Self-Triggered Stochastic MPC With Adaptive Prediction Horizon for Cloud-Based Connected Vehicles Subject to Chance Constraints

This work presents a novel self-triggered stochastic model predictive control (SMPC) scheme for cloud-based vehicle path following control system subject to chance constraints. First, we model the cloud-based vehicle path following control system from a networked stochastic control system perspectiv...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 74; no. 8; pp. 11682 - 11697
Main Authors Chen, Jicheng, Zhang, Hui
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2025.3550898

Cover

Abstract This work presents a novel self-triggered stochastic model predictive control (SMPC) scheme for cloud-based vehicle path following control system subject to chance constraints. First, we model the cloud-based vehicle path following control system from a networked stochastic control system perspective. Unlike the conventional periodical sampling approach, a self-triggered mechanism (STM) with adaptive prediction horizon is developed to determine the next sampling time instant and inter-sampling control inputs at each sampling time instant. This mechanism can efficiently reduce the data transmission frequency in the vehicle-cloud communication network, leading to a lower communication load and thus improving the reliability of the system. The STM comprises a set of optimization problems with an adaptive prediction horizon. The optimization problems and threshold design explicitly take the vehicle-cloud communication load into account. Furthermore, a stochastic model predictive control problem with modified constraint tightening and terminal constraint is defined by considering the influence of STM. We develop sufficient conditions to guarantee the closed-loop chance constraints satisfaction in the presence of both adaptive STM and additive disturbances. Then, the recursive feasibility of the optimal control problem and closed-loop stability of the system are investigated. Finally, we illustrate the benefits and effectiveness of the proposed method through numerical examples in vehicle path following control problem.
AbstractList This work presents a novel self-triggered stochastic model predictive control (SMPC) scheme for cloud-based vehicle path following control system subject to chance constraints. First, we model the cloud-based vehicle path following control system from a networked stochastic control system perspective. Unlike the conventional periodical sampling approach, a self-triggered mechanism (STM) with adaptive prediction horizon is developed to determine the next sampling time instant and inter-sampling control inputs at each sampling time instant. This mechanism can efficiently reduce the data transmission frequency in the vehicle-cloud communication network, leading to a lower communication load and thus improving the reliability of the system. The STM comprises a set of optimization problems with an adaptive prediction horizon. The optimization problems and threshold design explicitly take the vehicle-cloud communication load into account. Furthermore, a stochastic model predictive control problem with modified constraint tightening and terminal constraint is defined by considering the influence of STM. We develop sufficient conditions to guarantee the closed-loop chance constraints satisfaction in the presence of both adaptive STM and additive disturbances. Then, the recursive feasibility of the optimal control problem and closed-loop stability of the system are investigated. Finally, we illustrate the benefits and effectiveness of the proposed method through numerical examples in vehicle path following control problem.
Author Zhang, Hui
Chen, Jicheng
Author_xml – sequence: 1
  givenname: Jicheng
  orcidid: 0000-0003-2670-9045
  surname: Chen
  fullname: Chen, Jicheng
  email: jichengc@buaa.edu.cn
  organization: School of Reliability and System Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Hui
  orcidid: 0000-0002-2501-712X
  surname: Zhang
  fullname: Zhang, Hui
  email: huizhang285@buaa.edu.cn
  organization: Hangzhou International Innovation Institute, Beihang University, Hangzhou, China
BookMark eNpNkM1LAzEQxYMo2FbvHjwEPG_Nx2abHOviFygWWvW4ZJNZm1I3NUkFvfivm1IPnt7M8Hvz4A3RYe97QOiMkjGlRF0uXhZjRpgYcyGIVPIADajiqlBcqEM0IITKQolSHKNhjKu8lqWiA_Qzh3VXLIJ7e4MAFs-TN0sdkzP4cVbjV5eWeGr1JrlPwLNMOJOc7_GdD-47a-cDrtd-a4srHbO_9n0PJuXpBZbOrCHi-bZd5RNOHtdL3RvYQTEF7foUT9BRp9cRTv90hJ5vrhf1XfHwdHtfTx8Kw8pJKuSkYloS2lZt25UKuOLMdlYbAZUSjOvOCmpIpUnLJhKIkLZT1pYtMVKLVvIRutj_3QT_sYWYmpXfhj5HNjwnMK6UKjNF9pQJPsYAXbMJ7l2Hr4aSZldzk2tudjU3fzVny_ne4gDgH65YWU0q_gvuMXxx
CODEN ITVTAB
Cites_doi 10.1016/j.automatica.2010.06.034
10.1109/MSMC.2023.3277697
10.1109/ACCESS.2022.3231443
10.1109/TCST.2023.3288636
10.1016/j.automatica.2019.06.015
10.1109/TAC.2016.2625048
10.1109/TCST.2007.894653
10.1109/TIV.2023.3243096
10.1016/j.automatica.2016.05.004
10.1109/TIV.2023.3235352
10.1109/LCSYS.2019.2918763
10.1109/TVT.2023.3288522
10.1109/TAC.2019.2905223
10.1109/TAC.2016.2537741
10.1007/s42154-022-00202-3
10.1109/TTE.2023.3260824
10.1109/TIE.2024.3355494
10.1016/j.eng.2023.03.018
10.1016/j.automatica.2018.02.017
10.1109/TAC.2020.3022734
10.1109/TII.2021.3127197
10.1109/tcsi.2024.3520598
10.1080/00423114.2022.2052328
10.1109/TVT.2023.3296980
10.1016/j.automatica.2016.10.023
10.1109/JIOT.2023.3238508
10.1109/9.83532
10.1109/TVT.2025.3525657
10.1109/TVT.2023.3248870
10.1007/s42154-024-00297-w
10.1109/TAC.2017.2702646
10.1186/s10033-021-00638-4
10.1016/j.ins.2018.05.021
10.1109/TIE.2019.2896098
10.1109/TIV.2023.3329785
10.1109/TCYB.2019.2924450
10.1109/TAC.2018.2810514
10.1016/j.automatica.2017.12.034
10.1109/MCS.2016.2602087
10.1002/asjc.3045
10.1109/IV55156.2024.10588607
10.1109/TII.2022.3206354
10.1109/TVT.2023.3288210
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2025.3550898
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 11697
ExternalDocumentID 10_1109_TVT_2025_3550898
10924676
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c247t-8762a801b6bbf49e3932dfdac5e69523afd51c06a0b278e058df9dd4b0c8a5b83
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Sun Oct 19 00:29:07 EDT 2025
Wed Oct 01 05:38:29 EDT 2025
Wed Aug 27 07:40:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-8762a801b6bbf49e3932dfdac5e69523afd51c06a0b278e058df9dd4b0c8a5b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2670-9045
0000-0002-2501-712X
PQID 3247239994
PQPubID 85454
PageCount 16
ParticipantIDs crossref_primary_10_1109_TVT_2025_3550898
ieee_primary_10924676
proquest_journals_3247239994
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref1
Lfberg (ref38) 2004
ref17
ref16
ref19
ref18
Rajamani (ref33) 2011
ref24
ref46
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
(ref39) 2024
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref25
  doi: 10.1016/j.automatica.2010.06.034
– ident: ref11
  doi: 10.1109/MSMC.2023.3277697
– ident: ref40
  doi: 10.1109/ACCESS.2022.3231443
– ident: ref3
  doi: 10.1109/TCST.2023.3288636
– ident: ref24
  doi: 10.1016/j.automatica.2019.06.015
– ident: ref42
  doi: 10.1109/TAC.2016.2625048
– year: 2024
  ident: ref39
  article-title: Gurobi optimizer reference manual
– ident: ref44
  doi: 10.1109/TCST.2007.894653
– ident: ref13
  doi: 10.1109/TIV.2023.3243096
– ident: ref22
  doi: 10.1016/j.automatica.2016.05.004
– ident: ref2
  doi: 10.1109/TIV.2023.3235352
– start-page: 284
  volume-title: Proc. CACSD Conf.
  year: 2004
  ident: ref38
  article-title: Yalmip : A toolbox for modeling and optimization in MATLAB
– ident: ref35
  doi: 10.1109/LCSYS.2019.2918763
– ident: ref6
  doi: 10.1109/TVT.2023.3288522
– ident: ref21
  doi: 10.1109/TAC.2019.2905223
– ident: ref19
  doi: 10.1109/TAC.2016.2537741
– ident: ref34
  doi: 10.1007/s42154-022-00202-3
– ident: ref5
  doi: 10.1109/TTE.2023.3260824
– ident: ref9
  doi: 10.1109/TIE.2024.3355494
– ident: ref46
  doi: 10.1016/j.eng.2023.03.018
– ident: ref27
  doi: 10.1016/j.automatica.2018.02.017
– ident: ref29
  doi: 10.1109/TAC.2020.3022734
– volume-title: Vehicle Dynamics and Control
  year: 2011
  ident: ref33
– ident: ref43
  doi: 10.1109/TII.2021.3127197
– ident: ref30
  doi: 10.1109/tcsi.2024.3520598
– ident: ref31
  doi: 10.1080/00423114.2022.2052328
– ident: ref16
  doi: 10.1109/TVT.2023.3296980
– ident: ref17
  doi: 10.1016/j.automatica.2016.10.023
– ident: ref15
  doi: 10.1109/JIOT.2023.3238508
– ident: ref36
  doi: 10.1109/9.83532
– ident: ref4
  doi: 10.1109/TVT.2025.3525657
– ident: ref10
  doi: 10.1109/TVT.2023.3248870
– ident: ref14
  doi: 10.1007/s42154-024-00297-w
– ident: ref37
  doi: 10.1109/TAC.2017.2702646
– ident: ref1
  doi: 10.1186/s10033-021-00638-4
– ident: ref28
  doi: 10.1016/j.ins.2018.05.021
– ident: ref32
  doi: 10.1109/TIE.2019.2896098
– ident: ref45
  doi: 10.1109/TIV.2023.3329785
– ident: ref8
  doi: 10.1109/TCYB.2019.2924450
– ident: ref20
  doi: 10.1109/TAC.2018.2810514
– ident: ref23
  doi: 10.1016/j.automatica.2017.12.034
– ident: ref26
  doi: 10.1109/MCS.2016.2602087
– ident: ref7
  doi: 10.1002/asjc.3045
– ident: ref41
  doi: 10.1109/IV55156.2024.10588607
– ident: ref12
  doi: 10.1109/TII.2022.3206354
– ident: ref18
  doi: 10.1109/TVT.2023.3288210
SSID ssj0014491
Score 2.4856098
Snippet This work presents a novel self-triggered stochastic model predictive control (SMPC) scheme for cloud-based vehicle path following control system subject to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 11682
SubjectTerms Axles
Closed loops
Cloud computing
Communication
connected vehicle
Connected vehicles
Control systems
Data transmission
Delays
Design optimization
Model predictive control (MPC)
Optimal control
Prediction algorithms
Predictive control
Sampling
self-triggered control
Stochastic models
Stochastic processes
stochastic systems
Systems stability
Terminal constraints
Tires
Trajectory planning
Vehicle dynamics
vehicle path following control
Title Self-Triggered Stochastic MPC With Adaptive Prediction Horizon for Cloud-Based Connected Vehicles Subject to Chance Constraints
URI https://ieeexplore.ieee.org/document/10924676
https://www.proquest.com/docview/3247239994
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwy8EYWCPLAwpKSp7dgjVKAKqRUS5bFF8SMUUTVVmyws_HXunBTxEBJTMjiR5c_n-873IuRUGa6d4hYkLWJgoGgWKNPFMLFOaCRyVIbZyIOh6N-zmyf-VCer-1wY55wPPnNtfPW-fJubEq_KQMLBWhCxWCWrsRRVstany4Cxuj1eByQYeMHSJxmq89HDCCzBiLdBuYZSyW86yDdV-XUSe_VyvUmGy4lVUSWv7bLQbfP2o2bjv2e-RTZqokkvqp2xTVbcdIesfyk_uEve79wkC0Zgnz9jx056V-RmnGLhZjq47dHHl2JML2w6wxOR3s7RpYMw0n4-f3mDJ_Bd2pvkpQ0uQRda6oNmDFBY-uDGPtyOwrmEFz20yCnmMRiHgxa-L0Wx2CP311ejXj-oGzIEJmJx4U_OFFSaFlpnTLkukD-b2dRwJxRYtGlmeceEIg11FEsXcmkzZS3TAHvKtezuk8Y0n7oDQpXIgLpJbnXUZVx1pHVABIWQmWQ606JJzpYQJbOq7kbi7ZVQJQBngnAmNZxNsocr_mVctdhN0lqCmtSSuUiAQMaYz6vY4R-fHZE1_HsV5dcijWJeumNgHoU-8TvuA9NW1WE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH8a7DA4sMFAFNjwYZcdUtLUdu0jq0DdoBUSgXGL4o9QBGpQm1648K_znpMiYJrEKTk4iuWfn9_v-X0B_NBWGK-FQ0lLOBoohkfadilMrBNbRRyVUzbycCQHF_zPlbhqktVDLoz3PgSf-Ta9Bl--K-2crspQwtFakD25BB8F51zU6VrPTgPOmwZ5HZRhZAYLr2SsD9LLFG3BRLRRvcZKq1daKLRV-ecsDgrm-DOMFlOr40pu2_PKtO3Dm6qN7577F1hrqCY7rPfGOnzwkw1YfVGA8Cs8nvu7IkrRQr-mnp3svCrtOKfSzWx41md_b6oxO3T5PZ2J7GxKTh0Ckg3K6c0DPpHxsv5dOXfRL9SGjoWwGYskll36cQi4Y3gy0VUPq0pGmQzW06BZ6ExRzTbh4vgo7Q-ipiVDZBPeq8LZmaNSM9KYgmvfRfrnCpdb4aVGmzYvnOjYWOaxSXrKx0K5QjvHDQKfC6O6W7A8KSd-G5iWBZI3JZxJulzojnIeqaCUqlDcFEa24OcCouy-rryRBYsl1hnCmRGcWQNnCzZpxV-Mqxe7BXsLULNGNmcZUsgeZfRqvvOfz_bh0yAdnmanv0cnu7BCf6pj_vZguZrO_TfkIZX5HnbfEycJ2K4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Triggered+Stochastic+MPC+With+Adaptive+Prediction+Horizon+for+Cloud-Based+Connected+Vehicles+Subject+to+Chance+Constraints&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Chen%2C+Jicheng&rft.au=Zhang%2C+Hui&rft.date=2025-08-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=74&rft.issue=8&rft.spage=11682&rft.epage=11697&rft_id=info:doi/10.1109%2FTVT.2025.3550898&rft.externalDocID=10924676
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon