ACFix: Guiding LLMs With Mined Common RBAC Practices for Context-Aware Repair of Access Control Vulnerabilities in Smart Contracts
Smart contracts are susceptible to various security issues, among which access control (AC) vulnerabilities are particularly critical. While existing research has proposed multiple detection tools, automatic and appropriate repair of AC vulnerabilities in smart contracts remains a challenge. Unlike...
Saved in:
| Published in | IEEE transactions on software engineering Vol. 51; no. 9; pp. 2512 - 2532 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.09.2025
IEEE Computer Society |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0098-5589 1939-3520 |
| DOI | 10.1109/TSE.2025.3590108 |
Cover
| Abstract | Smart contracts are susceptible to various security issues, among which access control (AC) vulnerabilities are particularly critical. While existing research has proposed multiple detection tools, automatic and appropriate repair of AC vulnerabilities in smart contracts remains a challenge. Unlike commonly supported vulnerability types by existing repair tools, such as reentrancy, which are usually fixed by template-based approaches, the main obstacle of repairing AC vulnerabilities lies in identifying the appropriate roles or permissions amid a long list of non-AC-related source code to generate proper patch code, a task that demands human-level intelligence. In this paper, we employ the state-of-the-art GPT-4 model and enhance it with a novel approach called ACFix . The key insight is that we can mine common AC practices for major categories of code functionality and use them to guide LLMs in fixing code with similar functionality. To this end, ACFix involves offline and online phases. In the offline phase, ACFix mines a taxonomy of common Role-based Access Control practices from 344,251 on-chain contracts, categorizing 49 role-permission pairs from the top 1,000 unique samples. In the online phase, ACFix tracks AC-related elements across the contract and uses this context information along with a Chain-of-Thought pipeline to guide LLMs in identifying the most appropriate role-permission pair for the subject contract and subsequently generating a suitable patch. To evaluate ACFix , we built the first benchmark dataset of 118 real-world AC vulnerabilities, and our evaluation revealed that ACFix successfully repaired 94.92% of them, a major improvement compared to the baseline GPT-4 at only 52.54%. We also conducted a human study to understand the value of ACFix 's repairs and their differences from human repairs. |
|---|---|
| AbstractList | Smart contracts are susceptible to various security issues, among which access control (AC) vulnerabilities are particularly critical. While existing research has proposed multiple detection tools, automatic and appropriate repair of AC vulnerabilities in smart contracts remains a challenge. Unlike commonly supported vulnerability types by existing repair tools, such as reentrancy, which are usually fixed by template-based approaches, the main obstacle of repairing AC vulnerabilities lies in identifying the appropriate roles or permissions amid a long list of non-AC-related source code to generate proper patch code, a task that demands human-level intelligence. In this paper, we employ the state-of-the-art GPT-4 model and enhance it with a novel approach called ACFix . The key insight is that we can mine common AC practices for major categories of code functionality and use them to guide LLMs in fixing code with similar functionality. To this end, ACFix involves offline and online phases. In the offline phase, ACFix mines a taxonomy of common Role-based Access Control practices from 344,251 on-chain contracts, categorizing 49 role-permission pairs from the top 1,000 unique samples. In the online phase, ACFix tracks AC-related elements across the contract and uses this context information along with a Chain-of-Thought pipeline to guide LLMs in identifying the most appropriate role-permission pair for the subject contract and subsequently generating a suitable patch. To evaluate ACFix , we built the first benchmark dataset of 118 real-world AC vulnerabilities, and our evaluation revealed that ACFix successfully repaired 94.92% of them, a major improvement compared to the baseline GPT-4 at only 52.54%. We also conducted a human study to understand the value of ACFix 's repairs and their differences from human repairs. |
| Author | Sun, Kairan Zhang, Lyuye Liu, Ye Tian, Haoye Li, Kaixuan Liu, Yang Wu, Daoyuan |
| Author_xml | – sequence: 1 givenname: Lyuye orcidid: 0000-0003-3087-9645 surname: Zhang fullname: Zhang, Lyuye organization: College of Computing and Data Science, Nanyang Technological University, Singapore – sequence: 2 givenname: Kaixuan orcidid: 0000-0002-3517-353X surname: Li fullname: Li, Kaixuan organization: College of Computing and Data Science, Nanyang Technological University, Singapore – sequence: 3 givenname: Kairan orcidid: 0009-0005-2510-3684 surname: Sun fullname: Sun, Kairan organization: College of Computing and Data Science, Nanyang Technological University, Singapore – sequence: 4 givenname: Daoyuan orcidid: 0000-0002-3752-0718 surname: Wu fullname: Wu, Daoyuan email: daoyuanwu@ln.edu.hk organization: Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China – sequence: 5 givenname: Ye orcidid: 0000-0001-6709-3721 surname: Liu fullname: Liu, Ye organization: Singapore Management University, Singapore – sequence: 6 givenname: Haoye orcidid: 0000-0002-8049-3997 surname: Tian fullname: Tian, Haoye organization: University of Luxembourg, luxembourg, luxembourg – sequence: 7 givenname: Yang orcidid: 0000-0001-7300-9215 surname: Liu fullname: Liu, Yang organization: College of Computing and Data Science, Nanyang Technological University, Singapore |
| BookMark | eNpFkDtPwzAURi0EEm1hZ2CwxJziR53EbCEqD6kViOcYOc4NuGrtYicCVn45hiAx3eE7371XZ4x2rbOA0BElU0qJPH24n08ZYWLKhSSU5DtoRCWXCReM7KIRITJPhMjlPhqHsCKEiCwTI_RVlBfm4wxf9qYx9gUvFsuAn033ipfGQoNLt9k4i-_OixLfeqU7oyHg1vmY2A4-uqR4Vx7wHWyV8di1uNCRCL-xd2v81K8teFWbtelMrBqL7zfKdwMQF4YDtNeqdYDDvzlBjxfzh_IqWdxcXpfFItFslnWJqps2y2dcSZllkLYUWk1ZqoXMAIhuU6pTRahWIlqY1XlNKW1mWhOQDeOc8Qk6GfZuvXvrIXTVyvXexpMVZ4JxSnlKI0UGSnsXgoe22noTH_6sKKl-TFfRdPVjuvozHSvHQ8UAwD8eo1TkGf8GnyV7uA |
| CODEN | IESEDJ |
| Cites_doi | 10.1109/ICSE48619.2023.00087 10.1109/SP40001.2021.00057 10.1145/3551349.3556956 10.1145/3385412.3385990 10.1109/ICSE48619.2023.00125 10.1145/3243734.3243780 10.1145/3558535.3559780 10.1109/WETSEB.2019.00008 10.1145/3597503.3639117 10.1145/3597926.3598125 10.18653/v1/2024.naacl-long.15 10.1145/3368089.3409757 10.1109/TSE.1984.5010248 10.1109/ICSE48619.2023.00057 10.1145/3213846.3213871 10.14722/ndss.2023.24222 10.1145/3702973 10.1007/s11432-024-4222-0 10.1109/ASE51524.2021.9678597 10.1145/3402450 10.1109/TSE.2022.3156637 10.1145/24039.24041 10.1145/3641846 10.1109/ase56229.2023.00047 10.1145/3318162 10.1109/SP40000.2020.00040 10.1016/s0065-2458(08)60206-5 10.1109/ICSE48619.2023.00129 10.14722/ndss.2018.23082 10.1002/spe.4380250705 10.1145/3533767.3534372 10.1145/3548606.3559342 10.1109/ICSE.2013.6606626 10.1145/3540250.3549098 10.1109/SANER48275.2020.9054825 10.1109/ASE56229.2023.00181 10.1145/3611643.3616271 10.1109/TSE.2021.3123170 10.1145/3274694.3274743 10.1145/3377811.3380364 10.18653/v1/2023.matching-1.7 10.1109/Blockchain62396.2024.00064 10.18653/v1/2024.emnlp-main.992 10.1109/ICSE.2009.5070536 10.1145/2837614.2837617 10.1145/3545948.3545975 10.1145/3611643.3616341 10.1145/2786805.2786811 10.1145/3650212.3680323 10.1109/WPC.1996.501116 10.1109/TSE.2022.3147265 10.1109/ICSE48619.2023.00036 |
| ContentType | Journal Article |
| Copyright | Copyright IEEE Computer Society 2025 |
| Copyright_xml | – notice: Copyright IEEE Computer Society 2025 |
| DBID | 97E RIA RIE AAYXX CITATION JQ2 K9. |
| DOI | 10.1109/TSE.2025.3590108 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) |
| DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1939-3520 |
| EndPage | 2532 |
| ExternalDocumentID | 10_1109_TSE_2025_3590108 11086587 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Cybersecurity R&D Programme grantid: NCRP25-P04-TAICeN – fundername: Campus for Research Excellence and Technological Enterprise (CREATE) Programme – fundername: Academic Research Fund Tier 1 grantid: RG96/23 – fundername: AI Singapore Programme grantid: AISG Award No: AISG2-GC-2023-008-1B |
| GroupedDBID | --Z -DZ -~X .4S .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 7WY 7X7 85S 88E 88I 8FE 8FG 8FI 8FJ 8FL 8G5 8R4 8R5 97E 9M8 AAJGR AASAJ AAWTH ABAZT ABFSI ABJCF ABPPZ ABQJQ ABUWG ABVLG ACGFO ACGOD ACIWK ACNCT ADBBV AENEX AETIX AFKRA AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS ASUFR ATWAV AZQEC BEFXN BENPR BEZIV BFFAM BGLVJ BGNUA BKEBE BKOMP BPEOZ BPHCQ BVXVI CCPQU CS3 DU5 DWQXO E.L EBS EDO EJD FRNLG FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HMCUK HZ~ H~9 I-F IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI ITG ITH JAVBF K60 K6V K6~ K7- L6V LAI M0C M1P M1Q M2O M2P M43 M7S MS~ O9- OCL OHT P2P P62 PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO Q2X RIA RIE RNI RNS RXW RZB S10 TAE TN5 TWZ UHB UKHRP UPT UQL VH1 WH7 XOL YYP YZZ ZCG AAYXX CITATION JQ2 K9. |
| ID | FETCH-LOGICAL-c247t-abdf7843a9977e6f1efc126c597ee0cf61c6a01ca50254b8b111d4cc0e9d23323 |
| IEDL.DBID | RIE |
| ISSN | 0098-5589 |
| IngestDate | Mon Oct 20 00:39:03 EDT 2025 Wed Oct 01 05:17:50 EDT 2025 Wed Oct 01 07:05:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c247t-abdf7843a9977e6f1efc126c597ee0cf61c6a01ca50254b8b111d4cc0e9d23323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3087-9645 0009-0005-2510-3684 0000-0002-8049-3997 0000-0002-3752-0718 0000-0001-7300-9215 0000-0002-3517-353X 0000-0001-6709-3721 |
| PQID | 3252311361 |
| PQPubID | 21418 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_3252311361 crossref_primary_10_1109_TSE_2025_3590108 ieee_primary_11086587 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on software engineering |
| PublicationTitleAbbrev | TSE |
| PublicationYear | 2025 |
| Publisher | IEEE IEEE Computer Society |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society |
| References | ref57 ref56 ref59 ref58 ref52 Wood (ref1) 2014 Devlin (ref31) 2019 Wu (ref8) 2021 ref51 ref50 Tian (ref27) 2023 ref46 ref45 ref48 ref42 ref41 Radford (ref32) ref49 Wang (ref80) 2024 ref7 ref9 ref4 ref3 ref6 ref5 Rodler (ref20) 2021 ref100 (ref73) 2023 Xiao (ref62) 2020 ref34 ref36 ref33 (ref38) 2024 ref39 ref24 ref23 Giesen (ref79) 2022 ref22 ref21 Touvron (ref25) 2023 ref28 Durieux (ref68) 2020 ref29 (ref26) 2023 ref13 ref12 ref15 Yuan (ref55) 2023 ref14 ref97 ref96 ref11 ref99 ref10 ref98 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 (ref72) 2023 ref91 Sun (ref54) 2024 ref90 Wei (ref30) 2022; 35 ref89 ref86 ref85 ref88 Szabo (ref37) 1997 Tikhomirov (ref77) 2018 Du (ref47) 2023 ref82 ref81 Lewis (ref44) 2020 ref84 ref83 ref78 ref75 ref76 Schick (ref43) 2023 ref2 (ref74) 2023 ref71 ref70 ref67 ref64 ref63 ref66 Jiang (ref35) 2023 ref65 David (ref53) 2023 (ref40) 2023 (ref69) 2023 Son (ref87) 2013 ref60 ref61 |
| References_xml | – ident: ref70 article-title: DeFi hack labs – ident: ref34 article-title: GPT3.5 – year: 2023 ident: ref25 article-title: Llama 2: Open foundation and fine-tuned chat models – ident: ref9 doi: 10.1109/ICSE48619.2023.00087 – ident: ref85 article-title: Quitoxic – year: 2023 ident: ref74 article-title: Medium – ident: ref15 doi: 10.1109/SP40001.2021.00057 – ident: ref63 doi: 10.1145/3551349.3556956 – ident: ref11 doi: 10.1145/3385412.3385990 – ident: ref100 doi: 10.1109/ICSE48619.2023.00125 – ident: ref76 doi: 10.1145/3243734.3243780 – ident: ref2 doi: 10.1145/3558535.3559780 – ident: ref66 doi: 10.1109/WETSEB.2019.00008 – ident: ref56 doi: 10.1145/3597503.3639117 – ident: ref13 doi: 10.1145/3597926.3598125 – ident: ref52 article-title: Open card sorting – ident: ref46 doi: 10.18653/v1/2024.naacl-long.15 – ident: ref60 doi: 10.1145/3368089.3409757 – ident: ref58 doi: 10.1109/TSE.1984.5010248 – ident: ref86 article-title: Guardian role for ERC20 – ident: ref61 doi: 10.1109/ICSE48619.2023.00057 – ident: ref94 doi: 10.1145/3213846.3213871 – ident: ref50 article-title: Ethereum contracts – ident: ref64 doi: 10.14722/ndss.2023.24222 – ident: ref57 doi: 10.1145/3702973 – ident: ref21 article-title: Smart contract initialization – year: 2023 ident: ref40 article-title: GYMNetwork attack – ident: ref48 doi: 10.1007/s11432-024-4222-0 – ident: ref51 doi: 10.1109/ASE51524.2021.9678597 – ident: ref17 doi: 10.1145/3402450 – year: 2019 ident: ref31 article-title: Bert: Pre-training of deep bidirectional transformers for language understanding – ident: ref33 article-title: ChatGPT – ident: ref92 doi: 10.1109/TSE.2022.3156637 – ident: ref84 article-title: How much does GPT-4 cost? – year: 2023 ident: ref69 article-title: National vulnerability database – ident: ref65 doi: 10.1145/24039.24041 – ident: ref36 article-title: Llama3 – ident: ref78 doi: 10.1145/3641846 – ident: ref42 doi: 10.1109/ase56229.2023.00047 – year: 2023 ident: ref27 article-title: Is ChatGPT the ultimate programming assistant – How far is it? – ident: ref49 doi: 10.1145/3318162 – ident: ref23 article-title: Unchecked low-level call – ident: ref7 doi: 10.1109/SP40000.2020.00040 – ident: ref39 article-title: OpenZepplin Access Control – ident: ref24 doi: 10.1016/s0065-2458(08)60206-5 – ident: ref28 article-title: ChatGPT hallucination – start-page: 9 volume-title: Proc. 1st Int. Workshop Emerg. trends in Softw. Eng. Blockchain year: 2018 ident: ref77 article-title: SmartCheck: Static analysis of Ethereum smart contracts – year: 2023 ident: ref26 article-title: GPT-4 technical report – volume-title: Proc. NDSS year: 2013 ident: ref87 article-title: Fix me up: Repairing access-control bugs in web applications – ident: ref88 doi: 10.1109/ICSE48619.2023.00129 – year: 2021 ident: ref8 article-title: DeFiRanger: Detecting price manipulation attacks on DeFi applications – year: 2023 ident: ref72 article-title: Blocksec building blockchain security infrastructure – ident: ref6 doi: 10.14722/ndss.2018.23082 – ident: ref10 article-title: Parity wallet attack – ident: ref67 doi: 10.1002/spe.4380250705 – ident: ref12 doi: 10.1145/3533767.3534372 – ident: ref3 doi: 10.1145/3548606.3559342 – year: 1997 ident: ref37 article-title: Smart contracts: Building blocks for digital markets – ident: ref95 doi: 10.1109/ICSE.2013.6606626 – ident: ref91 doi: 10.1145/3540250.3549098 – year: 2023 ident: ref53 article-title: Do you still need a manual smart contract audit? – ident: ref16 doi: 10.1109/SANER48275.2020.9054825 – ident: ref99 doi: 10.1109/ASE56229.2023.00181 – ident: ref90 doi: 10.1145/3611643.3616271 – ident: ref71 article-title: Tintinweb Vul Dataset – ident: ref18 doi: 10.1109/TSE.2021.3123170 – start-page: 1289 volume-title: Proc. 30th USENIX Secur. Symp. (USENIX Secur.) year: 2021 ident: ref20 article-title: $\{${EVMPatch$\}$}: Timely and automated patching of Ethereum smart contracts – start-page: 1165 volume-title: Proc. 29th USENIX Secur. Symp. (USENIX Secur.) year: 2020 ident: ref62 article-title: $\{${MVP$\}$}: Detecting vulnerabilities using $\{${patch-enhanced$\}$} vulnerability signatures – year: 2023 ident: ref47 article-title: Improving factuality and reasoning in language models through multiagent debate – ident: ref82 article-title: OpenAI Formatting – year: 2024 ident: ref38 article-title: ERC 20 – ident: ref22 doi: 10.1145/3274694.3274743 – year: 2023 ident: ref73 article-title: SlowMist – start-page: 9459 volume-title: Proc. NeurIPS year: 2020 ident: ref44 article-title: Retrieval-augmented generation for knowledge-intensive NLP tasks – start-page: 530 volume-title: Proc. ACM/IEEE 42nd Int. Conf. Softw. Eng. year: 2020 ident: ref68 article-title: Empirical review of automated analysis tools on 47,587 Ethereum smart contracts doi: 10.1145/3377811.3380364 – start-page: 2350 volume-title: Proc. 39th IEEE/ACM Int. Conf. Autom. Softw. Eng. year: 2024 ident: ref80 article-title: ContractTinker: LLM-empowered vulnerability repair for real-world smart contracts – start-page: 1 year: 2014 ident: ref1 article-title: Ethereum: A secure decentralised generalised transaction ledger – ident: ref45 doi: 10.18653/v1/2023.matching-1.7 – ident: ref81 doi: 10.1109/Blockchain62396.2024.00064 – year: 2022 ident: ref79 article-title: Practical mitigation of smart contract bugs – year: 2024 ident: ref54 article-title: LLM4Vuln: A unified evaluation framework for decoupling and enhancing LLMs’ vulnerability reasoning – ident: ref29 doi: 10.18653/v1/2024.emnlp-main.992 – year: 2023 ident: ref43 article-title: Toolformer: Language models can teach themselves to use tools – ident: ref83 article-title: Etherscan – volume: 35 start-page: 24824 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2022 ident: ref30 article-title: Chain-of-thought prompting elicits reasoning in large language models – ident: ref98 doi: 10.1109/ICSE.2009.5070536 – ident: ref97 doi: 10.1145/2837614.2837617 – ident: ref19 doi: 10.1145/3545948.3545975 – ident: ref4 article-title: Solidity – ident: ref14 doi: 10.1145/3611643.3616341 – ident: ref75 article-title: ACFix Website – ident: ref96 doi: 10.1145/2786805.2786811 – year: 2023 ident: ref55 article-title: No more manual tests? Evaluating and improving ChatGPT for unit test generation – ident: ref89 doi: 10.1145/3650212.3680323 – ident: ref59 doi: 10.1109/WPC.1996.501116 – year: 2023 ident: ref35 article-title: Mistral 7b – ident: ref93 doi: 10.1109/TSE.2022.3147265 – ident: ref5 doi: 10.1109/ICSE48619.2023.00036 – ident: ref32 article-title: Improving language understanding by generative pre-training – ident: ref41 article-title: Example address |
| SSID | ssj0005775 ssib053395008 |
| Score | 2.480536 |
| Snippet | Smart contracts are susceptible to various security issues, among which access control (AC) vulnerabilities are particularly critical. While existing research... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 2512 |
| SubjectTerms | Access control Benchmark testing Blockchains Codes Contracts Logic Maintenance engineering Natural language processing program repair Repair Smart contract Smart contracts software security Source code Source coding Taxonomy |
| Title | ACFix: Guiding LLMs With Mined Common RBAC Practices for Context-Aware Repair of Access Control Vulnerabilities in Smart Contracts |
| URI | https://ieeexplore.ieee.org/document/11086587 https://www.proquest.com/docview/3252311361 |
| Volume | 51 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-3520 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005775 issn: 0098-5589 databaseCode: RIE dateStart: 19750101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKp17Ko1Td8tAceukhS-LEccItrFgQYlFVoOUWxc5YRKVJtZuIqkd-OWMnERVVpd4iZWJZnrHn--J5MPaRJwXhXh89RWDVi6JQeSkGwuMBWbMSiitXTGdxGZ_dROe34nZIVne5MIjogs9wah_dXX7Z6M7-Kju0IevkMeUaW5NJ3CdrPcdzSCnGAplCJOl4J-mnh9dXJ8QEuZiGNtPSdpL8wwe5pip_ncTOvcw32OU4sT6q5Pu0a9VU_35Rs_G_Z77J3gxAE7LeMrbYK6y32cbYxAGGPf2WPWazefXrCE67yroxuLhYrOBb1d7BggBoCTaDpKnhy3E2g89DStUKCOqCK2xFvDl7KJYIhOSLagmNgcz1YHSvl809fO3ubWVrF4RLtByqGq5-kMH2AjTgaofdzE-uZ2fe0JjB0zySrVeo0sgkCouU0CPGJkCjAx5rIieIvjZxoOPCD2y3BeKfKlF0oJaR1j6mJQ9DHr5j63VT43sGpTCBicrCCFlEnKMqURIFkqGRJM75hH0aVZX_7Otv5I63-GlOas2tWvNBrRO2Y1f-WW5Y9AnbG5WbDzt0lYecKLhtaBN8-Mdnu-y1Hb0PKNtj6-2yw31CIK06cJb3BHeS108 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoPbSX0gcVCxTm0AuHLIljx5vewoplaXdXqCwttyh2bDUqTdBuIqoe-8sZO4moiir1FimTxPKMPd8Xz4OQ93SUIe71tScRrHqMhdKLdcA9GqA1Sy6pdMV05otoesU-XvPrLlnd5cJorV3wmR7aS3eWn1eqsb_Kjm3IOnpM8YQ85Ywx3qZrPUR0CMH7Epmcj-L-VNKPj5eXp8gFKR-GNtfS9pL8wwu5tiqP9mLnYCZbZNEPrY0r-T5sajlUv_6q2vjfY39JXnRQE5LWNl6RDV2-Jlt9GwfoVvUb8jsZT4qfH-CsKawjg9lsvoavRf0N5ghBc7A5JFUJn0-SMVx0SVVrQLALrrQVMufkLltpQCyfFSuoDCSuC6O7vapu4EtzY2tbuzBcJOZQlHD5A022FcAXrrfJ1eR0OZ56XWsGT1Emai-TuREjFmYx4kcdmUAbFdBIIT3R2lcmClSU-YHtt4AMVI4kbqk5U8rXcU7DkIZvyWZZlXqHQM5NYFieGS4yRqmWuRZIgkRoBIpTOiBHvarS27YCR-qYix-nqNbUqjXt1Dog23bmH-S6SR-Q_V65abdG12lIkYTbljbB7j8eOyTPpsv5LJ2dLz7tkef2S2142T7ZrFeNfod4pJYHzgrvAeVg2pw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ACFix%3A+Guiding+LLMs+With+Mined+Common+RBAC+Practices+for+Context-Aware+Repair+of+Access+Control+Vulnerabilities+in+Smart+Contracts&rft.jtitle=IEEE+transactions+on+software+engineering&rft.au=Zhang%2C+Lyuye&rft.au=Li%2C+Kaixuan&rft.au=Sun%2C+Kairan&rft.au=Wu%2C+Daoyuan&rft.date=2025-09-01&rft.issn=0098-5589&rft.eissn=1939-3520&rft.volume=51&rft.issue=9&rft.spage=2512&rft.epage=2532&rft_id=info:doi/10.1109%2FTSE.2025.3590108&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSE_2025_3590108 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-5589&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-5589&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-5589&client=summon |