Prediction of Anger Expression of Individuals with Psychiatric Disorders using the Developed Computational Codes based on the Various Soft Computing Algorithms

Anger is defined as a psychobiological emotional state that consists of feelings varying in intensity from mild irritation or annoyance to intense fury and rage. Dysfunction in anger regulation is marker of most psychiatric disorders. The most important point about anger regulation by the individual...

Full description

Saved in:
Bibliographic Details
Published inThe Spanish journal of psychology Vol. 22; p. E62
Main Author Moghadasin, Maryam
Format Journal Article
LanguageEnglish
Published England 01.01.2019
Subjects
Online AccessGet full text
ISSN1138-7416
1988-2904
1988-2904
DOI10.1017/sjp.2019.59

Cover

Abstract Anger is defined as a psychobiological emotional state that consists of feelings varying in intensity from mild irritation or annoyance to intense fury and rage. Dysfunction in anger regulation is marker of most psychiatric disorders. The most important point about anger regulation by the individuals is how to express anger and control it. The purpose of the present study is to predict the anger expression from the anger experience in individuals with psychiatric disorder for assessment of how to express and control the anger. To this end, the number of 3,000 subjects of individuals with clinical disorders had filled in the State-Trait Anger Expression Inventory–II (STAXI–II). After removing the uncertain diagnoses (900 subjects), the number of 2,100 data was considered in the analysis. Then, the computational codes based on three soft computing algorithms, including Radial Basis Function ( RBF ), Adaptive Neuro-Fuzzy Inference System ( ANFIS ) and Decision Tree ( DT ) were developed to predict the scales of anger expression of the individuals with psychiatric disorders. The scales of anger experience were used as input data of the developed computational codes. Comparison between the results obtained from the DT , RBF and ANFIS algorithms show that all the developed soft computing algorithms forecast the anger expression scales with an acceptable accuracy. However, the accuracy of the DT algorithm is better than the other algorithms.
AbstractList Anger is defined as a psychobiological emotional state that consists of feelings varying in intensity from mild irritation or annoyance to intense fury and rage. Dysfunction in anger regulation is marker of most psychiatric disorders. The most important point about anger regulation by the individuals is how to express anger and control it. The purpose of the present study is to predict the anger expression from the anger experience in individuals with psychiatric disorder for assessment of how to express and control the anger. To this end, the number of 3,000 subjects of individuals with clinical disorders had filled in the State-Trait Anger Expression Inventory-II (STAXI-II). After removing the uncertain diagnoses (900 subjects), the number of 2,100 data was considered in the analysis. Then, the computational codes based on three soft computing algorithms, including Radial Basis Function (RBF), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Decision Tree (DT) were developed to predict the scales of anger expression of the individuals with psychiatric disorders. The scales of anger experience were used as input data of the developed computational codes. Comparison between the results obtained from the DT, RBF and ANFIS algorithms show that all the developed soft computing algorithms forecast the anger expression scales with an acceptable accuracy. However, the accuracy of the DT algorithm is better than the other algorithms.
Anger is defined as a psychobiological emotional state that consists of feelings varying in intensity from mild irritation or annoyance to intense fury and rage. Dysfunction in anger regulation is marker of most psychiatric disorders. The most important point about anger regulation by the individuals is how to express anger and control it. The purpose of the present study is to predict the anger expression from the anger experience in individuals with psychiatric disorder for assessment of how to express and control the anger. To this end, the number of 3,000 subjects of individuals with clinical disorders had filled in the State-Trait Anger Expression Inventory–II (STAXI–II). After removing the uncertain diagnoses (900 subjects), the number of 2,100 data was considered in the analysis. Then, the computational codes based on three soft computing algorithms, including Radial Basis Function ( RBF ), Adaptive Neuro-Fuzzy Inference System ( ANFIS ) and Decision Tree ( DT ) were developed to predict the scales of anger expression of the individuals with psychiatric disorders. The scales of anger experience were used as input data of the developed computational codes. Comparison between the results obtained from the DT , RBF and ANFIS algorithms show that all the developed soft computing algorithms forecast the anger expression scales with an acceptable accuracy. However, the accuracy of the DT algorithm is better than the other algorithms.
Anger is defined as a psychobiological emotional state that consists of feelings varying in intensity from mild irritation or annoyance to intense fury and rage. Dysfunction in anger regulation is marker of most psychiatric disorders. The most important point about anger regulation by the individuals is how to express anger and control it. The purpose of the present study is to predict the anger expression from the anger experience in individuals with psychiatric disorder for assessment of how to express and control the anger. To this end, the number of 3,000 subjects of individuals with clinical disorders had filled in the State-Trait Anger Expression Inventory-II (STAXI-II). After removing the uncertain diagnoses (900 subjects), the number of 2,100 data was considered in the analysis. Then, the computational codes based on three soft computing algorithms, including Radial Basis Function (RBF), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Decision Tree (DT) were developed to predict the scales of anger expression of the individuals with psychiatric disorders. The scales of anger experience were used as input data of the developed computational codes. Comparison between the results obtained from the DT, RBF and ANFIS algorithms show that all the developed soft computing algorithms forecast the anger expression scales with an acceptable accuracy. However, the accuracy of the DT algorithm is better than the other algorithms.Anger is defined as a psychobiological emotional state that consists of feelings varying in intensity from mild irritation or annoyance to intense fury and rage. Dysfunction in anger regulation is marker of most psychiatric disorders. The most important point about anger regulation by the individuals is how to express anger and control it. The purpose of the present study is to predict the anger expression from the anger experience in individuals with psychiatric disorder for assessment of how to express and control the anger. To this end, the number of 3,000 subjects of individuals with clinical disorders had filled in the State-Trait Anger Expression Inventory-II (STAXI-II). After removing the uncertain diagnoses (900 subjects), the number of 2,100 data was considered in the analysis. Then, the computational codes based on three soft computing algorithms, including Radial Basis Function (RBF), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Decision Tree (DT) were developed to predict the scales of anger expression of the individuals with psychiatric disorders. The scales of anger experience were used as input data of the developed computational codes. Comparison between the results obtained from the DT, RBF and ANFIS algorithms show that all the developed soft computing algorithms forecast the anger expression scales with an acceptable accuracy. However, the accuracy of the DT algorithm is better than the other algorithms.
ArticleNumber E62
Author Moghadasin, Maryam
Author_xml – sequence: 1
  givenname: Maryam
  surname: Moghadasin
  fullname: Moghadasin, Maryam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31868157$$D View this record in MEDLINE/PubMed
BookMark eNo9kU1P3DAQhq0KxC6UU--Vj5WqbO04Xz6uFgpIKxUJ6DVy7PGuV0mcehIov6Z_FUdsOc3Xo3fGfs_JSe97IOQLZyvOePkDD8MqZVyucvmJLLmsqiSVLDuJORdVUma8WJBzxANjokzz6owsBK-Kiuflkvy7D2CcHp3vqbd03e8g0Ou_QwDEY--uN-7ZmUm1SF_cuKf3-Kr3To3BaXrl0AcDAemErt_RcQ_0Cp6h9QMYuvHdMI1qVldtrAwgbRTGSZSe0d8qOD8hffB2PNKzyrrd-RBXdfiZnNq4GC6P8YI8_bx-3Nwm2183d5v1NtFpVo6JElWmGimYgUZntjG8ECK1QhuVaR4fXSotrTQWdK6MVSk0xhRMZlllhGBKXJBv77pD8H8mwLHuHGpoW9VDPLBOI8UKLiWL6NcjOjUdmHoIrlPhtf7_qRH4_g7o4BED2A-Es3q2rI6W1bNldS7FGxpajaM
Cites_doi 10.1016/j.psychres.2018.06.011
10.1016/j.biopsycho.2009.09.010
10.1097/NMD.0000000000000041
10.1521/jscp.23.4.512.40304
10.1080/0144341042000301148
10.1037/a0034273
10.1016/0887-6185(95)91551-R
10.1016/0005-7967(93)90066-4
10.3758/BF03205585
10.1037/0022-0167.43.2.131
10.16983/kjsp.2009.6.2.213
10.1016/0165-0327(96)00017-1
10.1037/a0034031
10.1027/1015-5759.21.4.255
10.1109/21.256541
10.3390/app8020305
10.1016/j.jocrd.2014.06.001
10.1016/S0920-9964(97)00068-6
10.1007/11339366_3
10.1002/j.1556-6676.1993.tb02283.x
10.1098/rspb.1998.0522
10.1016/j.jocrd.2016.04.005
10.1016/j.asoc.2007.03.001
10.1002/jclp.10076
10.1007/s005210070006
10.1016/j.neunet.2005.03.004
10.1177/0956797614561268
10.1016/j.jbtep.2008.12.004
10.1007/978-1-4612-3824-9_5
10.1016/0165-0327(93)90010-H
10.1207/s15327574ijt0403_4
10.1186/2192-1962-3-3
10.5121/ijwest.2015.6104
10.1109/101.8118
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1017/sjp.2019.59
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1988-2904
ExternalDocumentID 31868157
10_1017_sjp_2019_59
Genre Journal Article
GroupedDBID ---
0-V
09C
09E
0E1
0R~
123
2WC
53G
5VS
635
7X7
88E
89V
8BY
8FI
8FJ
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKDD
AAKTX
AARAB
AASVR
AAUKB
AAXMD
AAYXX
ABBXD
ABBZL
ABDBF
ABGDZ
ABIVO
ABJNI
ABKKG
ABQTM
ABROB
ABUWG
ABVKB
ABWCF
ABXAU
ABXHF
ABZCX
ACBMC
ACDLN
ACETC
ACGFO
ACGFS
ACHQT
ACIMK
ACUHS
ACUIJ
ACYZP
ACZBM
ACZUX
ADAZD
ADBBV
ADDNB
ADFEC
ADKIL
ADOVH
ADOVT
ADVJH
AEBAK
AEGXH
AEHGV
AENCP
AENGE
AEPLO
AEYHU
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGJUD
AGLWM
AHIPN
AHLTW
AHMBA
AHQXX
AHRGI
AIAGR
AIGNW
AIHIV
AIOIP
AISIE
AJCYY
AJPFC
AJQAS
AKMAY
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALVPG
ANPSP
AQJOH
ARABE
ARALO
ARZZG
ATUCA
AUXHV
AYIQA
AZGZS
AZQEC
BAWUL
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BJBOZ
BLZWO
BMAJL
BPHCQ
BRIRG
BVXVI
C0O
CBIIA
CCPQU
CCQAD
CCUQV
CFAFE
CFBFF
CGQII
CHEAL
CITATION
CJCSC
DIK
DOHLZ
DWQXO
E3Z
EBS
EGQIC
EJD
F5P
FRS
FYUFA
FZZ
GNUQQ
HG-
HMCUK
HZ~
I.6
I.7
IAO
IH6
IHR
INF
INH
INR
IOEEP
IOO
IPY
IS6
ITC
I~P
JHPGK
JQKCU
JVRFK
KAFGG
KCGVB
KFECR
LHUNA
M-V
M1P
M2M
M2R
M7~
NIKVX
NZEOI
O9-
OK1
P2P
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
PRQQA
PSQYO
PSYQQ
PUEGO
PV9
Q2X
RCA
ROL
RR0
RZL
S6-
S6U
SAAAG
SY4
T9M
UKHRP
UT1
UU6
WFFJZ
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
AEYYC
ALIPV
NPM
7X8
ID FETCH-LOGICAL-c247t-a384ab930debc4fbd16332f3cda4c12587ac9f9dfec5adfa2ebdd609448d330a3
ISSN 1138-7416
1988-2904
IngestDate Mon Sep 08 10:10:07 EDT 2025
Wed Feb 19 02:31:46 EST 2025
Wed Oct 01 02:23:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords soft computing
prediction
anger experience
anger expression
psychiatric disorders
Language English
License https://www.cambridge.org/core/terms
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c247t-a384ab930debc4fbd16332f3cda4c12587ac9f9dfec5adfa2ebdd609448d330a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31868157
PQID 2330061990
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2330061990
pubmed_primary_31868157
crossref_primary_10_1017_sjp_2019_59
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle The Spanish journal of psychology
PublicationTitleAlternate Span J Psychol
PublicationYear 2019
References S1138741619000593_ref11
S1138741619000593_ref10
S1138741619000593_ref53
S1138741619000593_ref51
S1138741619000593_ref50
S1138741619000593_ref1
S1138741619000593_ref19
S1138741619000593_ref18
S1138741619000593_ref3
S1138741619000593_ref16
S1138741619000593_ref15
Spielberger (S1138741619000593_ref45) 1999
S1138741619000593_ref14
Broomhead (S1138741619000593_ref4) 1988
Teodorescu (S1138741619000593_ref54) 1999
Kalghatgi (S1138741619000593_ref24) 2015; 2
S1138741619000593_ref23
Jang (S1138741619000593_ref22) 1991
S1138741619000593_ref21
S1138741619000593_ref20
S1138741619000593_ref28
S1138741619000593_ref27
S1138741619000593_ref25
Chatterjee (S1138741619000593_ref5) 2010
S1138741619000593_ref6
Gross (S1138741619000593_ref17) 2014
S1138741619000593_ref8
Nauck (S1138741619000593_ref34) 1997
Spielberger (S1138741619000593_ref47) 1983; 2
S1138741619000593_ref7
Norušis (S1138741619000593_ref37) 2011
Subramanian (S1138741619000593_ref52) 2012
S1138741619000593_ref35
S1138741619000593_ref33
S1138741619000593_ref32
S1138741619000593_ref30
S1138741619000593_ref39
S1138741619000593_ref38
Devi (S1138741619000593_ref9) 2016
S1138741619000593_ref36
Lee (S1138741619000593_ref26) 2006
Spielberger (S1138741619000593_ref46) 1999
Martindale (S1138741619000593_ref31) 1991
Eysenck (S1138741619000593_ref12) 1975
S1138741619000593_ref44
S1138741619000593_ref43
S1138741619000593_ref42
S1138741619000593_ref41
S1138741619000593_ref40
Spielberger (S1138741619000593_ref49) 2009; 1
Fava (S1138741619000593_ref13) 1998; 59
S1138741619000593_ref48
Abraham (S1138741619000593_ref2) 2005
Lowe (S1138741619000593_ref29); 2
References_xml – volume-title: Cognitive psychology: A neural-network approach
  year: 1991
  ident: S1138741619000593_ref31
– ident: S1138741619000593_ref11
  doi: 10.1016/j.psychres.2018.06.011
– ident: S1138741619000593_ref33
  doi: 10.1016/j.biopsycho.2009.09.010
– ident: S1138741619000593_ref19
  doi: 10.1097/NMD.0000000000000041
– start-page: 5523
  volume-title: IEEE Engineering in Medicine and Biology 27th Annual Conference
  year: 2006
  ident: S1138741619000593_ref26
– start-page: 7
  volume-title: Proceedings of Eighth International Conference on Advanced Computational Intelligence (ICACI)
  year: 2016
  ident: S1138741619000593_ref9
– ident: S1138741619000593_ref27
  doi: 10.1521/jscp.23.4.512.40304
– volume-title: IBM SPSS statistics 19 guide to data analysis
  year: 2011
  ident: S1138741619000593_ref37
– volume: 2
  start-page: 321
  ident: S1138741619000593_ref29
  article-title: Multi-variable functional interpolation and adaptive networks
  publication-title: Complex Systems
– volume-title: STAXI–2: State-trait anger expression inventory–2: Professional manual
  year: 1999
  ident: S1138741619000593_ref46
– volume: 2
  start-page: 56
  year: 2015
  ident: S1138741619000593_ref24
  article-title: A neural network approach to personality prediction based on the big-five model
  publication-title: International Journal of Innovative Research in Advanced Engineering (IJIRAE)
– start-page: 762
  volume-title: In Proceedings of 9th National Conference on Artificial Intelligence (AAAI–91)
  year: 1991
  ident: S1138741619000593_ref22
– ident: S1138741619000593_ref32
  doi: 10.1080/0144341042000301148
– volume: 1
  start-page: 271
  year: 2009
  ident: S1138741619000593_ref49
  article-title: Assessment of emotions: Anxiety, anger, depression, and curiosity
  publication-title: Applied Psychology: Health and Well-Being
– start-page: 1
  volume-title: In The 2012 International Joint Conference on Neural Networks (IJCNN)
  year: 2012
  ident: S1138741619000593_ref52
– volume-title: Foundations of neuro-fuzzy systems
  year: 1997
  ident: S1138741619000593_ref34
– ident: S1138741619000593_ref38
  doi: 10.1037/a0034273
– ident: S1138741619000593_ref42
  doi: 10.1016/0887-6185(95)91551-R
– ident: S1138741619000593_ref41
  doi: 10.1016/0005-7967(93)90066-4
– volume-title: Soft computing in human-related sciences
  year: 1999
  ident: S1138741619000593_ref54
– ident: S1138741619000593_ref28
  doi: 10.3758/BF03205585
– ident: S1138741619000593_ref8
  doi: 10.1037/0022-0167.43.2.131
– volume-title: Radial basis functions, multi–variable functional interpolation and adaptive networks
  year: 1988
  ident: S1138741619000593_ref4
– ident: S1138741619000593_ref44
  doi: 10.16983/kjsp.2009.6.2.213
– ident: S1138741619000593_ref16
  doi: 10.1016/0165-0327(96)00017-1
– ident: S1138741619000593_ref40
  doi: 10.1037/a0034031
– ident: S1138741619000593_ref36
  doi: 10.1027/1015-5759.21.4.255
– ident: S1138741619000593_ref23
  doi: 10.1109/21.256541
– ident: S1138741619000593_ref3
  doi: 10.3390/app8020305
– ident: S1138741619000593_ref15
  doi: 10.1016/j.jocrd.2014.06.001
– volume: 59
  start-page: 18
  year: 1998
  ident: S1138741619000593_ref13
  article-title: Depression with anger attacks
  publication-title: The Journal of Clinical Psychiatry
– ident: S1138741619000593_ref18
  doi: 10.1016/S0920-9964(97)00068-6
– ident: S1138741619000593_ref1
  doi: 10.1007/11339366_3
– ident: S1138741619000593_ref6
  doi: 10.1002/j.1556-6676.1993.tb02283.x
– ident: S1138741619000593_ref51
  doi: 10.1098/rspb.1998.0522
– ident: S1138741619000593_ref7
  doi: 10.1016/j.jocrd.2016.04.005
– ident: S1138741619000593_ref10
  doi: 10.1016/j.asoc.2007.03.001
– ident: S1138741619000593_ref53
  doi: 10.1002/jclp.10076
– ident: S1138741619000593_ref35
  doi: 10.1007/s005210070006
– ident: S1138741619000593_ref21
  doi: 10.1016/j.neunet.2005.03.004
– ident: S1138741619000593_ref25
  doi: 10.1177/0956797614561268
– start-page: 3
  volume-title: Handbook of emotion regulation
  year: 2014
  ident: S1138741619000593_ref17
– start-page: 282
  year: 2010
  ident: S1138741619000593_ref5
– ident: S1138741619000593_ref50
  doi: 10.1016/j.jbtep.2008.12.004
– ident: S1138741619000593_ref48
  doi: 10.1007/978-1-4612-3824-9_5
– ident: S1138741619000593_ref14
  doi: 10.1016/0165-0327(93)90010-H
– volume-title: Manual of the Eysenck Personality Questionnaire (junior and adult)
  year: 1975
  ident: S1138741619000593_ref12
– ident: S1138741619000593_ref43
  doi: 10.1207/s15327574ijt0403_4
– volume-title: Artificial neural networks. Handbook of measuring system design
  year: 2005
  ident: S1138741619000593_ref2
– ident: S1138741619000593_ref30
  doi: 10.1186/2192-1962-3-3
– ident: S1138741619000593_ref39
  doi: 10.5121/ijwest.2015.6104
– volume: 2
  start-page: 159
  year: 1983
  ident: S1138741619000593_ref47
  article-title: Assessment of anger: The state-trait anger scale
  publication-title: Advances in Personality Assessment
– volume-title: State-trait anger expression inventory–2
  year: 1999
  ident: S1138741619000593_ref45
– ident: S1138741619000593_ref20
  doi: 10.1109/101.8118
SSID ssj0037258
Score 2.1344583
Snippet Anger is defined as a psychobiological emotional state that consists of feelings varying in intensity from mild irritation or annoyance to intense fury and...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage E62
Title Prediction of Anger Expression of Individuals with Psychiatric Disorders using the Developed Computational Codes based on the Various Soft Computing Algorithms
URI https://www.ncbi.nlm.nih.gov/pubmed/31868157
https://www.proquest.com/docview/2330061990
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1988-2904
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0037258
  issn: 1138-7416
  databaseCode: ABDBF
  dateStart: 20141101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbt5pJL6bvbNEWF3BYHryWvrePmRSikBJKU3oysR9qQ2mG9gSZ_Jn81o6e9bQppL8YIW9r1fIxGo_k-IbSV6VrnqSIJOH-aUCqypKaCJVSIXElFmbKiPkdfZodn9PO3fLDRbtkly3pb3D7IK_kfq0Ib2NWwZP_BsrFTaIB7sC9cwcJwfZSNjxdmmyXEfHPL4N3_5UtbG8cSCXwrT2M7DtXNP0RU3uwm111gTfkiIpP3tec9hFzhbitVNzFznvT7C5OvsMw2BbQn4Mn90zbHcnneLmAoL4N-0cPxBDyPEVAaqFVcBf_bFyO359-55J3TNjjiixv-c5iaMGyomJpw3nRKjFjp1GtduzZmaR_uzOHggh01-Q9v7iSgugujKzpl2146fEUz-7e5LFYYuuK1ooKXK_NylbOnaC0D15-O0Np8Z2_nIEzYpMjsMa7x13oap1EWH4y9Grj8ZTVio5LT5-iZX07gucPGC_RENS_RepzVbl6hux4kuNXYggT3IDFtA5BgAxI8AAmOIMEWJBgsjyNI8ApIsAUJtiDB0LV51IMEG5DgCBLcg-Q1OjvYP909TPypHInIaLFMOCkprxlJpaoF1bWEiJ5kmgjJqYBwuSy4YJpJrUTOpeaZqqWcpYzSUhKScvIGjZq2Ue8QZjMqCgjxS5ZqqpVkItNMlHleiBIchhijrfDJqysnvlI9YNgx-hTMUYFzNDtevFHw36oMBoSAFSKuMXrr7BQ7IuagiGlevH_cIBtovYf4BzRaLq7VJsSjy_qjx9M9oW6WSQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Anger+Expression+of+Individuals+with+Psychiatric+Disorders+using+the+Developed+Computational+Codes+based+on+the+Various+Soft+Computing+Algorithms&rft.jtitle=The+Spanish+journal+of+psychology&rft.au=Moghadasin%2C+Maryam&rft.date=2019-01-01&rft.issn=1138-7416&rft.eissn=1988-2904&rft.volume=22&rft_id=info:doi/10.1017%2Fsjp.2019.59&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_sjp_2019_59
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1138-7416&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1138-7416&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1138-7416&client=summon