Mutual Information Driven Representation Learning for Cross-Subject Seizure Detection

Developing a generalizable model across subjects is crucial for the practical application of Electroencephalogram (EEG) based seizure detection model. However, inter-subject variability poses a challenge to the accurate identification of epileptic EEG, and applications often require recalibration an...

Full description

Saved in:
Bibliographic Details
Published inIEEE signal processing letters Vol. 32; pp. 2434 - 2438
Main Authors Hu, Dinghan, Cui, Xiaonan, Jiang, Tiejia, Hu, Wenbin, Cao, Jiuwen
Format Journal Article
LanguageEnglish
Published New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1070-9908
1558-2361
DOI10.1109/LSP.2025.3576642

Cover

Abstract Developing a generalizable model across subjects is crucial for the practical application of Electroencephalogram (EEG) based seizure detection model. However, inter-subject variability poses a challenge to the accurate identification of epileptic EEG, and applications often require recalibration and training of the base model using individual labeled data. To overcome this limitation, we propose a cross-subject transfer learning algorithm based on mutual information decomposition driven representation learning (MIDRL). The algorithm first introduces the structured state space sequence model to capture the long-term dependencies of epileptic EEG, and the residual module is used to mine the deep information between channels. Additionally, the mutual information estimation is employed to decompose the middle layer features of the network into domain-invariant representations and domain-specific representations, with the dynamically learnable weight updating mechanism to adaptively balance the learning tasks associated with the two representations. Finally, to address the problem of target samples being easily confused near the classification boundary, the minimum class confusion loss is introduced to reduce the class correlation predicted by the classifier. Experimental results demonstrate that the proposed algorithm effectively retains patterns of seizure region and exhibits strong performance for cross-subject seizure detection.
AbstractList Developing a generalizable model across subjects is crucial for the practical application of Electroencephalogram (EEG) based seizure detection model. However, inter-subject variability poses a challenge to the accurate identification of epileptic EEG, and applications often require recalibration and training of the base model using individual labeled data. To overcome this limitation, we propose a cross-subject transfer learning algorithm based on mutual information decomposition driven representation learning (MIDRL). The algorithm first introduces the structured state space sequence model to capture the long-term dependencies of epileptic EEG, and the residual module is used to mine the deep information between channels. Additionally, the mutual information estimation is employed to decompose the middle layer features of the network into domain-invariant representations and domain-specific representations, with the dynamically learnable weight updating mechanism to adaptively balance the learning tasks associated with the two representations. Finally, to address the problem of target samples being easily confused near the classification boundary, the minimum class confusion loss is introduced to reduce the class correlation predicted by the classifier. Experimental results demonstrate that the proposed algorithm effectively retains patterns of seizure region and exhibits strong performance for cross-subject seizure detection.
Author Hu, Dinghan
Cui, Xiaonan
Hu, Wenbin
Jiang, Tiejia
Cao, Jiuwen
Author_xml – sequence: 1
  givenname: Dinghan
  orcidid: 0000-0003-1493-0041
  surname: Hu
  fullname: Hu, Dinghan
  organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China
– sequence: 2
  givenname: Xiaonan
  surname: Cui
  fullname: Cui, Xiaonan
  organization: School of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang, China
– sequence: 3
  givenname: Tiejia
  orcidid: 0000-0003-3688-8366
  surname: Jiang
  fullname: Jiang, Tiejia
  organization: Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
– sequence: 4
  givenname: Wenbin
  orcidid: 0009-0001-4470-4208
  surname: Hu
  fullname: Hu, Wenbin
  organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China
– sequence: 5
  givenname: Jiuwen
  orcidid: 0000-0002-6480-5794
  surname: Cao
  fullname: Cao, Jiuwen
  email: jwcao@hdu.edu.cn
  organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China
BookMark eNpFkM1Lw0AQxRepYFu9e_AQ8Jw4-5HN7lFaPwoRxdbzskkmktJu6iYR9K93Swqe5s3wezPDm5GJax0Sck0hoRT0Xb5-SxiwNOFpJqVgZ2RK01TFjEs6CRoyiLUGdUFmXbcFAEVVOiUfL0M_2F20cnXr97ZvWhctffONLnrHg8cOXT9Oc7TeNe4zCmC08G3Xxeuh2GLZR2tsfgeP0RL70Ab4kpzXdtfh1anOyebxYbN4jvPXp9XiPo9LJrI-ZpWVhQVWlUoIjVVRa1RYZIJTbUFKWVmlWM0yy8uCKhBKSAoWgtK6tnxObse1B99-Ddj1ZtsO3oWLhjPGdZZxLQMFI1Uen_ZYm4Nv9tb_GArmmJ0J2ZljduaUXbDcjJYGEf9xCkwABf4HCGZs0w
CODEN ISPLEM
Cites_doi 10.1109/LSP.2024.3465348
10.1109/TNSRE.2022.3180155
10.1109/TII.2021.3133307
10.1109/ICDM.2019.00088
10.1109/TAI.2023.3293473
10.1109/TNSRE.2020.2973434
10.1109/TNNLS.2021.3100583
10.1109/TIM.2025.3551437
10.3389/fncom.2023.1195334
10.1109/TCYB.2021.3071860
10.1609/aaai.v38i14.29500
10.1088/1741-2552/aace8c
10.1109/TCSII.2020.3031399
10.1007/978-3-030-58589-1_28
10.1109/LSP.2024.3400037
10.1109/CVPR.2018.00392
10.1016/j.bspc.2023.105664
10.3389/fninf.2024.1303380
10.1109/TNSRE.2022.3229066
10.1109/TNNLS.2020.2988928
10.1186/s40708-020-00105-1
10.1109/CVPR.2019.00503
10.1109/JBHI.2022.3210158
10.1109/JBHI.2020.2971610
10.1109/TIM.2023.3248101
10.1109/TCSII.2022.3208197
10.1109/TNSRE.2023.3322275
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LSP.2025.3576642
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEL
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 2438
ExternalDocumentID 10_1109_LSP_2025_3576642
11024010
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U1909209
  funderid: 10.13039/501100001809
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LQN25F030013; LZ24F030010
– fundername: National Key Research and Development Program of China
  grantid: 2021YFE0100100
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c247t-2da6ba02dc8449edbf9e8eb74319a0666da882f27a3cb180484610a080499fa3
IEDL.DBID RIE
ISSN 1070-9908
IngestDate Mon Jun 30 07:17:14 EDT 2025
Wed Oct 01 05:40:31 EDT 2025
Wed Aug 27 02:00:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-2da6ba02dc8449edbf9e8eb74319a0666da882f27a3cb180484610a080499fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-4470-4208
0000-0002-6480-5794
0000-0003-1493-0041
0000-0003-3688-8366
PQID 3223977396
PQPubID 75747
PageCount 5
ParticipantIDs ieee_primary_11024010
proquest_journals_3223977396
crossref_primary_10_1109_LSP_2025_3576642
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
Hjelm (ref15) 2019
ref24
ref23
Gu (ref12) 2022
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
Belghazi (ref14) 2018
ref5
Tang (ref13) 2023
References_xml – ident: ref6
  doi: 10.1109/LSP.2024.3465348
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  year: 2022
  ident: ref12
  article-title: Efficiently modeling long sequences with structured state spaces
– ident: ref24
  doi: 10.1109/TNSRE.2022.3180155
– start-page: 50
  volume-title: Proc. Conf. Health, Inference, Learn.
  year: 2023
  ident: ref13
  article-title: Modeling multivariate biosignals with graph neural networks and structured state space models
– start-page: 531
  volume-title: Proc. 35th Int. Conf. Mach. Learn.
  year: 2018
  ident: ref14
  article-title: Mutual information neural estimation
– ident: ref20
  doi: 10.1109/TII.2021.3133307
– ident: ref27
  doi: 10.1109/ICDM.2019.00088
– ident: ref31
  doi: 10.1109/TAI.2023.3293473
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  year: 2019
  ident: ref15
  article-title: Learning deep representations by mutual information estimation and maximization
– ident: ref21
  doi: 10.1109/TNSRE.2020.2973434
– ident: ref16
  doi: 10.1109/TNNLS.2021.3100583
– ident: ref18
  doi: 10.1109/TIM.2025.3551437
– ident: ref8
  doi: 10.3389/fncom.2023.1195334
– ident: ref23
  doi: 10.1109/TCYB.2021.3071860
– ident: ref25
  doi: 10.1609/aaai.v38i14.29500
– ident: ref19
  doi: 10.1088/1741-2552/aace8c
– ident: ref1
  doi: 10.1109/TCSII.2020.3031399
– ident: ref17
  doi: 10.1007/978-3-030-58589-1_28
– ident: ref3
  doi: 10.1109/LSP.2024.3400037
– ident: ref28
  doi: 10.1109/CVPR.2018.00392
– ident: ref10
  doi: 10.1016/j.bspc.2023.105664
– ident: ref11
  doi: 10.3389/fninf.2024.1303380
– ident: ref4
  doi: 10.1109/TNSRE.2022.3229066
– ident: ref26
  doi: 10.1109/TNNLS.2020.2988928
– ident: ref2
  doi: 10.1186/s40708-020-00105-1
– ident: ref29
  doi: 10.1109/CVPR.2019.00503
– ident: ref30
  doi: 10.1109/JBHI.2022.3210158
– ident: ref5
  doi: 10.1109/JBHI.2020.2971610
– ident: ref7
  doi: 10.1109/TIM.2023.3248101
– ident: ref9
  doi: 10.1109/TCSII.2022.3208197
– ident: ref22
  doi: 10.1109/TNSRE.2023.3322275
SSID ssj0008185
Score 2.4407032
Snippet Developing a generalizable model across subjects is crucial for the practical application of Electroencephalogram (EEG) based seizure detection model. However,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2434
SubjectTerms Adaptation models
Algorithms
Brain modeling
Cognitive tasks
Convulsions & seizures
Decomposition
Electroencephalography
Epilepsy
Feature extraction
individual variability
Machine learning
Mutual information
Representation learning
Representations
Seizure detection
Spatiotemporal phenomena
Temperature measurement
Training
transfer learning
Title Mutual Information Driven Representation Learning for Cross-Subject Seizure Detection
URI https://ieeexplore.ieee.org/document/11024010
https://www.proquest.com/docview/3223977396
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2361
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008185
  issn: 1070-9908
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7qSQ--xfVFDl48ZO0m2TY5ig9E3EV8gLfSvESEKmt78dc7k2Z9InjrIS1pZjLzzWS-CSH7FhQnOGeYstYyOXAFMyoIFqxTTvAguMGE_micn9_Ji_vhfSKrRy6M9z4Wn_k-PsazfPdsW0yVHYKrAgeEhKrZQuUdWevD7KLn6QoMMwYmVk3PJDN9eHlzBZEgH_YFoOtc8m8-KF6q8ssSR_dytkTG04l1VSVP_bYxffv2o2fjv2e-TBYT0KRHnWaskBlfr5KFL-0H18jdqEX2CE2UJBQRPZmg-aPXsUA28ZJqmrqwPlAYSI_xpxhYHEzh0Bv_-NZOPD3xTazqqtfJ7dnp7fE5S9csMMtl0TDuqtxUGXdWSam9M0F75Q1CC11heOMqgOGBF5WwZqBgy2OP9gqgJkRLoRIbZK5-rv0moVoEPpAWQkArpXQQq2R50ENdDX2hjPA9cjBd9_Kla6ZRxiAk0yXIqEQZlUlGPbKOy_g5Lq1gj-xMJVWm7fZaglVCICt0vvXHa9tkHr_eJU92yFwzaf0uwInG7EU1egeVTMca
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxELYqOBQOPIOaQosPXHpwsrG9m_URQVGgSVRBIuW2Wr8QQtpUYffCr--M16GUCqm3PXi1Xs945pvxfGNCzgwojrdWs9wYw-TADpnOvWDe2NwK7gXXmNCfTLPRXN4s0kUkqwcujHMuFJ-5Hj6Gs3y7NA2myvrgqsABIaFqM5VSpi1d68Xwou9pSwwTBkY2X59KJqo_vvsJsSBPewLwdSb5X14oXKvyjy0ODuZql0zXU2vrSh57Ta175vlN18b_nvse2YlQk563urFPPrjqgGy_akB4SOaTBvkjNJKSUEj0coUGkN6GEtnITKpo7MN6T2EgvcCfYmBzMIlD79zDc7Ny9NLVoa6r6pDZ1ffZxYjFixaY4XJYM27LTJcJtyaXUjmrvXK50wguVIkBji0BiHs-LIXRgxw2PXZpLwFsQrzkS3FENqpl5T4RqoTnA2kgCDQgIAvRSpJ5laoydcNcC9cl39brXvxq22kUIQxJVAEyKlBGRZRRl3RwGf-MiyvYJSdrSRVxwz0VYJcQygqVfX7ntVPycTSbjIvx9fTHMdnCL7WplBOyUa8a9wXARa2_BpX6DTBlymc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutual+Information+Driven+Representation+Learning+for+Cross-Subject+Seizure+Detection&rft.jtitle=IEEE+signal+processing+letters&rft.au=Hu%2C+Dinghan&rft.au=Cui%2C+Xiaonan&rft.au=Jiang%2C+Tiejia&rft.au=Hu%2C+Wenbin&rft.date=2025&rft.pub=IEEE&rft.issn=1070-9908&rft.volume=32&rft.spage=2434&rft.epage=2438&rft_id=info:doi/10.1109%2FLSP.2025.3576642&rft.externalDocID=11024010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon