Pipeline Defect Assessment Method based on Ultrasonic Guided Wave Sensor Array and GSA-CoSaMP Algorithm
Accurate characterization of pipeline defects is crucial for maintaining structural integrity and ensuring operational safety. This study introduces an innovative pipeline defect evaluation method integrating the gravitational search algorithm (GSA) with the compressive sampling matching pursuit (Co...
Saved in:
| Published in | IEEE transactions on instrumentation and measurement Vol. 74; p. 1 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9456 1557-9662 |
| DOI | 10.1109/TIM.2025.3609325 |
Cover
| Abstract | Accurate characterization of pipeline defects is crucial for maintaining structural integrity and ensuring operational safety. This study introduces an innovative pipeline defect evaluation method integrating the gravitational search algorithm (GSA) with the compressive sampling matching pursuit (CoSaMP), aimed at improving the accuracy and robustness of ultrasonic guided wave signal decomposition and reconstruction. GSA is applied to dynamically optimize signal sparsity, overcoming the limitations of traditional methods that rely on predefined sparsity levels. Moreover, an optimized waveform dictionary, which incorporates prior knowledge of guided wave reflection characteristics, is constructed to improve the accuracy of defect signal decomposition and reconstruction. The proposed method effectively separates overlapping reflection signals from the front and rear edges of pipeline defects, enabling precise characterization of defect axial dimensions. Finite Element (FE) simulations and experimental validations using a piezoelectric sensor array installed on the surface of a stainless steel pipeline illustrate the enhanced effectiveness of the proposed methodology, achieving average defect size evaluation errors of 0.68 mm and 2.20 mm, respectively, significantly outperforming conventional matching pursuit(MP), standard CoSaMP, orthogonal matching pursuit (OMP), and basis pursuit (BP) algorithms. This method addresses the limitations of existing approaches by adaptively optimizing signal sparsity, enhancing robustness against noise, and providing a reliable tool for pipeline integrity assessment. The findings contribute to the development of predictive maintenance strategies and advance real-time defect monitoring applications for complex pipeline networks. |
|---|---|
| AbstractList | Accurate characterization of pipeline defects is crucial for maintaining structural integrity and ensuring operational safety. This study introduces an innovative pipeline defect evaluation method integrating the gravitational search algorithm (GSA) with the compressive sampling matching pursuit (CoSaMP), aimed at improving the accuracy and robustness of ultrasonic guided wave signal decomposition and reconstruction. GSA is applied to dynamically optimize signal sparsity, overcoming the limitations of traditional methods that rely on predefined sparsity levels. Moreover, an optimized waveform dictionary, which incorporates prior knowledge of guided wave reflection characteristics, is constructed to improve the accuracy of defect signal decomposition and reconstruction. The proposed method effectively separates overlapping reflection signals from the front and rear edges of pipeline defects, enabling precise characterization of defect axial dimensions. Finite Element (FE) simulations and experimental validations using a piezoelectric sensor array installed on the surface of a stainless steel pipeline illustrate the enhanced effectiveness of the proposed methodology, achieving average defect size evaluation errors of 0.68 mm and 2.20 mm, respectively, significantly outperforming conventional matching pursuit(MP), standard CoSaMP, orthogonal matching pursuit (OMP), and basis pursuit (BP) algorithms. This method addresses the limitations of existing approaches by adaptively optimizing signal sparsity, enhancing robustness against noise, and providing a reliable tool for pipeline integrity assessment. The findings contribute to the development of predictive maintenance strategies and advance real-time defect monitoring applications for complex pipeline networks. Accurate characterization of pipeline defects is crucial for maintaining structural integrity and ensuring operational safety. This study introduces an innovative pipeline defect evaluation method integrating the gravitational search algorithm (GSA) with the compressed sampling matching pursuit (CoSaMP), aimed at improving the accuracy and robustness of ultrasonic guided wave (UGW) signal decomposition and reconstruction. GSA is applied to dynamically optimize signal sparsity, overcoming the limitations of traditional methods that rely on predefined sparsity levels. Moreover, an optimized waveform dictionary, which incorporates prior knowledge of guided wave reflection characteristics, is constructed to improve the accuracy of defect signal decomposition and reconstruction. The proposed method effectively separates overlapping reflection signals from the front and rear edges of pipeline defects, enabling precise characterization of defect axial dimensions. Finite element (FE) simulations and experimental validations using a piezoelectric (PZT) sensor array installed on the surface of a stainless steel pipeline illustrate the enhanced effectiveness of the proposed methodology, achieving average defect size evaluation errors of 0.68 and 2.20 mm, respectively, significantly outperforming conventional matching pursuit (MP), standard CoSaMP, orthogonal matching pursuit (OMP), and basis pursuit (BP) algorithms. This method addresses the limitations of existing approaches by adaptively optimizing signal sparsity, enhancing robustness against noise, and providing a reliable tool for pipeline integrity assessment. The findings contribute to the development of predictive maintenance strategies and advance real-time defect monitoring applications for complex pipeline networks. |
| Author | Fang, Linlin Qing, Xinlin Lin, Zhirong Wang, Yishou Hu, Xiaodie |
| Author_xml | – sequence: 1 givenname: Zhirong orcidid: 0009-0009-1553-2003 surname: Lin fullname: Lin, Zhirong email: linzhirong@stu.xmu.edu.cn organization: School of Aerospace Engineering, Xiamen University, Xiamen, China – sequence: 2 givenname: Yishou orcidid: 0000-0001-8043-843X surname: Wang fullname: Wang, Yishou email: wangys@xmu.edu.cn organization: School of Aerospace Engineering, Xiamen University, Xiamen, China – sequence: 3 givenname: Linlin orcidid: 0009-0006-8930-9507 surname: Fang fullname: Fang, Linlin email: linlinfang@fjirsm.ac.cn organization: Haixi Institutes, Quanzhou Institute of Equipment Manufacturing, Chinese Academy of Sciences, Quanzhou, China – sequence: 4 givenname: Xiaodie orcidid: 0009-0002-2743-2885 surname: Hu fullname: Hu, Xiaodie email: 35120221151648@stu.xmu.edu.cn organization: School of Aerospace Engineering, Xiamen University, Xiamen, China – sequence: 5 givenname: Xinlin orcidid: 0000-0003-1189-3046 surname: Qing fullname: Qing, Xinlin email: xinlinqing@xmu.edu.cn organization: School of Aerospace Engineering, Xiamen University, Xiamen, China |
| BookMark | eNpFkE1rAjEQhkNpoWp776GHQM9r82E2yXGxrRWUCio9LtnsrK6siU3Wgv--Kwo9DQzP-87w9NGt8w4QeqJkSCnRr6vpfMgIE0OeEs2ZuEE9KoRMdJqyW9QjhKpEj0R6j_ox7gghMh3JHtos6gM0tQP8BhXYFmcxQox7cC2eQ7v1JS5MhBJ7h9dNG0z0rrZ4cqzLbvltfgEvwUUfcBaCOWHjSjxZZsnYL818gbNm40PdbvcP6K4yTYTH6xyg9cf7avyZzL4m03E2SywbyTbRxAprtTCFppXsPkoLxYmy0kpdGV0xW3BplKqkKJgQjPJClEZZqoyQqrR8gF4uvYfgf44Q23znj8F1J_NOCuNEC8U7ilwoG3yMAar8EOq9CaeckvysM-905med-VVnF3m-RGoA-McpTVlKOf8DMTlynQ |
| CODEN | IEIMAO |
| Cites_doi | 10.1109/tim.2021.3055277 10.1016/j.jpse.2022.100074 10.1016/j.ndteint.2010.01.002 10.1109/jsen.2023.3343946 10.1109/78.258082 10.1109/tuffc.2010.1747 10.1016/s0266-3538(02)00007-6 10.1061/(asce)co.1943-7862.0001819 10.1016/j.jpse.2021.01.008 10.1109/tim.2021.3092518 10.1016/j.ndteint.2012.10.003 10.1109/jsen.2019.2958953 10.1109/tie.2024.3366209 10.1088/0964-1726/14/4/013 10.1121/1.4788984 10.1016/j.ijpvp.2023.105033 10.1109/ICEMI.2011.6037945 10.1088/1361-665x/ab1cc9 10.1121/1.1582439 10.1145/1859204.1859229 10.1109/tim.2022.3225059 10.1109/tassp.1982.1163992 10.1109/tim.2022.3206833 10.1061/(asce)ps.1949-1204.0000600 10.1007/s00419-020-01863-4 10.3390/coatings14030358 10.1109/tim.2023.3277937 10.1109/jsen.2019.2954206 10.1121/1.3409446 10.1109/tit.2004.834793 10.1016/j.ndteint.2003.09.004 10.1061/jpsea2.pseng-1518 10.1109/tim.2024.3353831 10.3390/app12020572 10.1109/tim.2024.3365164 10.1016/j.compscitech.2005.11.007 10.1061/(asce)ps.1949-1204.0000407 10.1109/tim.2019.2951891 10.1016/j.measurement.2020.108945 10.1109/jsen.2020.2971854 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2025.3609325 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TIM_2025_3609325 11162613 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Xiamen Special Equipment Inspection and Testing Institute grantid: XMTJY-KY2025-02 – fundername: Special Equipment Structural Health Monitoring and Integrity Evaluation Project – fundername: National Key Research and Development Program of China grantid: 2023YFF0716602 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI O9- OCL P2P RIA RIE RNS TN5 TWZ 5VS 8WZ A6W AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFJZH M43 VH1 VJK 7SP 7U5 8FD AARMG L7M |
| ID | FETCH-LOGICAL-c247t-90c5cc95ab91f7efe6b8308c7c79fa9f2cb37a88f75b255213b5da8c18a578dc3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9456 |
| IngestDate | Sat Sep 20 00:10:46 EDT 2025 Wed Oct 01 05:16:20 EDT 2025 Wed Oct 01 07:05:18 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c247t-90c5cc95ab91f7efe6b8308c7c79fa9f2cb37a88f75b255213b5da8c18a578dc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8043-843X 0009-0002-2743-2885 0009-0009-1553-2003 0009-0006-8930-9507 0000-0003-1189-3046 |
| PQID | 3252309583 |
| PQPubID | 85462 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_11162613 proquest_journals_3252309583 crossref_primary_10_1109_TIM_2025_3609325 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 (ref41) 2008 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref16 doi: 10.1109/tim.2021.3055277 – ident: ref11 doi: 10.1016/j.jpse.2022.100074 – ident: ref37 doi: 10.1016/j.ndteint.2010.01.002 – ident: ref14 doi: 10.1109/jsen.2023.3343946 – ident: ref25 doi: 10.1109/78.258082 – ident: ref31 doi: 10.1109/tuffc.2010.1747 – ident: ref39 doi: 10.1016/s0266-3538(02)00007-6 – ident: ref1 doi: 10.1061/(asce)co.1943-7862.0001819 – ident: ref19 doi: 10.1016/j.jpse.2021.01.008 – ident: ref6 doi: 10.1109/tim.2021.3092518 – ident: ref28 doi: 10.1016/j.ndteint.2012.10.003 – ident: ref9 doi: 10.1109/jsen.2019.2958953 – ident: ref15 doi: 10.1109/tie.2024.3366209 – ident: ref26 doi: 10.1088/0964-1726/14/4/013 – ident: ref32 doi: 10.1121/1.4788984 – ident: ref3 doi: 10.1016/j.ijpvp.2023.105033 – ident: ref27 doi: 10.1109/ICEMI.2011.6037945 – ident: ref29 doi: 10.1088/1361-665x/ab1cc9 – ident: ref21 doi: 10.1121/1.1582439 – ident: ref35 doi: 10.1145/1859204.1859229 – ident: ref8 doi: 10.1109/tim.2022.3225059 – ident: ref38 doi: 10.1109/tassp.1982.1163992 – ident: ref12 doi: 10.1109/tim.2022.3206833 – ident: ref18 doi: 10.1061/(asce)ps.1949-1204.0000600 – ident: ref33 doi: 10.1007/s00419-020-01863-4 – volume-title: Evaluation of Measurement Data-Guide to the Expression of Uncertainty in Measurement, (GUM 1995 With Minor Corrections) year: 2008 ident: ref41 – ident: ref4 doi: 10.3390/coatings14030358 – ident: ref5 doi: 10.1109/tim.2023.3277937 – ident: ref20 doi: 10.1109/jsen.2019.2954206 – ident: ref23 doi: 10.1121/1.3409446 – ident: ref34 doi: 10.1109/tit.2004.834793 – ident: ref22 doi: 10.1016/j.ndteint.2003.09.004 – ident: ref24 doi: 10.1061/jpsea2.pseng-1518 – ident: ref10 doi: 10.1109/tim.2024.3353831 – ident: ref36 doi: 10.3390/app12020572 – ident: ref17 doi: 10.1109/tim.2024.3365164 – ident: ref40 doi: 10.1016/j.compscitech.2005.11.007 – ident: ref2 doi: 10.1061/(asce)ps.1949-1204.0000407 – ident: ref30 doi: 10.1109/tim.2019.2951891 – ident: ref7 doi: 10.1016/j.measurement.2020.108945 – ident: ref13 doi: 10.1109/jsen.2020.2971854 |
| SSID | ssj0007647 |
| Score | 2.4275794 |
| Snippet | Accurate characterization of pipeline defects is crucial for maintaining structural integrity and ensuring operational safety. This study introduces an... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Acoustics compressed sensing matching pursuit (CoSaMP) Decomposition Defects Dictionaries Finite element method gravitational search Inspection Matched pursuit Matching Matching pursuit algorithms Optimization piezoelectric array Piezoelectricity pipeline defect Pipelines Predictive maintenance Real time Reconstruction Reflection Robustness Search algorithms Sensor arrays Signal processing algorithms Signal reflection Signal resolution Sparsity Stainless steels Steel Steel pipes Structural integrity Ultrasonic guided wave Wave reflection Waveforms |
| Title | Pipeline Defect Assessment Method based on Ultrasonic Guided Wave Sensor Array and GSA-CoSaMP Algorithm |
| URI | https://ieeexplore.ieee.org/document/11162613 https://www.proquest.com/docview/3252309583 |
| Volume | 74 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT9swGLcG0qRxGAyKVlaQD7vskDaN69exKo8yqQipVHCL_Eqp1iUoTZHgr99nJwW0aRK3KLITy5-_x8_fC6HvxmWg1xmNqCIEAIpVkWTCRUTrLKMm9q4cH21xxcazwc87etckq4dcGOdcCD5zXf8YfPm2MGt_VdYDvgT72_eo3eKC1claL2KXs0FdILMPHAxmwcYnGcvezeUEkGBCu4QBgPddsd_ooNBU5R9JHNTL-S662iysjir51V1Xumue_6rZ-O6V76HPjaGJh_XJ-II-uHwf7bwpP7iPPobwT7M6QPPrxYNPTHf41Pn4Djx8KdiJJ6HHNPbqzuIix7NlVaqVr6iLL9YLCy9v1aPDU8DDRQn_K9UTVrnFF9NhNCqmanKNh8t5US6q-98tNDs_uxmNo6YFQ2SSAa8iGRtqjKRKy37GYQVMCxILww2XmZJZYjThSoiMUw3gJOkTTa0Spi8UiAJryCHazovcfUWYxTxhJpHKOgUwC4Sbs2AuJF4IaDpwbfRjQ5T0oa60kQaEEssUCJh6AqYNAduo5ff4dVyzvW3U2ZAxbXhxlcJ4wFmSCnL0n2nf0Cf_9fpmpYO2q3LtjsHWqPRJOGN_AJSZzxE |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT-MwFH5CIARzAIZF0xkWH-bCISWN4yQ-VgxQllZIbQW3yFuYapgEpSkS8-vn2UkBgZC4RZEtW35-y-e3AfxUJkO9HjGPCUoRoGjh8SgxHpUyy5jyrSvHRlsMot44vLhlt02yusuFMca44DPTtp_Ol68LNbNPZUfIl2h_2x61SywMQ1anaz0L3jgK6xKZHeRhNAzmXkmfH43O-4gFA9amEUJ42xf7lRZybVXeyWKnYE7XYTDfWh1X8qc9q2Rb_XtTtfHTe9-AtcbUJN36bnyFBZNvwpdXBQg3YdkFgKrpFtxdTx5sarohv4yN8CDd55KdpO-6TBOr8DQpcjK-r0oxtTV1ydlsovHnjXg0ZIiIuChxvVI8EZFrcjbsesfFUPSvSff-rign1e-_2zA-PRkd97ymCYOngjCuPO4rphRnQvJOFuMOIplQP1GxinkmeBYoSWORJFnMJMKToEMl0yJRnUSgMNCK7sBiXuTmG5DIj4NIBVxoIxBooXgzGg2GwIoByULTgsM5UdKHutZG6jCKz1MkYGoJmDYEbMG2PeOXcc3xtmB3Tsa04cZpiuMRaXGW0O8fTDuAld6of5VenQ8uf8CqXal-Z9mFxaqcmT20PCq57-7bf5jF0l4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pipeline+Defect+Assessment+Method+Based+on+Ultrasonic+Guided+Wave+Sensor+Array+and+GSA-CoSaMP+Algorithm&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Lin%2C+Zhirong&rft.au=Wang%2C+Yishou&rft.au=Fang%2C+Linlin&rft.au=Hu%2C+Xiaodie&rft.date=2025-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTIM.2025.3609325&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |