each element in the BCR dataset for 15 subjects is a 1-D vector comprising 380 feature points from the measured envelope by applying chirp signals to the body. The network parameters for implementing the posttrained BCRNet-SNN are inherited from the proposed convolutional neural network (CNN) that extensively extracts BCR-based biometric features (BCRNet), followed by applying knowledge distillation-based network lightening process on BCRNet. The performance evaluation results compared to ResNet18 and ResNet6 for the BCR dataset show that BCRNet achieves a greater than 2<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> and 1.4<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> improvement, respectively, in the average classification accuracy, while significantly reducing the number of network parameters to less than 1<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>. The student network distilled from the teacher BCRNet (BCRNet-S) requires only 5.1<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> network parameters than BCRNet, which can be eligible for implementation in BCRNet-SNN. The proposed structure of BCRNet-SNN to effectively accommodate the CNN-to-SNN-converted parameters from BCRNet-S can achieve up to a maximum accuracy of 98.11<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>, without observable performance degradation compared to BCRNet.
AbstractList Spiking neural networks (SNNs) have been recently highlighted as an attractive approach for implementing artificial intelligence models in resource-constrained edge devices for various industrial applications. These SNNs leverage low-power and wide dynamic range processing through biologically inspired event-driven operations in a massively parallel manner. In this respect, we propose BCRNet-SNN, an SNN model designed to utilize an electric body channel response (BCR) as a biometric feature for user recognition, where each element in the BCR dataset for 15 subjects is a 1-D vector comprising 380 feature points from the measured envelope by applying chirp signals to the body. The network parameters for implementing the posttrained BCRNet-SNN are inherited from the proposed convolutional neural network (CNN) that extensively extracts BCR-based biometric features (BCRNet), followed by applying knowledge distillation-based network lightening process on BCRNet. The performance evaluation results compared to ResNet18 and ResNet6 for the BCR dataset show that BCRNet achieves a greater than 2[Formula Omitted] and 1.4[Formula Omitted] improvement, respectively, in the average classification accuracy, while significantly reducing the number of network parameters to less than 1[Formula Omitted]. The student network distilled from the teacher BCRNet (BCRNet-S) requires only 5.1[Formula Omitted] network parameters than BCRNet, which can be eligible for implementation in BCRNet-SNN. The proposed structure of BCRNet-SNN to effectively accommodate the CNN-to-SNN-converted parameters from BCRNet-S can achieve up to a maximum accuracy of 98.11[Formula Omitted], without observable performance degradation compared to BCRNet.
Spiking neural networks (SNNs) have been recently highlighted as an attractive approach for implementing artificial intelligence models in resource-constrained edge devices for various industrial applications. These SNNs leverage low-power and wide dynamic range processing through biologically inspired event-driven operations in a massively parallel manner. In this respect, we propose BCRNet-SNN, an SNN model designed to utilize an electric body channel response (BCR) as a biometric feature for user recognition, where each element in the BCR dataset for 15 subjects is a 1-D vector comprising 380 feature points from the measured envelope by applying chirp signals to the body. The network parameters for implementing the posttrained BCRNet-SNN are inherited from the proposed convolutional neural network (CNN) that extensively extracts BCR-based biometric features (BCRNet), followed by applying knowledge distillation-based network lightening process on BCRNet. The performance evaluation results compared to ResNet18 and ResNet6 for the BCR dataset show that BCRNet achieves a greater than 2<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> and 1.4<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> improvement, respectively, in the average classification accuracy, while significantly reducing the number of network parameters to less than 1<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>. The student network distilled from the teacher BCRNet (BCRNet-S) requires only 5.1<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> network parameters than BCRNet, which can be eligible for implementation in BCRNet-SNN. The proposed structure of BCRNet-SNN to effectively accommodate the CNN-to-SNN-converted parameters from BCRNet-S can achieve up to a maximum accuracy of 98.11<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>, without observable performance degradation compared to BCRNet.
Author Shin, Chanwoo
Lee, Jongseok
Lee, Jae-Jin
Kang, Taewook
Kim, Seong-Eun
Sim, Donggyu
Author_xml – sequence: 1
  givenname: Taewook
  orcidid: 0000-0001-9147-3898
  surname: Kang
  fullname: Kang, Taewook
  organization: Artificial Intelligence Computing Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon, South Korea
– sequence: 2
  givenname: Chanwoo
  orcidid: 0009-0001-5721-6238
  surname: Shin
  fullname: Shin, Chanwoo
  organization: Department of Artificial Intelligence, Seoul National University of Science and Technology, Seoul, South Korea
– sequence: 3
  givenname: Jongseok
  orcidid: 0000-0001-8045-0244
  surname: Lee
  fullname: Lee, Jongseok
  organization: Digital Insights Company Ltd., Seoul, South Korea
– sequence: 4
  givenname: Jae-Jin
  orcidid: 0000-0003-3260-1620
  surname: Lee
  fullname: Lee, Jae-Jin
  organization: Artificial Intelligence Computing Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon, South Korea
– sequence: 5
  givenname: Donggyu
  surname: Sim
  fullname: Sim, Donggyu
  organization: Digital Insights Company Ltd., Seoul, South Korea
– sequence: 6
  givenname: Seong-Eun
  orcidid: 0000-0002-4518-4208
  surname: Kim
  fullname: Kim, Seong-Eun
  email: sekim@seoultech.ac.kr
  organization: Department of Artificial Intelligence, Seoul National University of Science and Technology, Seoul, South Korea
BookMark eNpNkD1vwjAQhq2KSgXavUOHSJ1Dz744ibsB6gcSSiU-5shJHBqgdmoHIf59jWDo9N5Jz3snPQPS00YrQh4pjCgF8bKazUYMGB8h5ymCuCF9KiIaAnDo-ZlzGiIDvCMD57YAmACKPllOpotMdeEyy16DialOwfRbaq32wUK51minwvFRWhUs22bX6E2QqYOVex_d0dhdUBsbrJ2yHi_NRjddY_Q9ua3l3qmHaw7J-v1tNf0M518fs-l4HpYsSrqwBMbiKKKpUFVcchRFwcuCpbKIKhCxjBEkr_1S0TKWCVYUPZQWCWNphIXEIXm-3G2t-T0o1-Vbc7Dav8yRMcFilsaRp-BCldY4Z1Wdt7b5kfaUU8jP6nKvLj-ry6_qfOXpUmmUUv9wkQhMEf8ABp1qWw
CODEN ITIICH
Cites_doi 10.1145/3025453.3025536
10.1038/s41598-019-49792-9
10.1109/ICCV48922.2021.00516
10.3389/fnins.2020.00119
10.7554/eLife.47314
10.1109/TNNLS.2021.3084827
10.1109/MSP.2015.2426728
10.1109/TCAD.2015.2474396
10.3389/fnins.2018.00774
10.1109/TIM.2013.2258766
10.1038/s41586-019-1677-2
10.4218/etrij.2021-0255
10.1109/TDSC.2019.2913362
10.1016/j.compeleceng.2024.109485
10.1109/IJCNN.2017.7966039
10.1109/TBME.2018.2879462
10.1109/JIOT.2023.3308654
10.1109/TWC.2019.2946140
10.1109/MSP.2019.2931595
10.1145/3023359
10.1109/TIM.2021.3106132
10.3389/fnins.2021.638474
10.1109/ACCESS.2019.2924045
10.1109/TBIOM.2021.3115465
10.1109/JPROC.2017.2761740
10.1109/MM.2018.112130359
10.1109/CVPR.2016.90
10.1109/TII.2022.3141408
10.1007/BF00994018
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2025.3558309
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 6027
ExternalDocumentID 10_1109_TII_2025_3558309
10979383
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 10.13039/501100003725
– fundername: Electronics and Telecommunications Research Institute
  funderid: 10.13039/501100003696
– fundername: Memory-computation convergence neuromorphic computing technology
  grantid: 25ZS1230
– fundername: Ministry of Science and ICT, South Korea; Ministry of Science and ICT
  grantid: RS-2024-00422599
  funderid: 10.13039/501100014188
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c247t-c022644189ed6c539bb5cb28ab4d096a630a5fb4dd1c6a73d135398b722843ba3
IEDL.DBID RIE
ISSN 1551-3203
IngestDate Thu Sep 25 23:40:53 EDT 2025
Wed Oct 01 05:49:05 EDT 2025
Wed Aug 27 02:14:18 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-c022644189ed6c539bb5cb28ab4d096a630a5fb4dd1c6a73d135398b722843ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9147-3898
0000-0001-8045-0244
0000-0003-3260-1620
0000-0002-4518-4208
0009-0001-5721-6238
PQID 3229262864
PQPubID 85507
PageCount 11
ParticipantIDs ieee_primary_10979383
crossref_primary_10_1109_TII_2025_3558309
proquest_journals_3229262864
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Hinton (ref22) 2015
References_xml – ident: ref6
  doi: 10.1145/3025453.3025536
– ident: ref7
  doi: 10.1038/s41598-019-49792-9
– ident: ref19
  doi: 10.1109/ICCV48922.2021.00516
– ident: ref20
  doi: 10.3389/fnins.2020.00119
– ident: ref29
  doi: 10.7554/eLife.47314
– ident: ref12
  doi: 10.1109/TNNLS.2021.3084827
– ident: ref4
  doi: 10.1109/MSP.2015.2426728
– ident: ref17
  doi: 10.1109/TCAD.2015.2474396
– ident: ref16
  doi: 10.3389/fnins.2018.00774
– ident: ref25
  doi: 10.1109/TIM.2013.2258766
– ident: ref15
  doi: 10.1038/s41586-019-1677-2
– ident: ref24
  doi: 10.4218/etrij.2021-0255
– year: 2015
  ident: ref22
  article-title: Distilling the knowledge in a neural network
– ident: ref13
  doi: 10.1109/TDSC.2019.2913362
– ident: ref30
  doi: 10.1016/j.compeleceng.2024.109485
– ident: ref26
  doi: 10.1109/IJCNN.2017.7966039
– ident: ref23
  doi: 10.1109/TBME.2018.2879462
– ident: ref9
  doi: 10.1109/JIOT.2023.3308654
– ident: ref14
  doi: 10.1109/TWC.2019.2946140
– ident: ref21
  doi: 10.1109/MSP.2019.2931595
– ident: ref5
  doi: 10.1145/3023359
– ident: ref8
  doi: 10.1109/TIM.2021.3106132
– ident: ref27
  doi: 10.3389/fnins.2021.638474
– ident: ref1
  doi: 10.1109/ACCESS.2019.2924045
– ident: ref3
  doi: 10.1109/TBIOM.2021.3115465
– ident: ref11
  doi: 10.1109/JPROC.2017.2761740
– ident: ref18
  doi: 10.1109/MM.2018.112130359
– ident: ref28
  doi: 10.1109/CVPR.2016.90
– ident: ref2
  doi: 10.1109/TII.2022.3141408
– ident: ref10
  doi: 10.1007/BF00994018
SSID ssj0037039
Score 2.432359
Snippet Spiking neural networks (SNNs) have been recently highlighted as an attractive approach for implementing artificial intelligence models in resource-constrained...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 6017
SubjectTerms Accuracy
Artificial intelligence
Artificial neural networks
Biometrics
Body pulse response
Chirp signals
convolutional neural network (CNN)
Convolutional neural networks
Couplings
Datasets
Feature extraction
Frequency modulation
Industrial applications
knowledge distillation (KD)
Neural networks
Parameters
Performance degradation
Performance evaluation
Reliability
spiking neural network (SNN)
Spiking neural networks
Training
user recognition
Vectors
Title BCRNet-SNN: Body Channel Response-Aware Spiking Neural Network for User Recognition
URI https://ieeexplore.ieee.org/document/10979383
https://www.proquest.com/docview/3229262864
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx78nDidkoMXD9m6pmkab5s4NsEe9gG7lXwJonRjdoj-9b6kLQxF8NZCE0Le68vvJb_3C0I3NFEhoHBFYgkhEPKvHpGWG8Ij03s2KuRCuELhpzQezaPHBVtUxeq-FsZa68lntuMe_Vm-WeqN2yrrutNSASnVLtrlSVwWa9Vhl4LrCi-OynqEhgGtzyQD0Z2Nx5AJhqzjtMSp4x5urUH-UpVfkdgvL8NDlNYDK1klr51NoTr664dm479HfoQOKqCJ-6VnHKMdm5-g_S35wVM0HdxPUluQaZre4cHSfGJXa5DbNzwpmbOW9D_k2uLp6sXtqGOn5AF9piV1HAPexXNwYTypWUjLvInmw4fZ_YhUlywQHUa8IDoIPSZKhDWxZlQoxbQKE6kiA-mNjGkg2TO8mJ6OJafGXZQhEsVDWNiokvQMNfJlbs8R1sIBGAOQhZuI2QTcgGsWW0atkToQLXRbT3u2KrU0Mp-DBCIDE2XORFllohZqulnc-q6cwBZq14bKqr_tPYOg5GQPkzi6-KPZJdpzvZfMvTZqFOuNvQI0Uahr70XfoCnEVA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROBQOvKsu0OIDFw5esrGdxNxYVLQLSw77kLhFfq2EWmVXS1ZV--s7dhJpRVWpt0SKE8szGX9jf_MZ4IplOkYUrmmiMARi_tWjyqWWptz25lbHqZS-UPg5TwYz_vgiXppi9VAL45wL5DPX9ZdhL98uzNovld343VKJKdUH2BGcc1GXa7WBl6HzyiCPKnqUxRFrdyUjeTMdDjEXjEXXq4kzzz7cmIXCsSp_xeIwwTwcQN52reaVfO-uK901v9-pNv533w9hv4Ga5K72jSPYcuUx7G0IEJ7ApH8_zl1FJ3l-S_oL-4v4aoPS_SDjmjvr6N1PtXJksnz1a-rEa3ngO_OaPE4Q8ZIZOjEZtzykRXkKs4dv0_sBbY5ZoCbmaUVNFAdUlElnEyOY1FoYHWdKc4sJjkpYpMQcb2zPJCpl1h-VITOdxji1Ma3YJ9guF6X7DMRID2EsgpbUcuEydITUiMQJ5qwykezAdTvsxbJW0yhCFhLJAk1UeBMVjYk6cOpHceO5egA7cNEaqmj-t7cCw5IXPswSfvaPZpfwcTB9HhWjYf50Drv-SzWP7wK2q9XafUFsUemvwaP-ABdrx6E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BCRNet-SNN%3A+Body+Channel+Response-Aware+Spiking+Neural+Network+for+User+Recognition&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Kang%2C+Taewook&rft.au=Shin%2C+Chanwoo&rft.au=Lee%2C+Jongseok&rft.au=Lee%2C+Jae-Jin&rft.date=2025-08-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=21&rft.issue=8&rft.spage=6017&rft.epage=6027&rft_id=info:doi/10.1109%2FTII.2025.3558309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2025_3558309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon