Self-Triggered Stochastic MPC With Adaptive Prediction Horizon for Cloud-Based Connected Vehicles Subject to Chance Constraints
This work presents a novel self-triggered stochastic model predictive control (SMPC) scheme for cloud-based vehicle path following control system subject to chance constraints. First, we model the cloud-based vehicle path following control system from a networked stochastic control system perspectiv...
Saved in:
| Published in | IEEE transactions on vehicular technology Vol. 74; no. 8; pp. 11682 - 11697 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9545 1939-9359 |
| DOI | 10.1109/TVT.2025.3550898 |
Cover
| Abstract | This work presents a novel self-triggered stochastic model predictive control (SMPC) scheme for cloud-based vehicle path following control system subject to chance constraints. First, we model the cloud-based vehicle path following control system from a networked stochastic control system perspective. Unlike the conventional periodical sampling approach, a self-triggered mechanism (STM) with adaptive prediction horizon is developed to determine the next sampling time instant and inter-sampling control inputs at each sampling time instant. This mechanism can efficiently reduce the data transmission frequency in the vehicle-cloud communication network, leading to a lower communication load and thus improving the reliability of the system. The STM comprises a set of optimization problems with an adaptive prediction horizon. The optimization problems and threshold design explicitly take the vehicle-cloud communication load into account. Furthermore, a stochastic model predictive control problem with modified constraint tightening and terminal constraint is defined by considering the influence of STM. We develop sufficient conditions to guarantee the closed-loop chance constraints satisfaction in the presence of both adaptive STM and additive disturbances. Then, the recursive feasibility of the optimal control problem and closed-loop stability of the system are investigated. Finally, we illustrate the benefits and effectiveness of the proposed method through numerical examples in vehicle path following control problem. |
|---|---|
| AbstractList | This work presents a novel self-triggered stochastic model predictive control (SMPC) scheme for cloud-based vehicle path following control system subject to chance constraints. First, we model the cloud-based vehicle path following control system from a networked stochastic control system perspective. Unlike the conventional periodical sampling approach, a self-triggered mechanism (STM) with adaptive prediction horizon is developed to determine the next sampling time instant and inter-sampling control inputs at each sampling time instant. This mechanism can efficiently reduce the data transmission frequency in the vehicle-cloud communication network, leading to a lower communication load and thus improving the reliability of the system. The STM comprises a set of optimization problems with an adaptive prediction horizon. The optimization problems and threshold design explicitly take the vehicle-cloud communication load into account. Furthermore, a stochastic model predictive control problem with modified constraint tightening and terminal constraint is defined by considering the influence of STM. We develop sufficient conditions to guarantee the closed-loop chance constraints satisfaction in the presence of both adaptive STM and additive disturbances. Then, the recursive feasibility of the optimal control problem and closed-loop stability of the system are investigated. Finally, we illustrate the benefits and effectiveness of the proposed method through numerical examples in vehicle path following control problem. |
| Author | Zhang, Hui Chen, Jicheng |
| Author_xml | – sequence: 1 givenname: Jicheng orcidid: 0000-0003-2670-9045 surname: Chen fullname: Chen, Jicheng email: jichengc@buaa.edu.cn organization: School of Reliability and System Engineering, Beihang University, Beijing, China – sequence: 2 givenname: Hui orcidid: 0000-0002-2501-712X surname: Zhang fullname: Zhang, Hui email: huizhang285@buaa.edu.cn organization: Hangzhou International Innovation Institute, Beihang University, Hangzhou, China |
| BookMark | eNpNkM1LAzEQxYMo2FbvHjwEPG_Nx2abHOviFygWWvW4ZJNZm1I3NUkFvfivm1IPnt7M8Hvz4A3RYe97QOiMkjGlRF0uXhZjRpgYcyGIVPIADajiqlBcqEM0IITKQolSHKNhjKu8lqWiA_Qzh3VXLIJ7e4MAFs-TN0sdkzP4cVbjV5eWeGr1JrlPwLNMOJOc7_GdD-47a-cDrtd-a4srHbO_9n0PJuXpBZbOrCHi-bZd5RNOHtdL3RvYQTEF7foUT9BRp9cRTv90hJ5vrhf1XfHwdHtfTx8Kw8pJKuSkYloS2lZt25UKuOLMdlYbAZUSjOvOCmpIpUnLJhKIkLZT1pYtMVKLVvIRutj_3QT_sYWYmpXfhj5HNjwnMK6UKjNF9pQJPsYAXbMJ7l2Hr4aSZldzk2tudjU3fzVny_ne4gDgH65YWU0q_gvuMXxx |
| CODEN | ITVTAB |
| Cites_doi | 10.1016/j.automatica.2010.06.034 10.1109/MSMC.2023.3277697 10.1109/ACCESS.2022.3231443 10.1109/TCST.2023.3288636 10.1016/j.automatica.2019.06.015 10.1109/TAC.2016.2625048 10.1109/TCST.2007.894653 10.1109/TIV.2023.3243096 10.1016/j.automatica.2016.05.004 10.1109/TIV.2023.3235352 10.1109/LCSYS.2019.2918763 10.1109/TVT.2023.3288522 10.1109/TAC.2019.2905223 10.1109/TAC.2016.2537741 10.1007/s42154-022-00202-3 10.1109/TTE.2023.3260824 10.1109/TIE.2024.3355494 10.1016/j.eng.2023.03.018 10.1016/j.automatica.2018.02.017 10.1109/TAC.2020.3022734 10.1109/TII.2021.3127197 10.1109/tcsi.2024.3520598 10.1080/00423114.2022.2052328 10.1109/TVT.2023.3296980 10.1016/j.automatica.2016.10.023 10.1109/JIOT.2023.3238508 10.1109/9.83532 10.1109/TVT.2025.3525657 10.1109/TVT.2023.3248870 10.1007/s42154-024-00297-w 10.1109/TAC.2017.2702646 10.1186/s10033-021-00638-4 10.1016/j.ins.2018.05.021 10.1109/TIE.2019.2896098 10.1109/TIV.2023.3329785 10.1109/TCYB.2019.2924450 10.1109/TAC.2018.2810514 10.1016/j.automatica.2017.12.034 10.1109/MCS.2016.2602087 10.1002/asjc.3045 10.1109/IV55156.2024.10588607 10.1109/TII.2022.3206354 10.1109/TVT.2023.3288210 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1109/TVT.2025.3550898 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-9359 |
| EndPage | 11697 |
| ExternalDocumentID | 10_1109_TVT_2025_3550898 10924676 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c247t-8762a801b6bbf49e3932dfdac5e69523afd51c06a0b278e058df9dd4b0c8a5b83 |
| IEDL.DBID | RIE |
| ISSN | 0018-9545 |
| IngestDate | Sun Oct 19 00:29:07 EDT 2025 Wed Oct 01 05:38:29 EDT 2025 Wed Aug 27 07:40:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c247t-8762a801b6bbf49e3932dfdac5e69523afd51c06a0b278e058df9dd4b0c8a5b83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2670-9045 0000-0002-2501-712X |
| PQID | 3247239994 |
| PQPubID | 85454 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1109_TVT_2025_3550898 ieee_primary_10924676 proquest_journals_3247239994 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on vehicular technology |
| PublicationTitleAbbrev | TVT |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref10 ref32 ref2 ref1 Lfberg (ref38) 2004 ref17 ref16 ref19 ref18 Rajamani (ref33) 2011 ref24 ref46 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 (ref39) 2024 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref25 doi: 10.1016/j.automatica.2010.06.034 – ident: ref11 doi: 10.1109/MSMC.2023.3277697 – ident: ref40 doi: 10.1109/ACCESS.2022.3231443 – ident: ref3 doi: 10.1109/TCST.2023.3288636 – ident: ref24 doi: 10.1016/j.automatica.2019.06.015 – ident: ref42 doi: 10.1109/TAC.2016.2625048 – year: 2024 ident: ref39 article-title: Gurobi optimizer reference manual – ident: ref44 doi: 10.1109/TCST.2007.894653 – ident: ref13 doi: 10.1109/TIV.2023.3243096 – ident: ref22 doi: 10.1016/j.automatica.2016.05.004 – ident: ref2 doi: 10.1109/TIV.2023.3235352 – start-page: 284 volume-title: Proc. CACSD Conf. year: 2004 ident: ref38 article-title: Yalmip : A toolbox for modeling and optimization in MATLAB – ident: ref35 doi: 10.1109/LCSYS.2019.2918763 – ident: ref6 doi: 10.1109/TVT.2023.3288522 – ident: ref21 doi: 10.1109/TAC.2019.2905223 – ident: ref19 doi: 10.1109/TAC.2016.2537741 – ident: ref34 doi: 10.1007/s42154-022-00202-3 – ident: ref5 doi: 10.1109/TTE.2023.3260824 – ident: ref9 doi: 10.1109/TIE.2024.3355494 – ident: ref46 doi: 10.1016/j.eng.2023.03.018 – ident: ref27 doi: 10.1016/j.automatica.2018.02.017 – ident: ref29 doi: 10.1109/TAC.2020.3022734 – volume-title: Vehicle Dynamics and Control year: 2011 ident: ref33 – ident: ref43 doi: 10.1109/TII.2021.3127197 – ident: ref30 doi: 10.1109/tcsi.2024.3520598 – ident: ref31 doi: 10.1080/00423114.2022.2052328 – ident: ref16 doi: 10.1109/TVT.2023.3296980 – ident: ref17 doi: 10.1016/j.automatica.2016.10.023 – ident: ref15 doi: 10.1109/JIOT.2023.3238508 – ident: ref36 doi: 10.1109/9.83532 – ident: ref4 doi: 10.1109/TVT.2025.3525657 – ident: ref10 doi: 10.1109/TVT.2023.3248870 – ident: ref14 doi: 10.1007/s42154-024-00297-w – ident: ref37 doi: 10.1109/TAC.2017.2702646 – ident: ref1 doi: 10.1186/s10033-021-00638-4 – ident: ref28 doi: 10.1016/j.ins.2018.05.021 – ident: ref32 doi: 10.1109/TIE.2019.2896098 – ident: ref45 doi: 10.1109/TIV.2023.3329785 – ident: ref8 doi: 10.1109/TCYB.2019.2924450 – ident: ref20 doi: 10.1109/TAC.2018.2810514 – ident: ref23 doi: 10.1016/j.automatica.2017.12.034 – ident: ref26 doi: 10.1109/MCS.2016.2602087 – ident: ref7 doi: 10.1002/asjc.3045 – ident: ref41 doi: 10.1109/IV55156.2024.10588607 – ident: ref12 doi: 10.1109/TII.2022.3206354 – ident: ref18 doi: 10.1109/TVT.2023.3288210 |
| SSID | ssj0014491 |
| Score | 2.4856098 |
| Snippet | This work presents a novel self-triggered stochastic model predictive control (SMPC) scheme for cloud-based vehicle path following control system subject to... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 11682 |
| SubjectTerms | Axles Closed loops Cloud computing Communication connected vehicle Connected vehicles Control systems Data transmission Delays Design optimization Model predictive control (MPC) Optimal control Prediction algorithms Predictive control Sampling self-triggered control Stochastic models Stochastic processes stochastic systems Systems stability Terminal constraints Tires Trajectory planning Vehicle dynamics vehicle path following control |
| Title | Self-Triggered Stochastic MPC With Adaptive Prediction Horizon for Cloud-Based Connected Vehicles Subject to Chance Constraints |
| URI | https://ieeexplore.ieee.org/document/10924676 https://www.proquest.com/docview/3247239994 |
| Volume | 74 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwy8EYWCPLAwpKSp7dgjVKAKqRUS5bFF8SMUUTVVmyws_HXunBTxEBJTMjiR5c_n-873IuRUGa6d4hYkLWJgoGgWKNPFMLFOaCRyVIbZyIOh6N-zmyf-VCer-1wY55wPPnNtfPW-fJubEq_KQMLBWhCxWCWrsRRVstany4Cxuj1eByQYeMHSJxmq89HDCCzBiLdBuYZSyW86yDdV-XUSe_VyvUmGy4lVUSWv7bLQbfP2o2bjv2e-RTZqokkvqp2xTVbcdIesfyk_uEve79wkC0Zgnz9jx056V-RmnGLhZjq47dHHl2JML2w6wxOR3s7RpYMw0n4-f3mDJ_Bd2pvkpQ0uQRda6oNmDFBY-uDGPtyOwrmEFz20yCnmMRiHgxa-L0Wx2CP311ejXj-oGzIEJmJx4U_OFFSaFlpnTLkukD-b2dRwJxRYtGlmeceEIg11FEsXcmkzZS3TAHvKtezuk8Y0n7oDQpXIgLpJbnXUZVx1pHVABIWQmWQ606JJzpYQJbOq7kbi7ZVQJQBngnAmNZxNsocr_mVctdhN0lqCmtSSuUiAQMaYz6vY4R-fHZE1_HsV5dcijWJeumNgHoU-8TvuA9NW1WE |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH8a7DA4sMFAFNjwYZcdUtLUdu0jq0DdoBUSgXGL4o9QBGpQm1648K_znpMiYJrEKTk4iuWfn9_v-X0B_NBWGK-FQ0lLOBoohkfadilMrBNbRRyVUzbycCQHF_zPlbhqktVDLoz3PgSf-Ta9Bl--K-2crspQwtFakD25BB8F51zU6VrPTgPOmwZ5HZRhZAYLr2SsD9LLFG3BRLRRvcZKq1daKLRV-ecsDgrm-DOMFlOr40pu2_PKtO3Dm6qN7577F1hrqCY7rPfGOnzwkw1YfVGA8Cs8nvu7IkrRQr-mnp3svCrtOKfSzWx41md_b6oxO3T5PZ2J7GxKTh0Ckg3K6c0DPpHxsv5dOXfRL9SGjoWwGYskll36cQi4Y3gy0VUPq0pGmQzW06BZ6ExRzTbh4vgo7Q-ipiVDZBPeq8LZmaNSM9KYgmvfRfrnCpdb4aVGmzYvnOjYWOaxSXrKx0K5QjvHDQKfC6O6W7A8KSd-G5iWBZI3JZxJulzojnIeqaCUqlDcFEa24OcCouy-rryRBYsl1hnCmRGcWQNnCzZpxV-Mqxe7BXsLULNGNmcZUsgeZfRqvvOfz_bh0yAdnmanv0cnu7BCf6pj_vZguZrO_TfkIZX5HnbfEycJ2K4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Triggered+Stochastic+MPC+With+Adaptive+Prediction+Horizon+for+Cloud-Based+Connected+Vehicles+Subject+to+Chance+Constraints&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Chen%2C+Jicheng&rft.au=Zhang%2C+Hui&rft.date=2025-08-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=74&rft.issue=8&rft.spage=11682&rft.epage=11697&rft_id=info:doi/10.1109%2FTVT.2025.3550898&rft.externalDocID=10924676 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |