BCRNet-SNN: Body Channel Response-Aware Spiking Neural Network for User Recognition
Spiking neural networks (SNNs) have been recently highlighted as an attractive approach for implementing artificial intelligence models in resource-constrained edge devices for various industrial applications. These SNNs leverage low-power and wide dynamic range processing through biologically inspi...
        Saved in:
      
    
          | Published in | IEEE transactions on industrial informatics Vol. 21; no. 8; pp. 6017 - 6027 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        01.08.2025
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1551-3203 1941-0050  | 
| DOI | 10.1109/TII.2025.3558309 | 
Cover
| Abstract | Spiking neural networks (SNNs) have been recently highlighted as an attractive approach for implementing artificial intelligence models in resource-constrained edge devices for various industrial applications. These SNNs leverage low-power and wide dynamic range processing through biologically inspired event-driven operations in a massively parallel manner. In this respect, we propose BCRNet-SNN, an SNN model designed to utilize an electric body channel response (BCR) as a biometric feature for user recognition, where each element in the BCR dataset for 15 subjects is a 1-D vector comprising 380 feature points from the measured envelope by applying chirp signals to the body. The network parameters for implementing the posttrained BCRNet-SNN are inherited from the proposed convolutional neural network (CNN) that extensively extracts BCR-based biometric features (BCRNet), followed by applying knowledge distillation-based network lightening process on BCRNet. The performance evaluation results compared to ResNet18 and ResNet6 for the BCR dataset show that BCRNet achieves a greater than 2<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> and 1.4<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> improvement, respectively, in the average classification accuracy, while significantly reducing the number of network parameters to less than 1<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>. The student network distilled from the teacher BCRNet (BCRNet-S) requires only 5.1<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> network parameters than BCRNet, which can be eligible for implementation in BCRNet-SNN. The proposed structure of BCRNet-SNN to effectively accommodate the CNN-to-SNN-converted parameters from BCRNet-S can achieve up to a maximum accuracy of 98.11<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>, without observable performance degradation compared to BCRNet. | 
    
|---|---|
| AbstractList | Spiking neural networks (SNNs) have been recently highlighted as an attractive approach for implementing artificial intelligence models in resource-constrained edge devices for various industrial applications. These SNNs leverage low-power and wide dynamic range processing through biologically inspired event-driven operations in a massively parallel manner. In this respect, we propose BCRNet-SNN, an SNN model designed to utilize an electric body channel response (BCR) as a biometric feature for user recognition, where each element in the BCR dataset for 15 subjects is a 1-D vector comprising 380 feature points from the measured envelope by applying chirp signals to the body. The network parameters for implementing the posttrained BCRNet-SNN are inherited from the proposed convolutional neural network (CNN) that extensively extracts BCR-based biometric features (BCRNet), followed by applying knowledge distillation-based network lightening process on BCRNet. The performance evaluation results compared to ResNet18 and ResNet6 for the BCR dataset show that BCRNet achieves a greater than 2[Formula Omitted] and 1.4[Formula Omitted] improvement, respectively, in the average classification accuracy, while significantly reducing the number of network parameters to less than 1[Formula Omitted]. The student network distilled from the teacher BCRNet (BCRNet-S) requires only 5.1[Formula Omitted] network parameters than BCRNet, which can be eligible for implementation in BCRNet-SNN. The proposed structure of BCRNet-SNN to effectively accommodate the CNN-to-SNN-converted parameters from BCRNet-S can achieve up to a maximum accuracy of 98.11[Formula Omitted], without observable performance degradation compared to BCRNet. Spiking neural networks (SNNs) have been recently highlighted as an attractive approach for implementing artificial intelligence models in resource-constrained edge devices for various industrial applications. These SNNs leverage low-power and wide dynamic range processing through biologically inspired event-driven operations in a massively parallel manner. In this respect, we propose BCRNet-SNN, an SNN model designed to utilize an electric body channel response (BCR) as a biometric feature for user recognition, where each element in the BCR dataset for 15 subjects is a 1-D vector comprising 380 feature points from the measured envelope by applying chirp signals to the body. The network parameters for implementing the posttrained BCRNet-SNN are inherited from the proposed convolutional neural network (CNN) that extensively extracts BCR-based biometric features (BCRNet), followed by applying knowledge distillation-based network lightening process on BCRNet. The performance evaluation results compared to ResNet18 and ResNet6 for the BCR dataset show that BCRNet achieves a greater than 2<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> and 1.4<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> improvement, respectively, in the average classification accuracy, while significantly reducing the number of network parameters to less than 1<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>. The student network distilled from the teacher BCRNet (BCRNet-S) requires only 5.1<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> network parameters than BCRNet, which can be eligible for implementation in BCRNet-SNN. The proposed structure of BCRNet-SNN to effectively accommodate the CNN-to-SNN-converted parameters from BCRNet-S can achieve up to a maximum accuracy of 98.11<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>, without observable performance degradation compared to BCRNet.  | 
    
| Author | Shin, Chanwoo Lee, Jongseok Lee, Jae-Jin Kang, Taewook Kim, Seong-Eun Sim, Donggyu  | 
    
| Author_xml | – sequence: 1 givenname: Taewook orcidid: 0000-0001-9147-3898 surname: Kang fullname: Kang, Taewook organization: Artificial Intelligence Computing Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon, South Korea – sequence: 2 givenname: Chanwoo orcidid: 0009-0001-5721-6238 surname: Shin fullname: Shin, Chanwoo organization: Department of Artificial Intelligence, Seoul National University of Science and Technology, Seoul, South Korea – sequence: 3 givenname: Jongseok orcidid: 0000-0001-8045-0244 surname: Lee fullname: Lee, Jongseok organization: Digital Insights Company Ltd., Seoul, South Korea – sequence: 4 givenname: Jae-Jin orcidid: 0000-0003-3260-1620 surname: Lee fullname: Lee, Jae-Jin organization: Artificial Intelligence Computing Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon, South Korea – sequence: 5 givenname: Donggyu surname: Sim fullname: Sim, Donggyu organization: Digital Insights Company Ltd., Seoul, South Korea – sequence: 6 givenname: Seong-Eun orcidid: 0000-0002-4518-4208 surname: Kim fullname: Kim, Seong-Eun email: sekim@seoultech.ac.kr organization: Department of Artificial Intelligence, Seoul National University of Science and Technology, Seoul, South Korea  | 
    
| BookMark | eNpNkD1vwjAQhq2KSgXavUOHSJ1Dz744ibsB6gcSSiU-5shJHBqgdmoHIf59jWDo9N5Jz3snPQPS00YrQh4pjCgF8bKazUYMGB8h5ymCuCF9KiIaAnDo-ZlzGiIDvCMD57YAmACKPllOpotMdeEyy16DialOwfRbaq32wUK51minwvFRWhUs22bX6E2QqYOVex_d0dhdUBsbrJ2yHi_NRjddY_Q9ua3l3qmHaw7J-v1tNf0M518fs-l4HpYsSrqwBMbiKKKpUFVcchRFwcuCpbKIKhCxjBEkr_1S0TKWCVYUPZQWCWNphIXEIXm-3G2t-T0o1-Vbc7Dav8yRMcFilsaRp-BCldY4Z1Wdt7b5kfaUU8jP6nKvLj-ry6_qfOXpUmmUUv9wkQhMEf8ABp1qWw | 
    
| CODEN | ITIICH | 
    
| Cites_doi | 10.1145/3025453.3025536 10.1038/s41598-019-49792-9 10.1109/ICCV48922.2021.00516 10.3389/fnins.2020.00119 10.7554/eLife.47314 10.1109/TNNLS.2021.3084827 10.1109/MSP.2015.2426728 10.1109/TCAD.2015.2474396 10.3389/fnins.2018.00774 10.1109/TIM.2013.2258766 10.1038/s41586-019-1677-2 10.4218/etrij.2021-0255 10.1109/TDSC.2019.2913362 10.1016/j.compeleceng.2024.109485 10.1109/IJCNN.2017.7966039 10.1109/TBME.2018.2879462 10.1109/JIOT.2023.3308654 10.1109/TWC.2019.2946140 10.1109/MSP.2019.2931595 10.1145/3023359 10.1109/TIM.2021.3106132 10.3389/fnins.2021.638474 10.1109/ACCESS.2019.2924045 10.1109/TBIOM.2021.3115465 10.1109/JPROC.2017.2761740 10.1109/MM.2018.112130359 10.1109/CVPR.2016.90 10.1109/TII.2022.3141408 10.1007/BF00994018  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1109/TII.2025.3558309 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1941-0050 | 
    
| EndPage | 6027 | 
    
| ExternalDocumentID | 10_1109_TII_2025_3558309 10979383  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: 10.13039/501100003725 – fundername: Electronics and Telecommunications Research Institute funderid: 10.13039/501100003696 – fundername: Memory-computation convergence neuromorphic computing technology grantid: 25ZS1230 – fundername: Ministry of Science and ICT, South Korea; Ministry of Science and ICT grantid: RS-2024-00422599 funderid: 10.13039/501100014188  | 
    
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c247t-c022644189ed6c539bb5cb28ab4d096a630a5fb4dd1c6a73d135398b722843ba3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1551-3203 | 
    
| IngestDate | Thu Sep 25 23:40:53 EDT 2025 Wed Oct 01 05:49:05 EDT 2025 Wed Aug 27 02:14:18 EDT 2025  | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c247t-c022644189ed6c539bb5cb28ab4d096a630a5fb4dd1c6a73d135398b722843ba3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-9147-3898 0000-0001-8045-0244 0000-0003-3260-1620 0000-0002-4518-4208 0009-0001-5721-6238  | 
    
| PQID | 3229262864 | 
    
| PQPubID | 85507 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | ieee_primary_10979383 crossref_primary_10_1109_TII_2025_3558309 proquest_journals_3229262864  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-08-01 | 
    
| PublicationDateYYYYMMDD | 2025-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE transactions on industrial informatics | 
    
| PublicationTitleAbbrev | TII | 
    
| PublicationYear | 2025 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Hinton (ref22) 2015  | 
    
| References_xml | – ident: ref6 doi: 10.1145/3025453.3025536 – ident: ref7 doi: 10.1038/s41598-019-49792-9 – ident: ref19 doi: 10.1109/ICCV48922.2021.00516 – ident: ref20 doi: 10.3389/fnins.2020.00119 – ident: ref29 doi: 10.7554/eLife.47314 – ident: ref12 doi: 10.1109/TNNLS.2021.3084827 – ident: ref4 doi: 10.1109/MSP.2015.2426728 – ident: ref17 doi: 10.1109/TCAD.2015.2474396 – ident: ref16 doi: 10.3389/fnins.2018.00774 – ident: ref25 doi: 10.1109/TIM.2013.2258766 – ident: ref15 doi: 10.1038/s41586-019-1677-2 – ident: ref24 doi: 10.4218/etrij.2021-0255 – year: 2015 ident: ref22 article-title: Distilling the knowledge in a neural network – ident: ref13 doi: 10.1109/TDSC.2019.2913362 – ident: ref30 doi: 10.1016/j.compeleceng.2024.109485 – ident: ref26 doi: 10.1109/IJCNN.2017.7966039 – ident: ref23 doi: 10.1109/TBME.2018.2879462 – ident: ref9 doi: 10.1109/JIOT.2023.3308654 – ident: ref14 doi: 10.1109/TWC.2019.2946140 – ident: ref21 doi: 10.1109/MSP.2019.2931595 – ident: ref5 doi: 10.1145/3023359 – ident: ref8 doi: 10.1109/TIM.2021.3106132 – ident: ref27 doi: 10.3389/fnins.2021.638474 – ident: ref1 doi: 10.1109/ACCESS.2019.2924045 – ident: ref3 doi: 10.1109/TBIOM.2021.3115465 – ident: ref11 doi: 10.1109/JPROC.2017.2761740 – ident: ref18 doi: 10.1109/MM.2018.112130359 – ident: ref28 doi: 10.1109/CVPR.2016.90 – ident: ref2 doi: 10.1109/TII.2022.3141408 – ident: ref10 doi: 10.1007/BF00994018  | 
    
| SSID | ssj0037039 | 
    
| Score | 2.432359 | 
    
| Snippet | Spiking neural networks (SNNs) have been recently highlighted as an attractive approach for implementing artificial intelligence models in resource-constrained... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 6017 | 
    
| SubjectTerms | Accuracy Artificial intelligence Artificial neural networks Biometrics Body pulse response Chirp signals convolutional neural network (CNN) Convolutional neural networks Couplings Datasets Feature extraction Frequency modulation Industrial applications knowledge distillation (KD) Neural networks Parameters Performance degradation Performance evaluation Reliability spiking neural network (SNN) Spiking neural networks Training user recognition Vectors  | 
    
| Title | BCRNet-SNN: Body Channel Response-Aware Spiking Neural Network for User Recognition | 
    
| URI | https://ieeexplore.ieee.org/document/10979383 https://www.proquest.com/docview/3229262864  | 
    
| Volume | 21 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037039 issn: 1551-3203 databaseCode: RIE dateStart: 20050101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx78nDidkoMXD9m6pmkab5s4NsEe9gG7lXwJonRjdoj-9b6kLQxF8NZCE0Le68vvJb_3C0I3NFEhoHBFYgkhEPKvHpGWG8Ij03s2KuRCuELhpzQezaPHBVtUxeq-FsZa68lntuMe_Vm-WeqN2yrrutNSASnVLtrlSVwWa9Vhl4LrCi-OynqEhgGtzyQD0Z2Nx5AJhqzjtMSp4x5urUH-UpVfkdgvL8NDlNYDK1klr51NoTr664dm479HfoQOKqCJ-6VnHKMdm5-g_S35wVM0HdxPUluQaZre4cHSfGJXa5DbNzwpmbOW9D_k2uLp6sXtqGOn5AF9piV1HAPexXNwYTypWUjLvInmw4fZ_YhUlywQHUa8IDoIPSZKhDWxZlQoxbQKE6kiA-mNjGkg2TO8mJ6OJafGXZQhEsVDWNiokvQMNfJlbs8R1sIBGAOQhZuI2QTcgGsWW0atkToQLXRbT3u2KrU0Mp-DBCIDE2XORFllohZqulnc-q6cwBZq14bKqr_tPYOg5GQPkzi6-KPZJdpzvZfMvTZqFOuNvQI0Uahr70XfoCnEVA | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROBQOvKsu0OIDFw5esrGdxNxYVLQLSw77kLhFfq2EWmVXS1ZV--s7dhJpRVWpt0SKE8szGX9jf_MZ4IplOkYUrmmiMARi_tWjyqWWptz25lbHqZS-UPg5TwYz_vgiXppi9VAL45wL5DPX9ZdhL98uzNovld343VKJKdUH2BGcc1GXa7WBl6HzyiCPKnqUxRFrdyUjeTMdDjEXjEXXq4kzzz7cmIXCsSp_xeIwwTwcQN52reaVfO-uK901v9-pNv533w9hv4Ga5K72jSPYcuUx7G0IEJ7ApH8_zl1FJ3l-S_oL-4v4aoPS_SDjmjvr6N1PtXJksnz1a-rEa3ngO_OaPE4Q8ZIZOjEZtzykRXkKs4dv0_sBbY5ZoCbmaUVNFAdUlElnEyOY1FoYHWdKc4sJjkpYpMQcb2zPJCpl1h-VITOdxji1Ma3YJ9guF6X7DMRID2EsgpbUcuEydITUiMQJ5qwykezAdTvsxbJW0yhCFhLJAk1UeBMVjYk6cOpHceO5egA7cNEaqmj-t7cCw5IXPswSfvaPZpfwcTB9HhWjYf50Drv-SzWP7wK2q9XafUFsUemvwaP-ABdrx6E | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BCRNet-SNN%3A+Body+Channel+Response-Aware+Spiking+Neural+Network+for+User+Recognition&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Kang%2C+Taewook&rft.au=Shin%2C+Chanwoo&rft.au=Lee%2C+Jongseok&rft.au=Lee%2C+Jae-Jin&rft.date=2025-08-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=21&rft.issue=8&rft.spage=6017&rft.epage=6027&rft_id=info:doi/10.1109%2FTII.2025.3558309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2025_3558309 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |