Prediction of Anger Expression of Individuals with Psychiatric Disorders using the Developed Computational Codes based on the Various Soft Computing Algorithms
Anger is defined as a psychobiological emotional state that consists of feelings varying in intensity from mild irritation or annoyance to intense fury and rage. Dysfunction in anger regulation is marker of most psychiatric disorders. The most important point about anger regulation by the individual...
Saved in:
| Published in | The Spanish journal of psychology Vol. 22; p. E62 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
England
01.01.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1138-7416 1988-2904 1988-2904 |
| DOI | 10.1017/sjp.2019.59 |
Cover
| Abstract | Anger is defined as a psychobiological emotional state that consists of feelings varying in intensity from mild irritation or annoyance to intense fury and rage. Dysfunction in anger regulation is marker of most psychiatric disorders. The most important point about anger regulation by the individuals is how to express anger and control it. The purpose of the present study is to predict the anger expression from the anger experience in individuals with psychiatric disorder for assessment of how to express and control the anger. To this end, the number of 3,000 subjects of individuals with clinical disorders had filled in the State-Trait Anger Expression Inventory–II (STAXI–II). After removing the uncertain diagnoses (900 subjects), the number of 2,100 data was considered in the analysis. Then, the computational codes based on three soft computing algorithms, including Radial Basis Function (
RBF
), Adaptive Neuro-Fuzzy Inference System (
ANFIS
) and Decision Tree (
DT
) were developed to predict the scales of anger expression of the individuals with psychiatric disorders. The scales of anger experience were used as input data of the developed computational codes. Comparison between the results obtained from the
DT
,
RBF
and
ANFIS
algorithms show that all the developed soft computing algorithms forecast the anger expression scales with an acceptable accuracy. However, the accuracy of the
DT
algorithm is better than the other algorithms. |
|---|---|
| AbstractList | Anger is defined as a psychobiological emotional state that consists of feelings varying in intensity from mild irritation or annoyance to intense fury and rage. Dysfunction in anger regulation is marker of most psychiatric disorders. The most important point about anger regulation by the individuals is how to express anger and control it. The purpose of the present study is to predict the anger expression from the anger experience in individuals with psychiatric disorder for assessment of how to express and control the anger. To this end, the number of 3,000 subjects of individuals with clinical disorders had filled in the State-Trait Anger Expression Inventory-II (STAXI-II). After removing the uncertain diagnoses (900 subjects), the number of 2,100 data was considered in the analysis. Then, the computational codes based on three soft computing algorithms, including Radial Basis Function (RBF), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Decision Tree (DT) were developed to predict the scales of anger expression of the individuals with psychiatric disorders. The scales of anger experience were used as input data of the developed computational codes. Comparison between the results obtained from the DT, RBF and ANFIS algorithms show that all the developed soft computing algorithms forecast the anger expression scales with an acceptable accuracy. However, the accuracy of the DT algorithm is better than the other algorithms. Anger is defined as a psychobiological emotional state that consists of feelings varying in intensity from mild irritation or annoyance to intense fury and rage. Dysfunction in anger regulation is marker of most psychiatric disorders. The most important point about anger regulation by the individuals is how to express anger and control it. The purpose of the present study is to predict the anger expression from the anger experience in individuals with psychiatric disorder for assessment of how to express and control the anger. To this end, the number of 3,000 subjects of individuals with clinical disorders had filled in the State-Trait Anger Expression Inventory–II (STAXI–II). After removing the uncertain diagnoses (900 subjects), the number of 2,100 data was considered in the analysis. Then, the computational codes based on three soft computing algorithms, including Radial Basis Function ( RBF ), Adaptive Neuro-Fuzzy Inference System ( ANFIS ) and Decision Tree ( DT ) were developed to predict the scales of anger expression of the individuals with psychiatric disorders. The scales of anger experience were used as input data of the developed computational codes. Comparison between the results obtained from the DT , RBF and ANFIS algorithms show that all the developed soft computing algorithms forecast the anger expression scales with an acceptable accuracy. However, the accuracy of the DT algorithm is better than the other algorithms. Anger is defined as a psychobiological emotional state that consists of feelings varying in intensity from mild irritation or annoyance to intense fury and rage. Dysfunction in anger regulation is marker of most psychiatric disorders. The most important point about anger regulation by the individuals is how to express anger and control it. The purpose of the present study is to predict the anger expression from the anger experience in individuals with psychiatric disorder for assessment of how to express and control the anger. To this end, the number of 3,000 subjects of individuals with clinical disorders had filled in the State-Trait Anger Expression Inventory-II (STAXI-II). After removing the uncertain diagnoses (900 subjects), the number of 2,100 data was considered in the analysis. Then, the computational codes based on three soft computing algorithms, including Radial Basis Function (RBF), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Decision Tree (DT) were developed to predict the scales of anger expression of the individuals with psychiatric disorders. The scales of anger experience were used as input data of the developed computational codes. Comparison between the results obtained from the DT, RBF and ANFIS algorithms show that all the developed soft computing algorithms forecast the anger expression scales with an acceptable accuracy. However, the accuracy of the DT algorithm is better than the other algorithms.Anger is defined as a psychobiological emotional state that consists of feelings varying in intensity from mild irritation or annoyance to intense fury and rage. Dysfunction in anger regulation is marker of most psychiatric disorders. The most important point about anger regulation by the individuals is how to express anger and control it. The purpose of the present study is to predict the anger expression from the anger experience in individuals with psychiatric disorder for assessment of how to express and control the anger. To this end, the number of 3,000 subjects of individuals with clinical disorders had filled in the State-Trait Anger Expression Inventory-II (STAXI-II). After removing the uncertain diagnoses (900 subjects), the number of 2,100 data was considered in the analysis. Then, the computational codes based on three soft computing algorithms, including Radial Basis Function (RBF), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Decision Tree (DT) were developed to predict the scales of anger expression of the individuals with psychiatric disorders. The scales of anger experience were used as input data of the developed computational codes. Comparison between the results obtained from the DT, RBF and ANFIS algorithms show that all the developed soft computing algorithms forecast the anger expression scales with an acceptable accuracy. However, the accuracy of the DT algorithm is better than the other algorithms. |
| ArticleNumber | E62 |
| Author | Moghadasin, Maryam |
| Author_xml | – sequence: 1 givenname: Maryam surname: Moghadasin fullname: Moghadasin, Maryam |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31868157$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9kU1P3DAQhq0KxC6UU--Vj5WqbO04Xz6uFgpIKxUJ6DVy7PGuV0mcehIov6Z_FUdsOc3Xo3fGfs_JSe97IOQLZyvOePkDD8MqZVyucvmJLLmsqiSVLDuJORdVUma8WJBzxANjokzz6owsBK-Kiuflkvy7D2CcHp3vqbd03e8g0Ou_QwDEY--uN-7ZmUm1SF_cuKf3-Kr3To3BaXrl0AcDAemErt_RcQ_0Cp6h9QMYuvHdMI1qVldtrAwgbRTGSZSe0d8qOD8hffB2PNKzyrrd-RBXdfiZnNq4GC6P8YI8_bx-3Nwm2183d5v1NtFpVo6JElWmGimYgUZntjG8ECK1QhuVaR4fXSotrTQWdK6MVSk0xhRMZlllhGBKXJBv77pD8H8mwLHuHGpoW9VDPLBOI8UKLiWL6NcjOjUdmHoIrlPhtf7_qRH4_g7o4BED2A-Es3q2rI6W1bNldS7FGxpajaM |
| Cites_doi | 10.1016/j.psychres.2018.06.011 10.1016/j.biopsycho.2009.09.010 10.1097/NMD.0000000000000041 10.1521/jscp.23.4.512.40304 10.1080/0144341042000301148 10.1037/a0034273 10.1016/0887-6185(95)91551-R 10.1016/0005-7967(93)90066-4 10.3758/BF03205585 10.1037/0022-0167.43.2.131 10.16983/kjsp.2009.6.2.213 10.1016/0165-0327(96)00017-1 10.1037/a0034031 10.1027/1015-5759.21.4.255 10.1109/21.256541 10.3390/app8020305 10.1016/j.jocrd.2014.06.001 10.1016/S0920-9964(97)00068-6 10.1007/11339366_3 10.1002/j.1556-6676.1993.tb02283.x 10.1098/rspb.1998.0522 10.1016/j.jocrd.2016.04.005 10.1016/j.asoc.2007.03.001 10.1002/jclp.10076 10.1007/s005210070006 10.1016/j.neunet.2005.03.004 10.1177/0956797614561268 10.1016/j.jbtep.2008.12.004 10.1007/978-1-4612-3824-9_5 10.1016/0165-0327(93)90010-H 10.1207/s15327574ijt0403_4 10.1186/2192-1962-3-3 10.5121/ijwest.2015.6104 10.1109/101.8118 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1017/sjp.2019.59 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology |
| EISSN | 1988-2904 |
| ExternalDocumentID | 31868157 10_1017_sjp_2019_59 |
| Genre | Journal Article |
| GroupedDBID | --- 0-V 09C 09E 0E1 0R~ 123 2WC 53G 5VS 635 7X7 88E 89V 8BY 8FI 8FJ 8R4 8R5 AAAZR AABES AABWE AACJH AAGFV AAKDD AAKTX AARAB AASVR AAUKB AAXMD AAYXX ABBXD ABBZL ABDBF ABGDZ ABIVO ABJNI ABKKG ABQTM ABROB ABUWG ABVKB ABWCF ABXAU ABXHF ABZCX ACBMC ACDLN ACETC ACGFO ACGFS ACHQT ACIMK ACUHS ACUIJ ACYZP ACZBM ACZUX ADAZD ADBBV ADDNB ADFEC ADKIL ADOVH ADOVT ADVJH AEBAK AEGXH AEHGV AENCP AENGE AEPLO AEYHU AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AFZFC AGABE AGJUD AGLWM AHIPN AHLTW AHMBA AHQXX AHRGI AIAGR AIGNW AIHIV AIOIP AISIE AJCYY AJPFC AJQAS AKMAY AKZCZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALVPG ANPSP AQJOH ARABE ARALO ARZZG ATUCA AUXHV AYIQA AZGZS AZQEC BAWUL BBLKV BCGOX BENPR BESQT BGHMG BJBOZ BLZWO BMAJL BPHCQ BRIRG BVXVI C0O CBIIA CCPQU CCQAD CCUQV CFAFE CFBFF CGQII CHEAL CITATION CJCSC DIK DOHLZ DWQXO E3Z EBS EGQIC EJD F5P FRS FYUFA FZZ GNUQQ HG- HMCUK HZ~ I.6 I.7 IAO IH6 IHR INF INH INR IOEEP IOO IPY IS6 ITC I~P JHPGK JQKCU JVRFK KAFGG KCGVB KFECR LHUNA M-V M1P M2M M2R M7~ NIKVX NZEOI O9- OK1 P2P PHGZM PHGZT PJZUB PPXIY PQQKQ PROAC PRQQA PSQYO PSYQQ PUEGO PV9 Q2X RCA ROL RR0 RZL S6- S6U SAAAG SY4 T9M UKHRP UT1 UU6 WFFJZ ZDLDU ZJOSE ZMEZD ZYDXJ AEYYC ALIPV NPM 7X8 |
| ID | FETCH-LOGICAL-c247t-a384ab930debc4fbd16332f3cda4c12587ac9f9dfec5adfa2ebdd609448d330a3 |
| ISSN | 1138-7416 1988-2904 |
| IngestDate | Mon Sep 08 10:10:07 EDT 2025 Wed Feb 19 02:31:46 EST 2025 Wed Oct 01 02:23:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | soft computing prediction anger experience anger expression psychiatric disorders |
| Language | English |
| License | https://www.cambridge.org/core/terms |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c247t-a384ab930debc4fbd16332f3cda4c12587ac9f9dfec5adfa2ebdd609448d330a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 31868157 |
| PQID | 2330061990 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2330061990 pubmed_primary_31868157 crossref_primary_10_1017_sjp_2019_59 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | The Spanish journal of psychology |
| PublicationTitleAlternate | Span J Psychol |
| PublicationYear | 2019 |
| References | S1138741619000593_ref11 S1138741619000593_ref10 S1138741619000593_ref53 S1138741619000593_ref51 S1138741619000593_ref50 S1138741619000593_ref1 S1138741619000593_ref19 S1138741619000593_ref18 S1138741619000593_ref3 S1138741619000593_ref16 S1138741619000593_ref15 Spielberger (S1138741619000593_ref45) 1999 S1138741619000593_ref14 Broomhead (S1138741619000593_ref4) 1988 Teodorescu (S1138741619000593_ref54) 1999 Kalghatgi (S1138741619000593_ref24) 2015; 2 S1138741619000593_ref23 Jang (S1138741619000593_ref22) 1991 S1138741619000593_ref21 S1138741619000593_ref20 S1138741619000593_ref28 S1138741619000593_ref27 S1138741619000593_ref25 Chatterjee (S1138741619000593_ref5) 2010 S1138741619000593_ref6 Gross (S1138741619000593_ref17) 2014 S1138741619000593_ref8 Nauck (S1138741619000593_ref34) 1997 Spielberger (S1138741619000593_ref47) 1983; 2 S1138741619000593_ref7 Norušis (S1138741619000593_ref37) 2011 Subramanian (S1138741619000593_ref52) 2012 S1138741619000593_ref35 S1138741619000593_ref33 S1138741619000593_ref32 S1138741619000593_ref30 S1138741619000593_ref39 S1138741619000593_ref38 Devi (S1138741619000593_ref9) 2016 S1138741619000593_ref36 Lee (S1138741619000593_ref26) 2006 Spielberger (S1138741619000593_ref46) 1999 Martindale (S1138741619000593_ref31) 1991 Eysenck (S1138741619000593_ref12) 1975 S1138741619000593_ref44 S1138741619000593_ref43 S1138741619000593_ref42 S1138741619000593_ref41 S1138741619000593_ref40 Spielberger (S1138741619000593_ref49) 2009; 1 Fava (S1138741619000593_ref13) 1998; 59 S1138741619000593_ref48 Abraham (S1138741619000593_ref2) 2005 Lowe (S1138741619000593_ref29); 2 |
| References_xml | – volume-title: Cognitive psychology: A neural-network approach year: 1991 ident: S1138741619000593_ref31 – ident: S1138741619000593_ref11 doi: 10.1016/j.psychres.2018.06.011 – ident: S1138741619000593_ref33 doi: 10.1016/j.biopsycho.2009.09.010 – ident: S1138741619000593_ref19 doi: 10.1097/NMD.0000000000000041 – start-page: 5523 volume-title: IEEE Engineering in Medicine and Biology 27th Annual Conference year: 2006 ident: S1138741619000593_ref26 – start-page: 7 volume-title: Proceedings of Eighth International Conference on Advanced Computational Intelligence (ICACI) year: 2016 ident: S1138741619000593_ref9 – ident: S1138741619000593_ref27 doi: 10.1521/jscp.23.4.512.40304 – volume-title: IBM SPSS statistics 19 guide to data analysis year: 2011 ident: S1138741619000593_ref37 – volume: 2 start-page: 321 ident: S1138741619000593_ref29 article-title: Multi-variable functional interpolation and adaptive networks publication-title: Complex Systems – volume-title: STAXI–2: State-trait anger expression inventory–2: Professional manual year: 1999 ident: S1138741619000593_ref46 – volume: 2 start-page: 56 year: 2015 ident: S1138741619000593_ref24 article-title: A neural network approach to personality prediction based on the big-five model publication-title: International Journal of Innovative Research in Advanced Engineering (IJIRAE) – start-page: 762 volume-title: In Proceedings of 9th National Conference on Artificial Intelligence (AAAI–91) year: 1991 ident: S1138741619000593_ref22 – ident: S1138741619000593_ref32 doi: 10.1080/0144341042000301148 – volume: 1 start-page: 271 year: 2009 ident: S1138741619000593_ref49 article-title: Assessment of emotions: Anxiety, anger, depression, and curiosity publication-title: Applied Psychology: Health and Well-Being – start-page: 1 volume-title: In The 2012 International Joint Conference on Neural Networks (IJCNN) year: 2012 ident: S1138741619000593_ref52 – volume-title: Foundations of neuro-fuzzy systems year: 1997 ident: S1138741619000593_ref34 – ident: S1138741619000593_ref38 doi: 10.1037/a0034273 – ident: S1138741619000593_ref42 doi: 10.1016/0887-6185(95)91551-R – ident: S1138741619000593_ref41 doi: 10.1016/0005-7967(93)90066-4 – volume-title: Soft computing in human-related sciences year: 1999 ident: S1138741619000593_ref54 – ident: S1138741619000593_ref28 doi: 10.3758/BF03205585 – ident: S1138741619000593_ref8 doi: 10.1037/0022-0167.43.2.131 – volume-title: Radial basis functions, multi–variable functional interpolation and adaptive networks year: 1988 ident: S1138741619000593_ref4 – ident: S1138741619000593_ref44 doi: 10.16983/kjsp.2009.6.2.213 – ident: S1138741619000593_ref16 doi: 10.1016/0165-0327(96)00017-1 – ident: S1138741619000593_ref40 doi: 10.1037/a0034031 – ident: S1138741619000593_ref36 doi: 10.1027/1015-5759.21.4.255 – ident: S1138741619000593_ref23 doi: 10.1109/21.256541 – ident: S1138741619000593_ref3 doi: 10.3390/app8020305 – ident: S1138741619000593_ref15 doi: 10.1016/j.jocrd.2014.06.001 – volume: 59 start-page: 18 year: 1998 ident: S1138741619000593_ref13 article-title: Depression with anger attacks publication-title: The Journal of Clinical Psychiatry – ident: S1138741619000593_ref18 doi: 10.1016/S0920-9964(97)00068-6 – ident: S1138741619000593_ref1 doi: 10.1007/11339366_3 – ident: S1138741619000593_ref6 doi: 10.1002/j.1556-6676.1993.tb02283.x – ident: S1138741619000593_ref51 doi: 10.1098/rspb.1998.0522 – ident: S1138741619000593_ref7 doi: 10.1016/j.jocrd.2016.04.005 – ident: S1138741619000593_ref10 doi: 10.1016/j.asoc.2007.03.001 – ident: S1138741619000593_ref53 doi: 10.1002/jclp.10076 – ident: S1138741619000593_ref35 doi: 10.1007/s005210070006 – ident: S1138741619000593_ref21 doi: 10.1016/j.neunet.2005.03.004 – ident: S1138741619000593_ref25 doi: 10.1177/0956797614561268 – start-page: 3 volume-title: Handbook of emotion regulation year: 2014 ident: S1138741619000593_ref17 – start-page: 282 year: 2010 ident: S1138741619000593_ref5 – ident: S1138741619000593_ref50 doi: 10.1016/j.jbtep.2008.12.004 – ident: S1138741619000593_ref48 doi: 10.1007/978-1-4612-3824-9_5 – ident: S1138741619000593_ref14 doi: 10.1016/0165-0327(93)90010-H – volume-title: Manual of the Eysenck Personality Questionnaire (junior and adult) year: 1975 ident: S1138741619000593_ref12 – ident: S1138741619000593_ref43 doi: 10.1207/s15327574ijt0403_4 – volume-title: Artificial neural networks. Handbook of measuring system design year: 2005 ident: S1138741619000593_ref2 – ident: S1138741619000593_ref30 doi: 10.1186/2192-1962-3-3 – ident: S1138741619000593_ref39 doi: 10.5121/ijwest.2015.6104 – volume: 2 start-page: 159 year: 1983 ident: S1138741619000593_ref47 article-title: Assessment of anger: The state-trait anger scale publication-title: Advances in Personality Assessment – volume-title: State-trait anger expression inventory–2 year: 1999 ident: S1138741619000593_ref45 – ident: S1138741619000593_ref20 doi: 10.1109/101.8118 |
| SSID | ssj0037258 |
| Score | 2.1344583 |
| Snippet | Anger is defined as a psychobiological emotional state that consists of feelings varying in intensity from mild irritation or annoyance to intense fury and... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | E62 |
| Title | Prediction of Anger Expression of Individuals with Psychiatric Disorders using the Developed Computational Codes based on the Various Soft Computing Algorithms |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31868157 https://www.proquest.com/docview/2330061990 |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1988-2904 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0037258 issn: 1138-7416 databaseCode: ABDBF dateStart: 20141101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbt5pJL6bvbNEWF3BYHryWvrePmRSikBJKU3oysR9qQ2mG9gSZ_Jn81o6e9bQppL8YIW9r1fIxGo_k-IbSV6VrnqSIJOH-aUCqypKaCJVSIXElFmbKiPkdfZodn9PO3fLDRbtkly3pb3D7IK_kfq0Ib2NWwZP_BsrFTaIB7sC9cwcJwfZSNjxdmmyXEfHPL4N3_5UtbG8cSCXwrT2M7DtXNP0RU3uwm111gTfkiIpP3tec9hFzhbitVNzFznvT7C5OvsMw2BbQn4Mn90zbHcnneLmAoL4N-0cPxBDyPEVAaqFVcBf_bFyO359-55J3TNjjiixv-c5iaMGyomJpw3nRKjFjp1GtduzZmaR_uzOHggh01-Q9v7iSgugujKzpl2146fEUz-7e5LFYYuuK1ooKXK_NylbOnaC0D15-O0Np8Z2_nIEzYpMjsMa7x13oap1EWH4y9Grj8ZTVio5LT5-iZX07gucPGC_RENS_RepzVbl6hux4kuNXYggT3IDFtA5BgAxI8AAmOIMEWJBgsjyNI8ApIsAUJtiDB0LV51IMEG5DgCBLcg-Q1OjvYP909TPypHInIaLFMOCkprxlJpaoF1bWEiJ5kmgjJqYBwuSy4YJpJrUTOpeaZqqWcpYzSUhKScvIGjZq2Ue8QZjMqCgjxS5ZqqpVkItNMlHleiBIchhijrfDJqysnvlI9YNgx-hTMUYFzNDtevFHw36oMBoSAFSKuMXrr7BQ7IuagiGlevH_cIBtovYf4BzRaLq7VJsSjy_qjx9M9oW6WSQ |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Anger+Expression+of+Individuals+with+Psychiatric+Disorders+using+the+Developed+Computational+Codes+based+on+the+Various+Soft+Computing+Algorithms&rft.jtitle=The+Spanish+journal+of+psychology&rft.au=Moghadasin%2C+Maryam&rft.date=2019-01-01&rft.issn=1138-7416&rft.eissn=1988-2904&rft.volume=22&rft_id=info:doi/10.1017%2Fsjp.2019.59&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_sjp_2019_59 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1138-7416&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1138-7416&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1138-7416&client=summon |