Robustness Optimization of the Energy Management Strategy for a Fuel Cell Vehicle Using Adversary Evolutionary Learning

The energy management strategy (EMS) of the fuel cell electric vehicle (FCEV) is a control process that crucially affects the FCEV's economic performance and driving range. Conventionally, EMS optimization relies on standard driving cycles, such as the worldwide harmonized light vehicles test c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on transportation electrification Vol. 11; no. 4; pp. 8729 - 8741
Main Authors Zhang, Fanggang, Hua, Min, Zhou, Quan, Wang, Shuo, Zhang, Cetengfei, Du, Shangfeng, Duan, Yu, Williams, Huw, Xu, Hongming
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2332-7782
2577-4212
2332-7782
DOI10.1109/TTE.2025.3549857

Cover

Abstract The energy management strategy (EMS) of the fuel cell electric vehicle (FCEV) is a control process that crucially affects the FCEV's economic performance and driving range. Conventionally, EMS optimization relies on standard driving cycles, such as the worldwide harmonized light vehicles test cycle (WLTC). However, these often lack robustness due to their limited representation of real-world scenarios. This study proposes an adversary evolutionary learning (AEL) scheme that generates challenging driving cases during the optimization process to enhance robustness. This study demonstrated the effectiveness of AEL based on an FCEV controlled by the equivalent consumption minimization strategy (ECMS), where the equivalent factor (EF) settings must be fine-tuned. The AEL scheme involves interactive attack and defense rounds. In the attack round, a genetic algorithm (GA)-based cycle generator creates challenging driving cycles to stress-test the EF settings. In the defense round, particle swarm optimization (PSO) tunes the EF set by a fuzzy inference system (FIS) for energy efficiency and stability in the state of charge (SoC) of the battery. After 30 rounds, AEL identifies 30 harsh driving cycles and 30 optimized ECMS. Crossover testing is then performed to select the most robust ECMS (R-ECMS) set. Processor-in-the-loop (PiL) experiments on standard real-world cycles demonstrate that AEL effectively identifies the R-ECMS, potentially saving up to 1.37% of hydrogen and reducing SoC fluctuations by up to 47.43%.
AbstractList The energy management strategy (EMS) of the fuel cell electric vehicle (FCEV) is a control process that crucially affects the FCEV’s economic performance and driving range. Conventionally, EMS optimization relies on standard driving cycles, such as the worldwide harmonized light vehicles test cycle (WLTC). However, these often lack robustness due to their limited representation of real-world scenarios. This study proposes an adversary evolutionary learning (AEL) scheme that generates challenging driving cases during the optimization process to enhance robustness. This study demonstrated the effectiveness of AEL based on an FCEV controlled by the equivalent consumption minimization strategy (ECMS), where the equivalent factor (EF) settings must be fine-tuned. The AEL scheme involves interactive attack and defense rounds. In the attack round, a genetic algorithm (GA)-based cycle generator creates challenging driving cycles to stress-test the EF settings. In the defense round, particle swarm optimization (PSO) tunes the EF set by a fuzzy inference system (FIS) for energy efficiency and stability in the state of charge (SoC) of the battery. After 30 rounds, AEL identifies 30 harsh driving cycles and 30 optimized ECMS. Crossover testing is then performed to select the most robust ECMS (R-ECMS) set. Processor-in-the-loop (PiL) experiments on standard real-world cycles demonstrate that AEL effectively identifies the R-ECMS, potentially saving up to 1.37% of hydrogen and reducing SoC fluctuations by up to 47.43%.
Author Zhou, Quan
Wang, Shuo
Hua, Min
Williams, Huw
Xu, Hongming
Du, Shangfeng
Zhang, Cetengfei
Zhang, Fanggang
Duan, Yu
Author_xml – sequence: 1
  givenname: Fanggang
  orcidid: 0000-0001-7081-1608
  surname: Zhang
  fullname: Zhang, Fanggang
  organization: Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, U.K
– sequence: 2
  givenname: Min
  orcidid: 0000-0002-2564-7180
  surname: Hua
  fullname: Hua, Min
  organization: Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, U.K
– sequence: 3
  givenname: Quan
  orcidid: 0000-0003-4216-3468
  surname: Zhou
  fullname: Zhou, Quan
  email: q_zhou@tongji.edu.cn
  organization: Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, U.K
– sequence: 4
  givenname: Shuo
  surname: Wang
  fullname: Wang, Shuo
  organization: Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, U.K
– sequence: 5
  givenname: Cetengfei
  orcidid: 0000-0001-8710-1872
  surname: Zhang
  fullname: Zhang, Cetengfei
  organization: School of Automotive Studies, Tongji University, Shanghai, China
– sequence: 6
  givenname: Shangfeng
  orcidid: 0000-0002-4937-6899
  surname: Du
  fullname: Du, Shangfeng
  organization: School of Chemical Engineering, University of Birmingham, Birmingham, U.K
– sequence: 7
  givenname: Yu
  surname: Duan
  fullname: Duan, Yu
  organization: Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, U.K
– sequence: 8
  givenname: Huw
  orcidid: 0000-0003-2632-2131
  surname: Williams
  fullname: Williams, Huw
  organization: Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, U.K
– sequence: 9
  givenname: Hongming
  orcidid: 0000-0001-7241-8383
  surname: Xu
  fullname: Xu, Hongming
  organization: Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, U.K
BookMark eNpNkE1PAjEQhhuDiYjcPXho4hmctnSXHgkBNcGQKHjdlN0pLFlabLsY_PUugQOn-Xrmncl7T1rWWSTkkUGfMVAvi8Wkz4HLvpADNZTpDWlzIXgvTYe8dZXfkW4IWwBgUkjFkjb5_XSrOkSLIdD5Ppa78k_H0lnqDI0bpBOLfn2kH9rqNe7QRvoVvY7Y9IzzVNNpjRUdY1XRb9yUeYV0GUq7pqPigD5of6STg6vqk-apmKH2tpk_kFujq4DdS-yQ5XSyGL_1ZvPX9_Fo1sv5II09lYJJBChToEKZ54iKcc1UOtQ6ASMBlQRWQIJgVrIYDI02TBdGpg3GV0p0yPNZd-_dT40hZltXe9uczAQfJEIonkJDwZnKvQvBo8n2vtw1_2YMspPDWeNwdnI4uzjcrDydV0pEvMIVUxxA_ANhtHq4
CODEN ITTEBP
Cites_doi 10.1016/j.rser.2022.112285
10.1016/j.apenergy.2022.119192
10.1016/j.apenergy.2023.121901
10.1016/j.apenergy.2019.113755
10.1016/j.trd.2016.05.010
10.1109/TVT.2022.3206951
10.1016/j.ijhydene.2023.08.321
10.1016/j.apenergy.2023.121526
10.1016/j.ijhydene.2023.12.245
10.1016/j.jpowsour.2014.05.067
10.1016/j.energy.2021.120305
10.1016/j.ijhydene.2024.03.025
10.1016/j.trd.2023.103715
10.1016/j.rser.2017.08.047
10.1016/j.ijhydene.2020.10.205
10.1016/j.ijhydene.2022.01.064
10.1016/j.enconman.2019.03.090
10.1016/j.geits.2023.100095
10.3390/info10120390
10.1109/TIA.2022.3157252
10.1109/TPEL.2022.3214782
10.1016/j.geits.2022.100028
10.1016/j.ijhydene.2024.02.284
10.1016/j.egypro.2018.09.201
10.15282/ijame.14.3.2017.9.0356
10.1016/j.apenergy.2021.117853
10.1109/tte.2024.3478187
10.1177/0954407019856153
10.1016/j.etran.2022.100168
10.1109/TVT.2018.2887063
10.1016/j.ejor.2013.09.036
10.1016/j.ijhydene.2020.02.083
10.1016/j.jpowsour.2023.233286
10.1016/j.enconman.2021.115030
10.1016/j.energy.2020.117530
10.1109/TTE.2023.3238101
10.1186/s12544-020-00406-w
10.1016/j.energy.2022.126112
10.1016/j.apenergy.2020.115086
10.1016/j.ijhydene.2012.02.184
10.1016/j.enconman.2024.118249
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TTE.2025.3549857
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2332-7782
EndPage 8741
ExternalDocumentID 10_1109_TTE_2025_3549857
10919200
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 17002150076
  funderid: 10.13039/501100012226
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c247t-970f6309fde9e5ccee912a1978aa60f50e9501d06e0fb5d48faf1adf5712a2b93
IEDL.DBID RIE
ISSN 2332-7782
2577-4212
IngestDate Sat Oct 11 07:06:44 EDT 2025
Wed Oct 01 05:43:25 EDT 2025
Wed Aug 27 02:13:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/Crown.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-970f6309fde9e5ccee912a1978aa60f50e9501d06e0fb5d48faf1adf5712a2b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4216-3468
0000-0001-7241-8383
0000-0002-4937-6899
0000-0001-7081-1608
0000-0001-8710-1872
0000-0003-2632-2131
0000-0002-2564-7180
PQID 3246339270
PQPubID 4437205
PageCount 13
ParticipantIDs ieee_primary_10919200
proquest_journals_3246339270
crossref_primary_10_1109_TTE_2025_3549857
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on transportation electrification
PublicationTitleAbbrev TTE
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Anesiadou (ref42) 2020
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Goodfellow (ref30); 27
ref40
References_xml – ident: ref41
  doi: 10.1016/j.rser.2022.112285
– ident: ref12
  doi: 10.1016/j.apenergy.2022.119192
– ident: ref35
  doi: 10.1016/j.apenergy.2023.121901
– ident: ref5
  doi: 10.1016/j.apenergy.2019.113755
– ident: ref24
  doi: 10.1016/j.trd.2016.05.010
– ident: ref37
  doi: 10.1109/TVT.2022.3206951
– ident: ref1
  doi: 10.1016/j.ijhydene.2023.08.321
– ident: ref33
  doi: 10.1016/j.apenergy.2023.121526
– ident: ref13
  doi: 10.1016/j.ijhydene.2023.12.245
– ident: ref19
  doi: 10.1016/j.jpowsour.2014.05.067
– ident: ref21
  doi: 10.1016/j.energy.2021.120305
– ident: ref4
  doi: 10.1016/j.ijhydene.2024.03.025
– ident: ref27
  doi: 10.1016/j.trd.2023.103715
– ident: ref2
  doi: 10.1016/j.rser.2017.08.047
– ident: ref18
  doi: 10.1016/j.ijhydene.2020.10.205
– ident: ref9
  doi: 10.1016/j.ijhydene.2022.01.064
– ident: ref20
  doi: 10.1016/j.enconman.2019.03.090
– ident: ref15
  doi: 10.1016/j.geits.2023.100095
– ident: ref40
  doi: 10.3390/info10120390
– ident: ref11
  doi: 10.1109/TIA.2022.3157252
– ident: ref14
  doi: 10.1109/TPEL.2022.3214782
– ident: ref7
  doi: 10.1016/j.geits.2022.100028
– ident: ref16
  doi: 10.1016/j.ijhydene.2024.02.284
– ident: ref23
  doi: 10.1016/j.egypro.2018.09.201
– volume-title: Open ACC Database
  year: 2020
  ident: ref42
– ident: ref26
  doi: 10.15282/ijame.14.3.2017.9.0356
– ident: ref34
  doi: 10.1016/j.apenergy.2021.117853
– volume: 27
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref30
  article-title: Generative adversarial nets
– ident: ref36
  doi: 10.1109/tte.2024.3478187
– ident: ref38
  doi: 10.1177/0954407019856153
– ident: ref22
  doi: 10.1016/j.etran.2022.100168
– ident: ref25
  doi: 10.1109/TVT.2018.2887063
– ident: ref28
  doi: 10.1016/j.ejor.2013.09.036
– ident: ref6
  doi: 10.1016/j.ijhydene.2020.02.083
– ident: ref31
  doi: 10.1016/j.jpowsour.2023.233286
– ident: ref8
  doi: 10.1016/j.enconman.2021.115030
– ident: ref29
  doi: 10.1016/j.energy.2020.117530
– ident: ref10
  doi: 10.1109/TTE.2023.3238101
– ident: ref43
  doi: 10.1186/s12544-020-00406-w
– ident: ref39
  doi: 10.1016/j.energy.2022.126112
– ident: ref3
  doi: 10.1016/j.apenergy.2020.115086
– ident: ref17
  doi: 10.1016/j.ijhydene.2012.02.184
– ident: ref32
  doi: 10.1016/j.enconman.2024.118249
SSID ssj0001535916
Score 2.3082693
Snippet The energy management strategy (EMS) of the fuel cell electric vehicle (FCEV) is a control process that crucially affects the FCEV's economic performance and...
The energy management strategy (EMS) of the fuel cell electric vehicle (FCEV) is a control process that crucially affects the FCEV’s economic performance and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 8729
SubjectTerms Adversary learning
Batteries
Electric charge
Electric vehicles
Energy management
Equivalence
equivalent consumption minimization strategy (ECMS)
fuel cell electric vehicle (FCEV)
Fuel cells
Generators
genetic algorithm (GA)
Genetic algorithms
Hydrogen
Learning
Light duty vehicles
Microprocessors
Minimization
Optimization
Particle swarm optimization
particle swarm optimization (PSO)
robust optimization (RO)
Robustness
Robustness (mathematics)
State of charge
Transportation
Title Robustness Optimization of the Energy Management Strategy for a Fuel Cell Vehicle Using Adversary Evolutionary Learning
URI https://ieeexplore.ieee.org/document/10919200
https://www.proquest.com/docview/3246339270
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2332-7782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001535916
  issn: 2332-7782
  databaseCode: RIE
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJz34W5xOycGLh870R9rlKGNjCCrIFG8lSV8UnJtsrTL_el_SDIcieGuhbUK-9L3vJe99IeRMhzo0aPeDAgQEidI8EJmGgAurL6ekVsYGitc36fA-uXrkj75Y3dXCAIBLPoOOvXR7-cVUV3ap7MKKWAqEtUEaWTeti7W-F1R4zJHrLLcimbgYjfoYAEa8E2MQ1LUOaMX1uLNUfhlg51UGW-Rm2Z86meSlU5Wqoz9_SDX-u8PbZNPzS3pZT4gdsgaTXbKxojq4Rz7upqqal9bG0Vu0GK--FJNODUU6SPuuHJB-J8ZQL2G7oMhwqaSDCsa0B-MxfYBn2wx1iQfUHe48l7MF7b_7GW1vvITr0z65H_RHvWHgz18IdJRkJYLGTBozYSyOXKM7FWEkQ4w7pUyZ4QwEZ2HBUmBG8SLpGmlCWRie4WOREvEBaU6mEzgkFMMw6xcLyGKVqG4io9SIBNmKAonNqBY5X0KTv9UyG7kLT5jIEcbcwph7GFtk3470ynP1ILdIewlm7n_EeY58MY2RA2bs6I_Xjsm6_Xqd1NcmzXJWwQkSjVKdugn2BdAE0xc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5icNg47CcTZTB82GWHFCexk_qIUKtuQCdNZeIW2c4zk9a1iCYg9tfz7LiiGpq0WyI5suXPee979nufAT7Z1KaO7H5So8JEGCsTVVpMpPL6ckZb43ygeD4pxhfi66W8jMXqoRYGEUPyGfb9YzjLrxe29VtlR17EUhGsz2BLCiFkV671uKUic0lsZ3UYydXRdDqkEDCT_ZzCoIF3QWvOJ9ym8sQEB78yegWT1Yi6dJJf_bYxffvnL7HG_x7ya3gZGSY77pbEG9jA-VvYXtMdfAd33xemXTbeyrFvZDN-x2JMtnCMCCEbhoJA9pgaw6KI7T0jjss0G7U4Yyc4m7Ef-NN3w0LqAQvXOy_1zT0b3sY17V-iiOvVDlyMhtOTcRJvYEhsJsqGYOOuyLlyHklpyaGqNNMpRZ5aF9xJjkrytOYFcmdkLQZOu1TXTpbULDMqfw-b88Ucd4FRIOY9Y41lboQZCJ0VTgniKwY1dWN68HkFTXXdCW1UIUDhqiIYKw9jFWHswY6f6bV23ST3YH8FZhV_xWVFjLHIiQWWfO8fnx3C8_H0_Kw6-zI5_QAvfE9dit8-bDY3LR4Q7WjMx7DYHgAELtZk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robustness+Optimization+of+the+Energy+Management+Strategy+for+a+Fuel+Cell+Vehicle+Using+Adversary+Evolutionary+Learning&rft.jtitle=IEEE+transactions+on+transportation+electrification&rft.au=Zhang%2C+Fanggang&rft.au=Hua%2C+Min&rft.au=Zhou%2C+Quan&rft.au=Wang%2C+Shuo&rft.date=2025-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2577-4212&rft.eissn=2332-7782&rft.volume=11&rft.issue=4&rft.spage=8729&rft.epage=8741&rft_id=info:doi/10.1109%2FTTE.2025.3549857&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7782&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7782&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7782&client=summon