Pipeline Defect Assessment Method based on Ultrasonic Guided Wave Sensor Array and GSA-CoSaMP Algorithm

Accurate characterization of pipeline defects is crucial for maintaining structural integrity and ensuring operational safety. This study introduces an innovative pipeline defect evaluation method integrating the gravitational search algorithm (GSA) with the compressive sampling matching pursuit (Co...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 74; p. 1
Main Authors Lin, Zhirong, Wang, Yishou, Fang, Linlin, Hu, Xiaodie, Qing, Xinlin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2025.3609325

Cover

Abstract Accurate characterization of pipeline defects is crucial for maintaining structural integrity and ensuring operational safety. This study introduces an innovative pipeline defect evaluation method integrating the gravitational search algorithm (GSA) with the compressive sampling matching pursuit (CoSaMP), aimed at improving the accuracy and robustness of ultrasonic guided wave signal decomposition and reconstruction. GSA is applied to dynamically optimize signal sparsity, overcoming the limitations of traditional methods that rely on predefined sparsity levels. Moreover, an optimized waveform dictionary, which incorporates prior knowledge of guided wave reflection characteristics, is constructed to improve the accuracy of defect signal decomposition and reconstruction. The proposed method effectively separates overlapping reflection signals from the front and rear edges of pipeline defects, enabling precise characterization of defect axial dimensions. Finite Element (FE) simulations and experimental validations using a piezoelectric sensor array installed on the surface of a stainless steel pipeline illustrate the enhanced effectiveness of the proposed methodology, achieving average defect size evaluation errors of 0.68 mm and 2.20 mm, respectively, significantly outperforming conventional matching pursuit(MP), standard CoSaMP, orthogonal matching pursuit (OMP), and basis pursuit (BP) algorithms. This method addresses the limitations of existing approaches by adaptively optimizing signal sparsity, enhancing robustness against noise, and providing a reliable tool for pipeline integrity assessment. The findings contribute to the development of predictive maintenance strategies and advance real-time defect monitoring applications for complex pipeline networks.
AbstractList Accurate characterization of pipeline defects is crucial for maintaining structural integrity and ensuring operational safety. This study introduces an innovative pipeline defect evaluation method integrating the gravitational search algorithm (GSA) with the compressive sampling matching pursuit (CoSaMP), aimed at improving the accuracy and robustness of ultrasonic guided wave signal decomposition and reconstruction. GSA is applied to dynamically optimize signal sparsity, overcoming the limitations of traditional methods that rely on predefined sparsity levels. Moreover, an optimized waveform dictionary, which incorporates prior knowledge of guided wave reflection characteristics, is constructed to improve the accuracy of defect signal decomposition and reconstruction. The proposed method effectively separates overlapping reflection signals from the front and rear edges of pipeline defects, enabling precise characterization of defect axial dimensions. Finite Element (FE) simulations and experimental validations using a piezoelectric sensor array installed on the surface of a stainless steel pipeline illustrate the enhanced effectiveness of the proposed methodology, achieving average defect size evaluation errors of 0.68 mm and 2.20 mm, respectively, significantly outperforming conventional matching pursuit(MP), standard CoSaMP, orthogonal matching pursuit (OMP), and basis pursuit (BP) algorithms. This method addresses the limitations of existing approaches by adaptively optimizing signal sparsity, enhancing robustness against noise, and providing a reliable tool for pipeline integrity assessment. The findings contribute to the development of predictive maintenance strategies and advance real-time defect monitoring applications for complex pipeline networks.
Accurate characterization of pipeline defects is crucial for maintaining structural integrity and ensuring operational safety. This study introduces an innovative pipeline defect evaluation method integrating the gravitational search algorithm (GSA) with the compressed sampling matching pursuit (CoSaMP), aimed at improving the accuracy and robustness of ultrasonic guided wave (UGW) signal decomposition and reconstruction. GSA is applied to dynamically optimize signal sparsity, overcoming the limitations of traditional methods that rely on predefined sparsity levels. Moreover, an optimized waveform dictionary, which incorporates prior knowledge of guided wave reflection characteristics, is constructed to improve the accuracy of defect signal decomposition and reconstruction. The proposed method effectively separates overlapping reflection signals from the front and rear edges of pipeline defects, enabling precise characterization of defect axial dimensions. Finite element (FE) simulations and experimental validations using a piezoelectric (PZT) sensor array installed on the surface of a stainless steel pipeline illustrate the enhanced effectiveness of the proposed methodology, achieving average defect size evaluation errors of 0.68 and 2.20 mm, respectively, significantly outperforming conventional matching pursuit (MP), standard CoSaMP, orthogonal matching pursuit (OMP), and basis pursuit (BP) algorithms. This method addresses the limitations of existing approaches by adaptively optimizing signal sparsity, enhancing robustness against noise, and providing a reliable tool for pipeline integrity assessment. The findings contribute to the development of predictive maintenance strategies and advance real-time defect monitoring applications for complex pipeline networks.
Author Fang, Linlin
Qing, Xinlin
Lin, Zhirong
Wang, Yishou
Hu, Xiaodie
Author_xml – sequence: 1
  givenname: Zhirong
  orcidid: 0009-0009-1553-2003
  surname: Lin
  fullname: Lin, Zhirong
  email: linzhirong@stu.xmu.edu.cn
  organization: School of Aerospace Engineering, Xiamen University, Xiamen, China
– sequence: 2
  givenname: Yishou
  orcidid: 0000-0001-8043-843X
  surname: Wang
  fullname: Wang, Yishou
  email: wangys@xmu.edu.cn
  organization: School of Aerospace Engineering, Xiamen University, Xiamen, China
– sequence: 3
  givenname: Linlin
  orcidid: 0009-0006-8930-9507
  surname: Fang
  fullname: Fang, Linlin
  email: linlinfang@fjirsm.ac.cn
  organization: Haixi Institutes, Quanzhou Institute of Equipment Manufacturing, Chinese Academy of Sciences, Quanzhou, China
– sequence: 4
  givenname: Xiaodie
  orcidid: 0009-0002-2743-2885
  surname: Hu
  fullname: Hu, Xiaodie
  email: 35120221151648@stu.xmu.edu.cn
  organization: School of Aerospace Engineering, Xiamen University, Xiamen, China
– sequence: 5
  givenname: Xinlin
  orcidid: 0000-0003-1189-3046
  surname: Qing
  fullname: Qing, Xinlin
  email: xinlinqing@xmu.edu.cn
  organization: School of Aerospace Engineering, Xiamen University, Xiamen, China
BookMark eNpFkE1rAjEQhkNpoWp776GHQM9r82E2yXGxrRWUCio9LtnsrK6siU3Wgv--Kwo9DQzP-87w9NGt8w4QeqJkSCnRr6vpfMgIE0OeEs2ZuEE9KoRMdJqyW9QjhKpEj0R6j_ox7gghMh3JHtos6gM0tQP8BhXYFmcxQox7cC2eQ7v1JS5MhBJ7h9dNG0z0rrZ4cqzLbvltfgEvwUUfcBaCOWHjSjxZZsnYL818gbNm40PdbvcP6K4yTYTH6xyg9cf7avyZzL4m03E2SywbyTbRxAprtTCFppXsPkoLxYmy0kpdGV0xW3BplKqkKJgQjPJClEZZqoyQqrR8gF4uvYfgf44Q23znj8F1J_NOCuNEC8U7ilwoG3yMAar8EOq9CaeckvysM-905med-VVnF3m-RGoA-McpTVlKOf8DMTlynQ
CODEN IEIMAO
Cites_doi 10.1109/tim.2021.3055277
10.1016/j.jpse.2022.100074
10.1016/j.ndteint.2010.01.002
10.1109/jsen.2023.3343946
10.1109/78.258082
10.1109/tuffc.2010.1747
10.1016/s0266-3538(02)00007-6
10.1061/(asce)co.1943-7862.0001819
10.1016/j.jpse.2021.01.008
10.1109/tim.2021.3092518
10.1016/j.ndteint.2012.10.003
10.1109/jsen.2019.2958953
10.1109/tie.2024.3366209
10.1088/0964-1726/14/4/013
10.1121/1.4788984
10.1016/j.ijpvp.2023.105033
10.1109/ICEMI.2011.6037945
10.1088/1361-665x/ab1cc9
10.1121/1.1582439
10.1145/1859204.1859229
10.1109/tim.2022.3225059
10.1109/tassp.1982.1163992
10.1109/tim.2022.3206833
10.1061/(asce)ps.1949-1204.0000600
10.1007/s00419-020-01863-4
10.3390/coatings14030358
10.1109/tim.2023.3277937
10.1109/jsen.2019.2954206
10.1121/1.3409446
10.1109/tit.2004.834793
10.1016/j.ndteint.2003.09.004
10.1061/jpsea2.pseng-1518
10.1109/tim.2024.3353831
10.3390/app12020572
10.1109/tim.2024.3365164
10.1016/j.compscitech.2005.11.007
10.1061/(asce)ps.1949-1204.0000407
10.1109/tim.2019.2951891
10.1016/j.measurement.2020.108945
10.1109/jsen.2020.2971854
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2025.3609325
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 1
ExternalDocumentID 10_1109_TIM_2025_3609325
11162613
Genre orig-research
GrantInformation_xml – fundername: Xiamen Special Equipment Inspection and Testing Institute
  grantid: XMTJY-KY2025-02
– fundername: Special Equipment Structural Health Monitoring and Integrity Evaluation Project
– fundername: National Key Research and Development Program of China
  grantid: 2023YFF0716602
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
5VS
8WZ
A6W
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
M43
VH1
VJK
7SP
7U5
8FD
AARMG
L7M
ID FETCH-LOGICAL-c247t-90c5cc95ab91f7efe6b8308c7c79fa9f2cb37a88f75b255213b5da8c18a578dc3
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Sat Sep 20 00:10:46 EDT 2025
Wed Oct 01 05:16:20 EDT 2025
Wed Oct 01 07:05:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-90c5cc95ab91f7efe6b8308c7c79fa9f2cb37a88f75b255213b5da8c18a578dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8043-843X
0009-0002-2743-2885
0009-0009-1553-2003
0009-0006-8930-9507
0000-0003-1189-3046
PQID 3252309583
PQPubID 85462
PageCount 1
ParticipantIDs ieee_primary_11162613
proquest_journals_3252309583
crossref_primary_10_1109_TIM_2025_3609325
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
(ref41) 2008
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref16
  doi: 10.1109/tim.2021.3055277
– ident: ref11
  doi: 10.1016/j.jpse.2022.100074
– ident: ref37
  doi: 10.1016/j.ndteint.2010.01.002
– ident: ref14
  doi: 10.1109/jsen.2023.3343946
– ident: ref25
  doi: 10.1109/78.258082
– ident: ref31
  doi: 10.1109/tuffc.2010.1747
– ident: ref39
  doi: 10.1016/s0266-3538(02)00007-6
– ident: ref1
  doi: 10.1061/(asce)co.1943-7862.0001819
– ident: ref19
  doi: 10.1016/j.jpse.2021.01.008
– ident: ref6
  doi: 10.1109/tim.2021.3092518
– ident: ref28
  doi: 10.1016/j.ndteint.2012.10.003
– ident: ref9
  doi: 10.1109/jsen.2019.2958953
– ident: ref15
  doi: 10.1109/tie.2024.3366209
– ident: ref26
  doi: 10.1088/0964-1726/14/4/013
– ident: ref32
  doi: 10.1121/1.4788984
– ident: ref3
  doi: 10.1016/j.ijpvp.2023.105033
– ident: ref27
  doi: 10.1109/ICEMI.2011.6037945
– ident: ref29
  doi: 10.1088/1361-665x/ab1cc9
– ident: ref21
  doi: 10.1121/1.1582439
– ident: ref35
  doi: 10.1145/1859204.1859229
– ident: ref8
  doi: 10.1109/tim.2022.3225059
– ident: ref38
  doi: 10.1109/tassp.1982.1163992
– ident: ref12
  doi: 10.1109/tim.2022.3206833
– ident: ref18
  doi: 10.1061/(asce)ps.1949-1204.0000600
– ident: ref33
  doi: 10.1007/s00419-020-01863-4
– volume-title: Evaluation of Measurement Data-Guide to the Expression of Uncertainty in Measurement, (GUM 1995 With Minor Corrections)
  year: 2008
  ident: ref41
– ident: ref4
  doi: 10.3390/coatings14030358
– ident: ref5
  doi: 10.1109/tim.2023.3277937
– ident: ref20
  doi: 10.1109/jsen.2019.2954206
– ident: ref23
  doi: 10.1121/1.3409446
– ident: ref34
  doi: 10.1109/tit.2004.834793
– ident: ref22
  doi: 10.1016/j.ndteint.2003.09.004
– ident: ref24
  doi: 10.1061/jpsea2.pseng-1518
– ident: ref10
  doi: 10.1109/tim.2024.3353831
– ident: ref36
  doi: 10.3390/app12020572
– ident: ref17
  doi: 10.1109/tim.2024.3365164
– ident: ref40
  doi: 10.1016/j.compscitech.2005.11.007
– ident: ref2
  doi: 10.1061/(asce)ps.1949-1204.0000407
– ident: ref30
  doi: 10.1109/tim.2019.2951891
– ident: ref7
  doi: 10.1016/j.measurement.2020.108945
– ident: ref13
  doi: 10.1109/jsen.2020.2971854
SSID ssj0007647
Score 2.4275794
Snippet Accurate characterization of pipeline defects is crucial for maintaining structural integrity and ensuring operational safety. This study introduces an...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Acoustics
compressed sensing matching pursuit (CoSaMP)
Decomposition
Defects
Dictionaries
Finite element method
gravitational search
Inspection
Matched pursuit
Matching
Matching pursuit algorithms
Optimization
piezoelectric array
Piezoelectricity
pipeline defect
Pipelines
Predictive maintenance
Real time
Reconstruction
Reflection
Robustness
Search algorithms
Sensor arrays
Signal processing algorithms
Signal reflection
Signal resolution
Sparsity
Stainless steels
Steel
Steel pipes
Structural integrity
Ultrasonic guided wave
Wave reflection
Waveforms
Title Pipeline Defect Assessment Method based on Ultrasonic Guided Wave Sensor Array and GSA-CoSaMP Algorithm
URI https://ieeexplore.ieee.org/document/11162613
https://www.proquest.com/docview/3252309583
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT9swGLcG0qRxGAyKVlaQD7vskDaN69exKo8yqQipVHCL_Eqp1iUoTZHgr99nJwW0aRK3KLITy5-_x8_fC6HvxmWg1xmNqCIEAIpVkWTCRUTrLKMm9q4cH21xxcazwc87etckq4dcGOdcCD5zXf8YfPm2MGt_VdYDvgT72_eo3eKC1claL2KXs0FdILMPHAxmwcYnGcvezeUEkGBCu4QBgPddsd_ooNBU5R9JHNTL-S662iysjir51V1Xumue_6rZ-O6V76HPjaGJh_XJ-II-uHwf7bwpP7iPPobwT7M6QPPrxYNPTHf41Pn4Djx8KdiJJ6HHNPbqzuIix7NlVaqVr6iLL9YLCy9v1aPDU8DDRQn_K9UTVrnFF9NhNCqmanKNh8t5US6q-98tNDs_uxmNo6YFQ2SSAa8iGRtqjKRKy37GYQVMCxILww2XmZJZYjThSoiMUw3gJOkTTa0Spi8UiAJryCHazovcfUWYxTxhJpHKOgUwC4Sbs2AuJF4IaDpwbfRjQ5T0oa60kQaEEssUCJh6AqYNAduo5ff4dVyzvW3U2ZAxbXhxlcJ4wFmSCnL0n2nf0Cf_9fpmpYO2q3LtjsHWqPRJOGN_AJSZzxE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT-MwFH5CIARzAIZF0xkWH-bCISWN4yQ-VgxQllZIbQW3yFuYapgEpSkS8-vn2UkBgZC4RZEtW35-y-e3AfxUJkO9HjGPCUoRoGjh8SgxHpUyy5jyrSvHRlsMot44vLhlt02yusuFMca44DPTtp_Ol68LNbNPZUfIl2h_2x61SywMQ1anaz0L3jgK6xKZHeRhNAzmXkmfH43O-4gFA9amEUJ42xf7lRZybVXeyWKnYE7XYTDfWh1X8qc9q2Rb_XtTtfHTe9-AtcbUJN36bnyFBZNvwpdXBQg3YdkFgKrpFtxdTx5sarohv4yN8CDd55KdpO-6TBOr8DQpcjK-r0oxtTV1ydlsovHnjXg0ZIiIuChxvVI8EZFrcjbsesfFUPSvSff-rign1e-_2zA-PRkd97ymCYOngjCuPO4rphRnQvJOFuMOIplQP1GxinkmeBYoSWORJFnMJMKToEMl0yJRnUSgMNCK7sBiXuTmG5DIj4NIBVxoIxBooXgzGg2GwIoByULTgsM5UdKHutZG6jCKz1MkYGoJmDYEbMG2PeOXcc3xtmB3Tsa04cZpiuMRaXGW0O8fTDuAld6of5VenQ8uf8CqXal-Z9mFxaqcmT20PCq57-7bf5jF0l4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pipeline+Defect+Assessment+Method+Based+on+Ultrasonic+Guided+Wave+Sensor+Array+and+GSA-CoSaMP+Algorithm&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Lin%2C+Zhirong&rft.au=Wang%2C+Yishou&rft.au=Fang%2C+Linlin&rft.au=Hu%2C+Xiaodie&rft.date=2025-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTIM.2025.3609325&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon