Multiple Time Scale Deep Expert System for Load Forecasting of Electric Vehicle Charging Stations
Different types of electric vehicle charging stations (EVCSs) exhibit varying characteristics as affected by time-of-use (TOU) pricing rates for their peak, sharp, and valley periods. This paper develops a multiple-time-scale coordinated deep expert system framework that predicts the load demand of...
Saved in:
Published in | IEEE transactions on smart grid Vol. 16; no. 5; pp. 4015 - 4031 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1949-3053 1949-3061 |
DOI | 10.1109/TSG.2025.3579879 |
Cover
Abstract | Different types of electric vehicle charging stations (EVCSs) exhibit varying characteristics as affected by time-of-use (TOU) pricing rates for their peak, sharp, and valley periods. This paper develops a multiple-time-scale coordinated deep expert system framework that predicts the load demand of public, highway, and bus EVCSs. In the framework, the expert inference engine generates both the quarter-hourly and monthly predictions. For quarter-hourly load predictions, a stack ensemble learning strategy is proposed to combine heterogeneous neural network methods in a scalable, modular manner. Then, the multivariate data, regularized according to EVCS types and TOU rates, is processed via seasonal and trend decomposition using Loess (STL), and the daily profiles are grouped through multivariate time series K-Means clustering to ensure the consistency of the STL trend. For monthly energy predictions, a multi-matrix elastic net using blockwise coordinate descent is designed to correlate the remainder predictions (offered by the short-term engine and aggregated into monthly intervals) and the trend component (with cluster labels of ECVS types and TOU rates). In the case study, a real-world dataset with volatility is used, such that the proposed framework is implemented to show that forecast combinations can leverage multiple preferences, and short-term predictions can improve monthly performance. |
---|---|
AbstractList | Different types of electric vehicle charging stations (EVCSs) exhibit varying characteristics as affected by time-of-use (TOU) pricing rates for their peak, sharp, and valley periods. This paper develops a multiple-time-scale coordinated deep expert system framework that predicts the load demand of public, highway, and bus EVCSs. In the framework, the expert inference engine generates both the quarter-hourly and monthly predictions. For quarter-hourly load predictions, a stack ensemble learning strategy is proposed to combine heterogeneous neural network methods in a scalable, modular manner. Then, the multivariate data, regularized according to EVCS types and TOU rates, is processed via seasonal and trend decomposition using Loess (STL), and the daily profiles are grouped through multivariate time series K-Means clustering to ensure the consistency of the STL trend. For monthly energy predictions, a multi-matrix elastic net using blockwise coordinate descent is designed to correlate the remainder predictions (offered by the short-term engine and aggregated into monthly intervals) and the trend component (with cluster labels of ECVS types and TOU rates). In the case study, a real-world dataset with volatility is used, such that the proposed framework is implemented to show that forecast combinations can leverage multiple preferences, and short-term predictions can improve monthly performance. |
Author | Li, Shenglin Dong, Hanjiang Liang, Zipeng Wen, Xiyu Zhu, Jizhong Chung, Chi-Yung Yang, Haosen |
Author_xml | – sequence: 1 givenname: Hanjiang orcidid: 0000-0002-9248-3868 surname: Dong fullname: Dong, Hanjiang email: hanjiang.dong@foxmail.com organization: Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong – sequence: 2 givenname: Shenglin orcidid: 0000-0002-6614-4301 surname: Li fullname: Li, Shenglin email: iamlshl@126.com organization: School of Electric Power Engineering, South China University of Technology, Guangzhou, China – sequence: 3 givenname: Xiyu surname: Wen fullname: Wen, Xiyu email: zhujz@scut.edu.cn organization: School of Electric Power Engineering, South China University of Technology, Guangzhou, China – sequence: 4 givenname: Zipeng orcidid: 0000-0002-0159-6534 surname: Liang fullname: Liang, Zipeng organization: Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong – sequence: 5 givenname: Haosen orcidid: 0009-0002-8491-5082 surname: Yang fullname: Yang, Haosen organization: Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong – sequence: 6 givenname: Chi-Yung orcidid: 0000-0001-6607-2240 surname: Chung fullname: Chung, Chi-Yung email: c.y.chung@polyu.edu.hk organization: Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong – sequence: 7 givenname: Jizhong orcidid: 0000-0001-5681-1361 surname: Zhu fullname: Zhu, Jizhong email: zhujz@scut.edu.cn organization: School of Electric Power Engineering, South China University of Technology, Guangzhou, China |
BookMark | eNpFkEFPAjEQhRuDiYjcPXho4hlst9vu9mgQ0ATjYdHrprZTKIHt2pZE_r27wehcZpJ5b97ku0aDxjeA0C0lU0qJfFhXy2lGMj5lvJBlIS_QkMpcThgRdPA3c3aFxjHuSFeMMZHJIVKvx31y7R7w2h0AV1p14xNAi-ffLYSEq1NMcMDWB7zyyuCFD6BVTK7ZYG_xfA86BafxB2yd7ryzrQqbflkllZxv4g26tGofYfzbR-h9MV_Pniert-XL7HE10VlepP49aUpuhGAGzGdeZJIQY4kUWsucM57nqsxKYQ1lEiwIoKSwJSdWGmllwUbo_ny3Df7rCDHVO38MTRdZsy4hJznjWaciZ5UOPsYAtm6DO6hwqimpe5Z1x7LuWda_LDvL3dniAOBfTgkTJafsB9RecKw |
CODEN | ITSGBQ |
Cites_doi | 10.1016/j.jclepro.2024.141997 10.1109/TSG.2018.2844307 10.1109/TSTE.2023.3283242 10.1109/TSG.2024.3392910 10.1109/TSG.2013.2274373 10.35833/MPCE.2023.000841 10.1109/ISIE51582.2022.9831704 10.1109/TIV.2022.3168577 10.1016/j.ijforecast.2022.11.005 10.1049/gtd2.13088 10.1109/MSP.2013.2297439 10.1109/TSG.2021.3107685 10.1109/TITS.2023.3276947 10.1109/TIV.2023.3328458 10.1109/TPWRS.2024.3449339 10.1109/TPWRS.2019.2930113 10.1109/TITS.2017.2711046 10.18637/jss.v033.i01 10.1016/j.ijepes.2022.108073 10.48550/ARXIV.1706.03762 10.1109/OJVT.2024.3457499 10.1109/MPE.2023.3308232 10.1016/j.ijforecast.2022.04.001 10.1109/TSG.2024.3495701 10.1109/TNNLS.2022.3194247 10.1109/TITS.2020.3035647 10.1109/TSG.2023.3294608 10.1145/1553374.1553458 10.1109/TITS.2023.3305626 10.1109/TSG.2018.2833869 10.1109/TSTE.2017.2759781 10.21437/SSW.2016 10.1109/TSG.2023.3321116 10.1109/TPWRS.2023.3311795 10.1016/j.apenergy.2023.121018 10.5555/1953048.2078195 10.1016/j.apenergy.2022.120281 10.1016/j.apenergy.2022.119269 10.1080/00401706.2019.1708463 10.1109/TPWRS.2006.883666 10.1109/TNNLS.2023.3335355 10.1109/TSG.2020.3034194 10.1109/TPWRS.2002.1007923 10.1016/j.epsr.2020.106841 10.1109/TPWRS.2023.3271325 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1109/TSG.2025.3579879 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1949-3061 |
EndPage | 4031 |
ExternalDocumentID | 10_1109_TSG_2025_3579879 11036851 |
Genre | orig-research |
GrantInformation_xml | – fundername: Postdoctoral Fellowship Program of CPSF grantid: GZC20230834; TSG-01724-2024 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 52177087 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c247t-3059d85d663dedb472900df096cc9453544a8286fd139efe6e107f850f9d9f973 |
IEDL.DBID | RIE |
ISSN | 1949-3053 |
IngestDate | Sat Sep 06 14:29:32 EDT 2025 Wed Aug 27 16:38:18 EDT 2025 Wed Sep 03 07:09:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c247t-3059d85d663dedb472900df096cc9453544a8286fd139efe6e107f850f9d9f973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9248-3868 0000-0002-6614-4301 0000-0002-0159-6534 0009-0002-8491-5082 0000-0001-5681-1361 0000-0001-6607-2240 |
PQID | 3247404352 |
PQPubID | 2040408 |
PageCount | 17 |
ParticipantIDs | crossref_primary_10_1109_TSG_2025_3579879 proquest_journals_3247404352 ieee_primary_11036851 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-01 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on smart grid |
PublicationTitleAbbrev | TSG |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref48 ref47 ref42 Liu (ref38) 2023 ref41 ref44 ref43 Cleveland (ref26) 1990; 6 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Lin (ref37) 2023 ref34 (ref28) 2020 ref31 ref30 ref33 ref2 ref1 ref39 (ref45) 2021 ref24 ref23 ref25 ref20 ref22 ref21 Zhu (ref32) 2024; 12 ref29 Chen (ref35) 2023 Gong (ref36) 2023 Bandara (ref27) 2021 |
References_xml | – ident: ref4 doi: 10.1016/j.jclepro.2024.141997 – ident: ref46 doi: 10.1109/TSG.2018.2844307 – ident: ref22 doi: 10.1109/TSTE.2023.3283242 – ident: ref23 doi: 10.1109/TSG.2024.3392910 – ident: ref21 doi: 10.1109/TSG.2013.2274373 – ident: ref31 doi: 10.35833/MPCE.2023.000841 – ident: ref39 doi: 10.1109/ISIE51582.2022.9831704 – volume: 12 start-page: 1239 issue: 4 year: 2024 ident: ref32 article-title: Short-term residential load forecasting based on K-shape clustering and domain adversarial transfer network publication-title: J. Mod. Power Syst. Clean Energy – ident: ref17 doi: 10.1109/TIV.2022.3168577 – ident: ref34 doi: 10.1016/j.ijforecast.2022.11.005 – ident: ref52 doi: 10.1049/gtd2.13088 – ident: ref42 doi: 10.1109/MSP.2013.2297439 – ident: ref3 doi: 10.1109/TSG.2021.3107685 – ident: ref14 doi: 10.1109/TITS.2023.3276947 – ident: ref11 doi: 10.1109/TIV.2023.3328458 – volume-title: arXiv:2310.06625 year: 2023 ident: ref38 article-title: iTransformer: Inverted transformers are effective for time series forecasting – volume-title: arXiv:2310.00655 year: 2023 ident: ref36 article-title: PatchMixer: A patch-mixing architecture for long-term time series forecasting – ident: ref54 doi: 10.1109/TPWRS.2024.3449339 – ident: ref19 doi: 10.1109/TPWRS.2019.2930113 – volume-title: arXiv:2308.11200 year: 2023 ident: ref37 article-title: SegRNN: Segment recurrent neural network for long-term time series forecasting – ident: ref5 doi: 10.1109/TITS.2017.2711046 – ident: ref44 doi: 10.18637/jss.v033.i01 – ident: ref48 doi: 10.1016/j.ijepes.2022.108073 – ident: ref40 doi: 10.48550/ARXIV.1706.03762 – ident: ref13 doi: 10.1109/OJVT.2024.3457499 – ident: ref24 doi: 10.1109/MPE.2023.3308232 – ident: ref47 doi: 10.1016/j.ijforecast.2022.04.001 – ident: ref25 doi: 10.1109/TSG.2024.3495701 – ident: ref2 doi: 10.1109/TNNLS.2022.3194247 – ident: ref7 doi: 10.1109/TITS.2020.3035647 – ident: ref1 doi: 10.1109/TSG.2023.3294608 – ident: ref43 doi: 10.1145/1553374.1553458 – ident: ref12 doi: 10.1109/TITS.2023.3305626 – volume-title: arXiv:2303.06053 year: 2023 ident: ref35 article-title: TSMixer: An all-MLP architecture for time series forecasting – ident: ref51 doi: 10.1109/TSG.2018.2833869 – ident: ref6 doi: 10.1109/TSTE.2017.2759781 – ident: ref50 doi: 10.21437/SSW.2016 – volume-title: Notification on Issues Related to Transmission, Distribution, and Retail Electricity Prices for the Zhejiang Power Grid, 2020–2022 year: 2020 ident: ref28 – volume: 6 start-page: 3 issue: 1 year: 1990 ident: ref26 article-title: STL: A seasonal-trend decomposition publication-title: J. Off. Stat. – ident: ref15 doi: 10.1109/TSG.2023.3321116 – volume-title: arXiv:2107.13462 year: 2021 ident: ref27 article-title: MSTL: A seasonal-trend decomposition algorithm for time series with multiple seasonal patterns – volume-title: Notification on Adjustments to the Catalog Sales Electricity Prices in Zhejiang Province year: 2021 ident: ref45 – ident: ref16 doi: 10.1109/TPWRS.2023.3311795 – ident: ref29 doi: 10.1016/j.apenergy.2023.121018 – ident: ref53 doi: 10.5555/1953048.2078195 – ident: ref30 doi: 10.1016/j.apenergy.2022.120281 – ident: ref8 doi: 10.1016/j.apenergy.2022.119269 – ident: ref41 doi: 10.1080/00401706.2019.1708463 – ident: ref18 doi: 10.1109/TPWRS.2006.883666 – ident: ref9 doi: 10.1109/TNNLS.2023.3335355 – ident: ref10 doi: 10.1109/TSG.2020.3034194 – ident: ref20 doi: 10.1109/TPWRS.2002.1007923 – ident: ref49 doi: 10.1016/j.epsr.2020.106841 – ident: ref33 doi: 10.1109/TPWRS.2023.3271325 |
SSID | ssj0000333629 |
Score | 2.4513254 |
Snippet | Different types of electric vehicle charging stations (EVCSs) exhibit varying characteristics as affected by time-of-use (TOU) pricing rates for their peak,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4015 |
SubjectTerms | Accuracy Cluster analysis Clustering Deep learning elastic net Electric vehicle Electric vehicle charging Electric vehicle charging stations Electric vehicles Engines Ensemble learning expert system Expert systems forecast combination Load forecasting Long short term memory Multivariate analysis Neural networks Time of use Time series analysis Transformers Vector quantization |
Title | Multiple Time Scale Deep Expert System for Load Forecasting of Electric Vehicle Charging Stations |
URI | https://ieeexplore.ieee.org/document/11036851 https://www.proquest.com/docview/3247404352 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1949-3061 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000333629 issn: 1949-3053 databaseCode: RIE dateStart: 20100101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEww8iygveWBhSJvWdhKPCFoqRLu0Rd2i1D4LhNRWNF349dw5CU8hsWXIw_Ln-L7z3X3H2KU0InJW6CBrOwhkIpNg5qgKGCya69DpxMsuDoZRfyLvp2paFqv7WhgA8Mln0KRLH8u3C7Omo7IWmirSS0dnZzOOdVGs9XGgEgqBm7H2UWRJ8XwlqrBkqFvj0R06gx3VFCpGN1t_M0O-r8qvzdhbmN4uG1ZjKxJLXprrfNY0bz9kG_89-D22U3JNfl0sjn22AfMDtv1FgfCQZYMyoZBTLQgfIWLAbwGW3Gsg57xQNOdIbfnDIrOcWnmabEXJ0nzheNd30Xk2_BGe6COcwvfU94iPihj_qs4mve74ph-UXRcC05FxThOnbaIsUhELdiaRfYehdejqGKOlEkrKjGrPnUXyCA4iQA_SJQpxtdrpWByx2nwxh2PGw0SKKJNxFBkkhujZOQgzTQ3bXdKOE9dgVxUI6bIQ10i9UxLqFAFLCbC0BKzB6jSnn_eV09lgZxVsafn7rVJkiTHJBqnOyR-PnbItenuRLXbGavnrGs6RXuSzC7-s3gElKMnB |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQDMDAs4hCAQ8sDGlDbSfxiHgVaLu0Rd2i1D4LhNRWNF349dw5KU8hsWVIZMvn-L7Pd_cdY6fSiMhZoYPs3EEgE5kEI0dVwGDRXYdOJ152sdONWgN5P1TDsljd18IAgE8-gzo9-li-nZg5XZU10FWRXjqSnRWFtCIuyrU-rlRCIfA41j6OLCmir8QiMBnqRr93i3SwqepCxUi09TdH5Dur_DqOvY-52WTdxeyK1JKX-jwf1c3bD-HGf09_i22UaJNfFNtjmy3BeIetf9Eg3GVZp0wp5FQNwntoM-BXAFPuVZBzXmiacwS3vD3JLKdmniabUbo0nzh-7fvoPBv-CE80CKcAPnU-4r0iyj-rsMHNdf-yFZR9FwLTlHFOC6dtoiyCEQt2JBF_h6F1SHaM0VIJXPuMqs-dRfgIDiJADukShZa12ulY7LHl8WQM-4yHiRRRJuMoMggNkds5CDNNLdtdch4nrsrOFkZIp4W8RuppSahTNFhKBktLg1VZhdb0871yOaustjBbWv6AsxRxYkzCQap58MdnJ2y11e-00_Zd9-GQrdFIRe5YjS3nr3M4QrCRj479FnsH7ZXNEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Time+Scale+Deep+Expert+System+for+Load+Forecasting+of+Electric+Vehicle+Charging+Stations&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Dong%2C+Hanjiang&rft.au=Li%2C+Shenglin&rft.au=Wen%2C+Xiyu&rft.au=Liang%2C+Zipeng&rft.date=2025-09-01&rft.pub=IEEE&rft.issn=1949-3053&rft.volume=16&rft.issue=5&rft.spage=4015&rft.epage=4031&rft_id=info:doi/10.1109%2FTSG.2025.3579879&rft.externalDocID=11036851 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon |