Robustness Optimization of the Energy Management Strategy for a Fuel Cell Vehicle Using Adversary Evolutionary Learning
The energy management strategy (EMS) of the fuel cell electric vehicle (FCEV) is a control process that crucially affects the FCEV's economic performance and driving range. Conventionally, EMS optimization relies on standard driving cycles, such as the worldwide harmonized light vehicles test c...
Saved in:
| Published in | IEEE transactions on transportation electrification Vol. 11; no. 4; pp. 8729 - 8741 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2332-7782 2577-4212 2332-7782 |
| DOI | 10.1109/TTE.2025.3549857 |
Cover
| Abstract | The energy management strategy (EMS) of the fuel cell electric vehicle (FCEV) is a control process that crucially affects the FCEV's economic performance and driving range. Conventionally, EMS optimization relies on standard driving cycles, such as the worldwide harmonized light vehicles test cycle (WLTC). However, these often lack robustness due to their limited representation of real-world scenarios. This study proposes an adversary evolutionary learning (AEL) scheme that generates challenging driving cases during the optimization process to enhance robustness. This study demonstrated the effectiveness of AEL based on an FCEV controlled by the equivalent consumption minimization strategy (ECMS), where the equivalent factor (EF) settings must be fine-tuned. The AEL scheme involves interactive attack and defense rounds. In the attack round, a genetic algorithm (GA)-based cycle generator creates challenging driving cycles to stress-test the EF settings. In the defense round, particle swarm optimization (PSO) tunes the EF set by a fuzzy inference system (FIS) for energy efficiency and stability in the state of charge (SoC) of the battery. After 30 rounds, AEL identifies 30 harsh driving cycles and 30 optimized ECMS. Crossover testing is then performed to select the most robust ECMS (R-ECMS) set. Processor-in-the-loop (PiL) experiments on standard real-world cycles demonstrate that AEL effectively identifies the R-ECMS, potentially saving up to 1.37% of hydrogen and reducing SoC fluctuations by up to 47.43%. |
|---|---|
| AbstractList | The energy management strategy (EMS) of the fuel cell electric vehicle (FCEV) is a control process that crucially affects the FCEV’s economic performance and driving range. Conventionally, EMS optimization relies on standard driving cycles, such as the worldwide harmonized light vehicles test cycle (WLTC). However, these often lack robustness due to their limited representation of real-world scenarios. This study proposes an adversary evolutionary learning (AEL) scheme that generates challenging driving cases during the optimization process to enhance robustness. This study demonstrated the effectiveness of AEL based on an FCEV controlled by the equivalent consumption minimization strategy (ECMS), where the equivalent factor (EF) settings must be fine-tuned. The AEL scheme involves interactive attack and defense rounds. In the attack round, a genetic algorithm (GA)-based cycle generator creates challenging driving cycles to stress-test the EF settings. In the defense round, particle swarm optimization (PSO) tunes the EF set by a fuzzy inference system (FIS) for energy efficiency and stability in the state of charge (SoC) of the battery. After 30 rounds, AEL identifies 30 harsh driving cycles and 30 optimized ECMS. Crossover testing is then performed to select the most robust ECMS (R-ECMS) set. Processor-in-the-loop (PiL) experiments on standard real-world cycles demonstrate that AEL effectively identifies the R-ECMS, potentially saving up to 1.37% of hydrogen and reducing SoC fluctuations by up to 47.43%. |
| Author | Zhou, Quan Wang, Shuo Hua, Min Williams, Huw Xu, Hongming Du, Shangfeng Zhang, Cetengfei Zhang, Fanggang Duan, Yu |
| Author_xml | – sequence: 1 givenname: Fanggang orcidid: 0000-0001-7081-1608 surname: Zhang fullname: Zhang, Fanggang organization: Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, U.K – sequence: 2 givenname: Min orcidid: 0000-0002-2564-7180 surname: Hua fullname: Hua, Min organization: Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, U.K – sequence: 3 givenname: Quan orcidid: 0000-0003-4216-3468 surname: Zhou fullname: Zhou, Quan email: q_zhou@tongji.edu.cn organization: Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, U.K – sequence: 4 givenname: Shuo surname: Wang fullname: Wang, Shuo organization: Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, U.K – sequence: 5 givenname: Cetengfei orcidid: 0000-0001-8710-1872 surname: Zhang fullname: Zhang, Cetengfei organization: School of Automotive Studies, Tongji University, Shanghai, China – sequence: 6 givenname: Shangfeng orcidid: 0000-0002-4937-6899 surname: Du fullname: Du, Shangfeng organization: School of Chemical Engineering, University of Birmingham, Birmingham, U.K – sequence: 7 givenname: Yu surname: Duan fullname: Duan, Yu organization: Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, U.K – sequence: 8 givenname: Huw orcidid: 0000-0003-2632-2131 surname: Williams fullname: Williams, Huw organization: Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, U.K – sequence: 9 givenname: Hongming orcidid: 0000-0001-7241-8383 surname: Xu fullname: Xu, Hongming organization: Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, U.K |
| BookMark | eNpNkE1PAjEQhhuDiYjcPXho4hmctnSXHgkBNcGQKHjdlN0pLFlabLsY_PUugQOn-Xrmncl7T1rWWSTkkUGfMVAvi8Wkz4HLvpADNZTpDWlzIXgvTYe8dZXfkW4IWwBgUkjFkjb5_XSrOkSLIdD5Ppa78k_H0lnqDI0bpBOLfn2kH9rqNe7QRvoVvY7Y9IzzVNNpjRUdY1XRb9yUeYV0GUq7pqPigD5of6STg6vqk-apmKH2tpk_kFujq4DdS-yQ5XSyGL_1ZvPX9_Fo1sv5II09lYJJBChToEKZ54iKcc1UOtQ6ASMBlQRWQIJgVrIYDI02TBdGpg3GV0p0yPNZd-_dT40hZltXe9uczAQfJEIonkJDwZnKvQvBo8n2vtw1_2YMspPDWeNwdnI4uzjcrDydV0pEvMIVUxxA_ANhtHq4 |
| CODEN | ITTEBP |
| Cites_doi | 10.1016/j.rser.2022.112285 10.1016/j.apenergy.2022.119192 10.1016/j.apenergy.2023.121901 10.1016/j.apenergy.2019.113755 10.1016/j.trd.2016.05.010 10.1109/TVT.2022.3206951 10.1016/j.ijhydene.2023.08.321 10.1016/j.apenergy.2023.121526 10.1016/j.ijhydene.2023.12.245 10.1016/j.jpowsour.2014.05.067 10.1016/j.energy.2021.120305 10.1016/j.ijhydene.2024.03.025 10.1016/j.trd.2023.103715 10.1016/j.rser.2017.08.047 10.1016/j.ijhydene.2020.10.205 10.1016/j.ijhydene.2022.01.064 10.1016/j.enconman.2019.03.090 10.1016/j.geits.2023.100095 10.3390/info10120390 10.1109/TIA.2022.3157252 10.1109/TPEL.2022.3214782 10.1016/j.geits.2022.100028 10.1016/j.ijhydene.2024.02.284 10.1016/j.egypro.2018.09.201 10.15282/ijame.14.3.2017.9.0356 10.1016/j.apenergy.2021.117853 10.1109/tte.2024.3478187 10.1177/0954407019856153 10.1016/j.etran.2022.100168 10.1109/TVT.2018.2887063 10.1016/j.ejor.2013.09.036 10.1016/j.ijhydene.2020.02.083 10.1016/j.jpowsour.2023.233286 10.1016/j.enconman.2021.115030 10.1016/j.energy.2020.117530 10.1109/TTE.2023.3238101 10.1186/s12544-020-00406-w 10.1016/j.energy.2022.126112 10.1016/j.apenergy.2020.115086 10.1016/j.ijhydene.2012.02.184 10.1016/j.enconman.2024.118249 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TTE.2025.3549857 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2332-7782 |
| EndPage | 8741 |
| ExternalDocumentID | 10_1109_TTE_2025_3549857 10919200 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 17002150076 funderid: 10.13039/501100012226 |
| GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE JAVBF M43 O9- OCL RIA RIE AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c247t-970f6309fde9e5ccee912a1978aa60f50e9501d06e0fb5d48faf1adf5712a2b93 |
| IEDL.DBID | RIE |
| ISSN | 2332-7782 2577-4212 |
| IngestDate | Sat Oct 11 07:06:44 EDT 2025 Wed Oct 01 05:43:25 EDT 2025 Wed Aug 27 02:13:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/Crown.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c247t-970f6309fde9e5ccee912a1978aa60f50e9501d06e0fb5d48faf1adf5712a2b93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4216-3468 0000-0001-7241-8383 0000-0002-4937-6899 0000-0001-7081-1608 0000-0001-8710-1872 0000-0003-2632-2131 0000-0002-2564-7180 |
| PQID | 3246339270 |
| PQPubID | 4437205 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_10919200 proquest_journals_3246339270 crossref_primary_10_1109_TTE_2025_3549857 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on transportation electrification |
| PublicationTitleAbbrev | TTE |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Anesiadou (ref42) 2020 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Goodfellow (ref30); 27 ref40 |
| References_xml | – ident: ref41 doi: 10.1016/j.rser.2022.112285 – ident: ref12 doi: 10.1016/j.apenergy.2022.119192 – ident: ref35 doi: 10.1016/j.apenergy.2023.121901 – ident: ref5 doi: 10.1016/j.apenergy.2019.113755 – ident: ref24 doi: 10.1016/j.trd.2016.05.010 – ident: ref37 doi: 10.1109/TVT.2022.3206951 – ident: ref1 doi: 10.1016/j.ijhydene.2023.08.321 – ident: ref33 doi: 10.1016/j.apenergy.2023.121526 – ident: ref13 doi: 10.1016/j.ijhydene.2023.12.245 – ident: ref19 doi: 10.1016/j.jpowsour.2014.05.067 – ident: ref21 doi: 10.1016/j.energy.2021.120305 – ident: ref4 doi: 10.1016/j.ijhydene.2024.03.025 – ident: ref27 doi: 10.1016/j.trd.2023.103715 – ident: ref2 doi: 10.1016/j.rser.2017.08.047 – ident: ref18 doi: 10.1016/j.ijhydene.2020.10.205 – ident: ref9 doi: 10.1016/j.ijhydene.2022.01.064 – ident: ref20 doi: 10.1016/j.enconman.2019.03.090 – ident: ref15 doi: 10.1016/j.geits.2023.100095 – ident: ref40 doi: 10.3390/info10120390 – ident: ref11 doi: 10.1109/TIA.2022.3157252 – ident: ref14 doi: 10.1109/TPEL.2022.3214782 – ident: ref7 doi: 10.1016/j.geits.2022.100028 – ident: ref16 doi: 10.1016/j.ijhydene.2024.02.284 – ident: ref23 doi: 10.1016/j.egypro.2018.09.201 – volume-title: Open ACC Database year: 2020 ident: ref42 – ident: ref26 doi: 10.15282/ijame.14.3.2017.9.0356 – ident: ref34 doi: 10.1016/j.apenergy.2021.117853 – volume: 27 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref30 article-title: Generative adversarial nets – ident: ref36 doi: 10.1109/tte.2024.3478187 – ident: ref38 doi: 10.1177/0954407019856153 – ident: ref22 doi: 10.1016/j.etran.2022.100168 – ident: ref25 doi: 10.1109/TVT.2018.2887063 – ident: ref28 doi: 10.1016/j.ejor.2013.09.036 – ident: ref6 doi: 10.1016/j.ijhydene.2020.02.083 – ident: ref31 doi: 10.1016/j.jpowsour.2023.233286 – ident: ref8 doi: 10.1016/j.enconman.2021.115030 – ident: ref29 doi: 10.1016/j.energy.2020.117530 – ident: ref10 doi: 10.1109/TTE.2023.3238101 – ident: ref43 doi: 10.1186/s12544-020-00406-w – ident: ref39 doi: 10.1016/j.energy.2022.126112 – ident: ref3 doi: 10.1016/j.apenergy.2020.115086 – ident: ref17 doi: 10.1016/j.ijhydene.2012.02.184 – ident: ref32 doi: 10.1016/j.enconman.2024.118249 |
| SSID | ssj0001535916 |
| Score | 2.3082693 |
| Snippet | The energy management strategy (EMS) of the fuel cell electric vehicle (FCEV) is a control process that crucially affects the FCEV's economic performance and... The energy management strategy (EMS) of the fuel cell electric vehicle (FCEV) is a control process that crucially affects the FCEV’s economic performance and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 8729 |
| SubjectTerms | Adversary learning Batteries Electric charge Electric vehicles Energy management Equivalence equivalent consumption minimization strategy (ECMS) fuel cell electric vehicle (FCEV) Fuel cells Generators genetic algorithm (GA) Genetic algorithms Hydrogen Learning Light duty vehicles Microprocessors Minimization Optimization Particle swarm optimization particle swarm optimization (PSO) robust optimization (RO) Robustness Robustness (mathematics) State of charge Transportation |
| Title | Robustness Optimization of the Energy Management Strategy for a Fuel Cell Vehicle Using Adversary Evolutionary Learning |
| URI | https://ieeexplore.ieee.org/document/10919200 https://www.proquest.com/docview/3246339270 |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2332-7782 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001535916 issn: 2332-7782 databaseCode: RIE dateStart: 20150101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJz34W5xOycGLh870R9rlKGNjCCrIFG8lSV8UnJtsrTL_el_SDIcieGuhbUK-9L3vJe99IeRMhzo0aPeDAgQEidI8EJmGgAurL6ekVsYGitc36fA-uXrkj75Y3dXCAIBLPoOOvXR7-cVUV3ap7MKKWAqEtUEaWTeti7W-F1R4zJHrLLcimbgYjfoYAEa8E2MQ1LUOaMX1uLNUfhlg51UGW-Rm2Z86meSlU5Wqoz9_SDX-u8PbZNPzS3pZT4gdsgaTXbKxojq4Rz7upqqal9bG0Vu0GK--FJNODUU6SPuuHJB-J8ZQL2G7oMhwqaSDCsa0B-MxfYBn2wx1iQfUHe48l7MF7b_7GW1vvITr0z65H_RHvWHgz18IdJRkJYLGTBozYSyOXKM7FWEkQ4w7pUyZ4QwEZ2HBUmBG8SLpGmlCWRie4WOREvEBaU6mEzgkFMMw6xcLyGKVqG4io9SIBNmKAonNqBY5X0KTv9UyG7kLT5jIEcbcwph7GFtk3470ynP1ILdIewlm7n_EeY58MY2RA2bs6I_Xjsm6_Xqd1NcmzXJWwQkSjVKdugn2BdAE0xc |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5icNg47CcTZTB82GWHFCexk_qIUKtuQCdNZeIW2c4zk9a1iCYg9tfz7LiiGpq0WyI5suXPee979nufAT7Z1KaO7H5So8JEGCsTVVpMpPL6ckZb43ygeD4pxhfi66W8jMXqoRYGEUPyGfb9YzjLrxe29VtlR17EUhGsz2BLCiFkV671uKUic0lsZ3UYydXRdDqkEDCT_ZzCoIF3QWvOJ9ym8sQEB78yegWT1Yi6dJJf_bYxffvnL7HG_x7ya3gZGSY77pbEG9jA-VvYXtMdfAd33xemXTbeyrFvZDN-x2JMtnCMCCEbhoJA9pgaw6KI7T0jjss0G7U4Yyc4m7Ef-NN3w0LqAQvXOy_1zT0b3sY17V-iiOvVDlyMhtOTcRJvYEhsJsqGYOOuyLlyHklpyaGqNNMpRZ5aF9xJjkrytOYFcmdkLQZOu1TXTpbULDMqfw-b88Ucd4FRIOY9Y41lboQZCJ0VTgniKwY1dWN68HkFTXXdCW1UIUDhqiIYKw9jFWHswY6f6bV23ST3YH8FZhV_xWVFjLHIiQWWfO8fnx3C8_H0_Kw6-zI5_QAvfE9dit8-bDY3LR4Q7WjMx7DYHgAELtZk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robustness+Optimization+of+the+Energy+Management+Strategy+for+a+Fuel+Cell+Vehicle+Using+Adversary+Evolutionary+Learning&rft.jtitle=IEEE+transactions+on+transportation+electrification&rft.au=Zhang%2C+Fanggang&rft.au=Hua%2C+Min&rft.au=Zhou%2C+Quan&rft.au=Wang%2C+Shuo&rft.date=2025-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2577-4212&rft.eissn=2332-7782&rft.volume=11&rft.issue=4&rft.spage=8729&rft.epage=8741&rft_id=info:doi/10.1109%2FTTE.2025.3549857&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7782&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7782&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7782&client=summon |