Multiple Time Scale Deep Expert System for Load Forecasting of Electric Vehicle Charging Stations

Different types of electric vehicle charging stations (EVCSs) exhibit varying characteristics as affected by time-of-use (TOU) pricing rates for their peak, sharp, and valley periods. This paper develops a multiple-time-scale coordinated deep expert system framework that predicts the load demand of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on smart grid Vol. 16; no. 5; pp. 4015 - 4031
Main Authors Dong, Hanjiang, Li, Shenglin, Wen, Xiyu, Liang, Zipeng, Yang, Haosen, Chung, Chi-Yung, Zhu, Jizhong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1949-3053
1949-3061
DOI10.1109/TSG.2025.3579879

Cover

Abstract Different types of electric vehicle charging stations (EVCSs) exhibit varying characteristics as affected by time-of-use (TOU) pricing rates for their peak, sharp, and valley periods. This paper develops a multiple-time-scale coordinated deep expert system framework that predicts the load demand of public, highway, and bus EVCSs. In the framework, the expert inference engine generates both the quarter-hourly and monthly predictions. For quarter-hourly load predictions, a stack ensemble learning strategy is proposed to combine heterogeneous neural network methods in a scalable, modular manner. Then, the multivariate data, regularized according to EVCS types and TOU rates, is processed via seasonal and trend decomposition using Loess (STL), and the daily profiles are grouped through multivariate time series K-Means clustering to ensure the consistency of the STL trend. For monthly energy predictions, a multi-matrix elastic net using blockwise coordinate descent is designed to correlate the remainder predictions (offered by the short-term engine and aggregated into monthly intervals) and the trend component (with cluster labels of ECVS types and TOU rates). In the case study, a real-world dataset with volatility is used, such that the proposed framework is implemented to show that forecast combinations can leverage multiple preferences, and short-term predictions can improve monthly performance.
AbstractList Different types of electric vehicle charging stations (EVCSs) exhibit varying characteristics as affected by time-of-use (TOU) pricing rates for their peak, sharp, and valley periods. This paper develops a multiple-time-scale coordinated deep expert system framework that predicts the load demand of public, highway, and bus EVCSs. In the framework, the expert inference engine generates both the quarter-hourly and monthly predictions. For quarter-hourly load predictions, a stack ensemble learning strategy is proposed to combine heterogeneous neural network methods in a scalable, modular manner. Then, the multivariate data, regularized according to EVCS types and TOU rates, is processed via seasonal and trend decomposition using Loess (STL), and the daily profiles are grouped through multivariate time series K-Means clustering to ensure the consistency of the STL trend. For monthly energy predictions, a multi-matrix elastic net using blockwise coordinate descent is designed to correlate the remainder predictions (offered by the short-term engine and aggregated into monthly intervals) and the trend component (with cluster labels of ECVS types and TOU rates). In the case study, a real-world dataset with volatility is used, such that the proposed framework is implemented to show that forecast combinations can leverage multiple preferences, and short-term predictions can improve monthly performance.
Author Li, Shenglin
Dong, Hanjiang
Liang, Zipeng
Wen, Xiyu
Zhu, Jizhong
Chung, Chi-Yung
Yang, Haosen
Author_xml – sequence: 1
  givenname: Hanjiang
  orcidid: 0000-0002-9248-3868
  surname: Dong
  fullname: Dong, Hanjiang
  email: hanjiang.dong@foxmail.com
  organization: Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
– sequence: 2
  givenname: Shenglin
  orcidid: 0000-0002-6614-4301
  surname: Li
  fullname: Li, Shenglin
  email: iamlshl@126.com
  organization: School of Electric Power Engineering, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Xiyu
  surname: Wen
  fullname: Wen, Xiyu
  email: zhujz@scut.edu.cn
  organization: School of Electric Power Engineering, South China University of Technology, Guangzhou, China
– sequence: 4
  givenname: Zipeng
  orcidid: 0000-0002-0159-6534
  surname: Liang
  fullname: Liang, Zipeng
  organization: Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
– sequence: 5
  givenname: Haosen
  orcidid: 0009-0002-8491-5082
  surname: Yang
  fullname: Yang, Haosen
  organization: Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
– sequence: 6
  givenname: Chi-Yung
  orcidid: 0000-0001-6607-2240
  surname: Chung
  fullname: Chung, Chi-Yung
  email: c.y.chung@polyu.edu.hk
  organization: Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
– sequence: 7
  givenname: Jizhong
  orcidid: 0000-0001-5681-1361
  surname: Zhu
  fullname: Zhu, Jizhong
  email: zhujz@scut.edu.cn
  organization: School of Electric Power Engineering, South China University of Technology, Guangzhou, China
BookMark eNpFkEFPAjEQhRuDiYjcPXho4hlst9vu9mgQ0ATjYdHrprZTKIHt2pZE_r27wehcZpJ5b97ku0aDxjeA0C0lU0qJfFhXy2lGMj5lvJBlIS_QkMpcThgRdPA3c3aFxjHuSFeMMZHJIVKvx31y7R7w2h0AV1p14xNAi-ffLYSEq1NMcMDWB7zyyuCFD6BVTK7ZYG_xfA86BafxB2yd7ryzrQqbflkllZxv4g26tGofYfzbR-h9MV_Pniert-XL7HE10VlepP49aUpuhGAGzGdeZJIQY4kUWsucM57nqsxKYQ1lEiwIoKSwJSdWGmllwUbo_ny3Df7rCDHVO38MTRdZsy4hJznjWaciZ5UOPsYAtm6DO6hwqimpe5Z1x7LuWda_LDvL3dniAOBfTgkTJafsB9RecKw
CODEN ITSGBQ
Cites_doi 10.1016/j.jclepro.2024.141997
10.1109/TSG.2018.2844307
10.1109/TSTE.2023.3283242
10.1109/TSG.2024.3392910
10.1109/TSG.2013.2274373
10.35833/MPCE.2023.000841
10.1109/ISIE51582.2022.9831704
10.1109/TIV.2022.3168577
10.1016/j.ijforecast.2022.11.005
10.1049/gtd2.13088
10.1109/MSP.2013.2297439
10.1109/TSG.2021.3107685
10.1109/TITS.2023.3276947
10.1109/TIV.2023.3328458
10.1109/TPWRS.2024.3449339
10.1109/TPWRS.2019.2930113
10.1109/TITS.2017.2711046
10.18637/jss.v033.i01
10.1016/j.ijepes.2022.108073
10.48550/ARXIV.1706.03762
10.1109/OJVT.2024.3457499
10.1109/MPE.2023.3308232
10.1016/j.ijforecast.2022.04.001
10.1109/TSG.2024.3495701
10.1109/TNNLS.2022.3194247
10.1109/TITS.2020.3035647
10.1109/TSG.2023.3294608
10.1145/1553374.1553458
10.1109/TITS.2023.3305626
10.1109/TSG.2018.2833869
10.1109/TSTE.2017.2759781
10.21437/SSW.2016
10.1109/TSG.2023.3321116
10.1109/TPWRS.2023.3311795
10.1016/j.apenergy.2023.121018
10.5555/1953048.2078195
10.1016/j.apenergy.2022.120281
10.1016/j.apenergy.2022.119269
10.1080/00401706.2019.1708463
10.1109/TPWRS.2006.883666
10.1109/TNNLS.2023.3335355
10.1109/TSG.2020.3034194
10.1109/TPWRS.2002.1007923
10.1016/j.epsr.2020.106841
10.1109/TPWRS.2023.3271325
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TSG.2025.3579879
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1949-3061
EndPage 4031
ExternalDocumentID 10_1109_TSG_2025_3579879
11036851
Genre orig-research
GrantInformation_xml – fundername: Postdoctoral Fellowship Program of CPSF
  grantid: GZC20230834; TSG-01724-2024
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 52177087
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c247t-3059d85d663dedb472900df096cc9453544a8286fd139efe6e107f850f9d9f973
IEDL.DBID RIE
ISSN 1949-3053
IngestDate Sat Sep 06 14:29:32 EDT 2025
Wed Aug 27 16:38:18 EDT 2025
Wed Sep 03 07:09:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-3059d85d663dedb472900df096cc9453544a8286fd139efe6e107f850f9d9f973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9248-3868
0000-0002-6614-4301
0000-0002-0159-6534
0009-0002-8491-5082
0000-0001-5681-1361
0000-0001-6607-2240
PQID 3247404352
PQPubID 2040408
PageCount 17
ParticipantIDs crossref_primary_10_1109_TSG_2025_3579879
proquest_journals_3247404352
ieee_primary_11036851
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on smart grid
PublicationTitleAbbrev TSG
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref48
ref47
ref42
Liu (ref38) 2023
ref41
ref44
ref43
Cleveland (ref26) 1990; 6
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Lin (ref37) 2023
ref34
(ref28) 2020
ref31
ref30
ref33
ref2
ref1
ref39
(ref45) 2021
ref24
ref23
ref25
ref20
ref22
ref21
Zhu (ref32) 2024; 12
ref29
Chen (ref35) 2023
Gong (ref36) 2023
Bandara (ref27) 2021
References_xml – ident: ref4
  doi: 10.1016/j.jclepro.2024.141997
– ident: ref46
  doi: 10.1109/TSG.2018.2844307
– ident: ref22
  doi: 10.1109/TSTE.2023.3283242
– ident: ref23
  doi: 10.1109/TSG.2024.3392910
– ident: ref21
  doi: 10.1109/TSG.2013.2274373
– ident: ref31
  doi: 10.35833/MPCE.2023.000841
– ident: ref39
  doi: 10.1109/ISIE51582.2022.9831704
– volume: 12
  start-page: 1239
  issue: 4
  year: 2024
  ident: ref32
  article-title: Short-term residential load forecasting based on K-shape clustering and domain adversarial transfer network
  publication-title: J. Mod. Power Syst. Clean Energy
– ident: ref17
  doi: 10.1109/TIV.2022.3168577
– ident: ref34
  doi: 10.1016/j.ijforecast.2022.11.005
– ident: ref52
  doi: 10.1049/gtd2.13088
– ident: ref42
  doi: 10.1109/MSP.2013.2297439
– ident: ref3
  doi: 10.1109/TSG.2021.3107685
– ident: ref14
  doi: 10.1109/TITS.2023.3276947
– ident: ref11
  doi: 10.1109/TIV.2023.3328458
– volume-title: arXiv:2310.06625
  year: 2023
  ident: ref38
  article-title: iTransformer: Inverted transformers are effective for time series forecasting
– volume-title: arXiv:2310.00655
  year: 2023
  ident: ref36
  article-title: PatchMixer: A patch-mixing architecture for long-term time series forecasting
– ident: ref54
  doi: 10.1109/TPWRS.2024.3449339
– ident: ref19
  doi: 10.1109/TPWRS.2019.2930113
– volume-title: arXiv:2308.11200
  year: 2023
  ident: ref37
  article-title: SegRNN: Segment recurrent neural network for long-term time series forecasting
– ident: ref5
  doi: 10.1109/TITS.2017.2711046
– ident: ref44
  doi: 10.18637/jss.v033.i01
– ident: ref48
  doi: 10.1016/j.ijepes.2022.108073
– ident: ref40
  doi: 10.48550/ARXIV.1706.03762
– ident: ref13
  doi: 10.1109/OJVT.2024.3457499
– ident: ref24
  doi: 10.1109/MPE.2023.3308232
– ident: ref47
  doi: 10.1016/j.ijforecast.2022.04.001
– ident: ref25
  doi: 10.1109/TSG.2024.3495701
– ident: ref2
  doi: 10.1109/TNNLS.2022.3194247
– ident: ref7
  doi: 10.1109/TITS.2020.3035647
– ident: ref1
  doi: 10.1109/TSG.2023.3294608
– ident: ref43
  doi: 10.1145/1553374.1553458
– ident: ref12
  doi: 10.1109/TITS.2023.3305626
– volume-title: arXiv:2303.06053
  year: 2023
  ident: ref35
  article-title: TSMixer: An all-MLP architecture for time series forecasting
– ident: ref51
  doi: 10.1109/TSG.2018.2833869
– ident: ref6
  doi: 10.1109/TSTE.2017.2759781
– ident: ref50
  doi: 10.21437/SSW.2016
– volume-title: Notification on Issues Related to Transmission, Distribution, and Retail Electricity Prices for the Zhejiang Power Grid, 2020–2022
  year: 2020
  ident: ref28
– volume: 6
  start-page: 3
  issue: 1
  year: 1990
  ident: ref26
  article-title: STL: A seasonal-trend decomposition
  publication-title: J. Off. Stat.
– ident: ref15
  doi: 10.1109/TSG.2023.3321116
– volume-title: arXiv:2107.13462
  year: 2021
  ident: ref27
  article-title: MSTL: A seasonal-trend decomposition algorithm for time series with multiple seasonal patterns
– volume-title: Notification on Adjustments to the Catalog Sales Electricity Prices in Zhejiang Province
  year: 2021
  ident: ref45
– ident: ref16
  doi: 10.1109/TPWRS.2023.3311795
– ident: ref29
  doi: 10.1016/j.apenergy.2023.121018
– ident: ref53
  doi: 10.5555/1953048.2078195
– ident: ref30
  doi: 10.1016/j.apenergy.2022.120281
– ident: ref8
  doi: 10.1016/j.apenergy.2022.119269
– ident: ref41
  doi: 10.1080/00401706.2019.1708463
– ident: ref18
  doi: 10.1109/TPWRS.2006.883666
– ident: ref9
  doi: 10.1109/TNNLS.2023.3335355
– ident: ref10
  doi: 10.1109/TSG.2020.3034194
– ident: ref20
  doi: 10.1109/TPWRS.2002.1007923
– ident: ref49
  doi: 10.1016/j.epsr.2020.106841
– ident: ref33
  doi: 10.1109/TPWRS.2023.3271325
SSID ssj0000333629
Score 2.4513254
Snippet Different types of electric vehicle charging stations (EVCSs) exhibit varying characteristics as affected by time-of-use (TOU) pricing rates for their peak,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 4015
SubjectTerms Accuracy
Cluster analysis
Clustering
Deep learning
elastic net
Electric vehicle
Electric vehicle charging
Electric vehicle charging stations
Electric vehicles
Engines
Ensemble learning
expert system
Expert systems
forecast combination
Load forecasting
Long short term memory
Multivariate analysis
Neural networks
Time of use
Time series analysis
Transformers
Vector quantization
Title Multiple Time Scale Deep Expert System for Load Forecasting of Electric Vehicle Charging Stations
URI https://ieeexplore.ieee.org/document/11036851
https://www.proquest.com/docview/3247404352
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1949-3061
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000333629
  issn: 1949-3053
  databaseCode: RIE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEww8iygveWBhSJvWdhKPCFoqRLu0Rd2i1D4LhNRWNF349dw5CU8hsWXIw_Ln-L7z3X3H2KU0InJW6CBrOwhkIpNg5qgKGCya69DpxMsuDoZRfyLvp2paFqv7WhgA8Mln0KRLH8u3C7Omo7IWmirSS0dnZzOOdVGs9XGgEgqBm7H2UWRJ8XwlqrBkqFvj0R06gx3VFCpGN1t_M0O-r8qvzdhbmN4uG1ZjKxJLXprrfNY0bz9kG_89-D22U3JNfl0sjn22AfMDtv1FgfCQZYMyoZBTLQgfIWLAbwGW3Gsg57xQNOdIbfnDIrOcWnmabEXJ0nzheNd30Xk2_BGe6COcwvfU94iPihj_qs4mve74ph-UXRcC05FxThOnbaIsUhELdiaRfYehdejqGKOlEkrKjGrPnUXyCA4iQA_SJQpxtdrpWByx2nwxh2PGw0SKKJNxFBkkhujZOQgzTQ3bXdKOE9dgVxUI6bIQ10i9UxLqFAFLCbC0BKzB6jSnn_eV09lgZxVsafn7rVJkiTHJBqnOyR-PnbItenuRLXbGavnrGs6RXuSzC7-s3gElKMnB
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQDMDAs4hCAQ8sDGlDbSfxiHgVaLu0Rd2i1D4LhNRWNF349dw5KU8hsWVIZMvn-L7Pd_cdY6fSiMhZoYPs3EEgE5kEI0dVwGDRXYdOJ152sdONWgN5P1TDsljd18IAgE8-gzo9-li-nZg5XZU10FWRXjqSnRWFtCIuyrU-rlRCIfA41j6OLCmir8QiMBnqRr93i3SwqepCxUi09TdH5Dur_DqOvY-52WTdxeyK1JKX-jwf1c3bD-HGf09_i22UaJNfFNtjmy3BeIetf9Eg3GVZp0wp5FQNwntoM-BXAFPuVZBzXmiacwS3vD3JLKdmniabUbo0nzh-7fvoPBv-CE80CKcAPnU-4r0iyj-rsMHNdf-yFZR9FwLTlHFOC6dtoiyCEQt2JBF_h6F1SHaM0VIJXPuMqs-dRfgIDiJADukShZa12ulY7LHl8WQM-4yHiRRRJuMoMggNkds5CDNNLdtdch4nrsrOFkZIp4W8RuppSahTNFhKBktLg1VZhdb0871yOaustjBbWv6AsxRxYkzCQap58MdnJ2y11e-00_Zd9-GQrdFIRe5YjS3nr3M4QrCRj479FnsH7ZXNEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Time+Scale+Deep+Expert+System+for+Load+Forecasting+of+Electric+Vehicle+Charging+Stations&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Dong%2C+Hanjiang&rft.au=Li%2C+Shenglin&rft.au=Wen%2C+Xiyu&rft.au=Liang%2C+Zipeng&rft.date=2025-09-01&rft.pub=IEEE&rft.issn=1949-3053&rft.volume=16&rft.issue=5&rft.spage=4015&rft.epage=4031&rft_id=info:doi/10.1109%2FTSG.2025.3579879&rft.externalDocID=11036851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon