Mutual Information Driven Representation Learning for Cross-Subject Seizure Detection
Developing a generalizable model across subjects is crucial for the practical application of Electroencephalogram (EEG) based seizure detection model. However, inter-subject variability poses a challenge to the accurate identification of epileptic EEG, and applications often require recalibration an...
Saved in:
| Published in | IEEE signal processing letters Vol. 32; pp. 2434 - 2438 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1070-9908 1558-2361 |
| DOI | 10.1109/LSP.2025.3576642 |
Cover
| Abstract | Developing a generalizable model across subjects is crucial for the practical application of Electroencephalogram (EEG) based seizure detection model. However, inter-subject variability poses a challenge to the accurate identification of epileptic EEG, and applications often require recalibration and training of the base model using individual labeled data. To overcome this limitation, we propose a cross-subject transfer learning algorithm based on mutual information decomposition driven representation learning (MIDRL). The algorithm first introduces the structured state space sequence model to capture the long-term dependencies of epileptic EEG, and the residual module is used to mine the deep information between channels. Additionally, the mutual information estimation is employed to decompose the middle layer features of the network into domain-invariant representations and domain-specific representations, with the dynamically learnable weight updating mechanism to adaptively balance the learning tasks associated with the two representations. Finally, to address the problem of target samples being easily confused near the classification boundary, the minimum class confusion loss is introduced to reduce the class correlation predicted by the classifier. Experimental results demonstrate that the proposed algorithm effectively retains patterns of seizure region and exhibits strong performance for cross-subject seizure detection. |
|---|---|
| AbstractList | Developing a generalizable model across subjects is crucial for the practical application of Electroencephalogram (EEG) based seizure detection model. However, inter-subject variability poses a challenge to the accurate identification of epileptic EEG, and applications often require recalibration and training of the base model using individual labeled data. To overcome this limitation, we propose a cross-subject transfer learning algorithm based on mutual information decomposition driven representation learning (MIDRL). The algorithm first introduces the structured state space sequence model to capture the long-term dependencies of epileptic EEG, and the residual module is used to mine the deep information between channels. Additionally, the mutual information estimation is employed to decompose the middle layer features of the network into domain-invariant representations and domain-specific representations, with the dynamically learnable weight updating mechanism to adaptively balance the learning tasks associated with the two representations. Finally, to address the problem of target samples being easily confused near the classification boundary, the minimum class confusion loss is introduced to reduce the class correlation predicted by the classifier. Experimental results demonstrate that the proposed algorithm effectively retains patterns of seizure region and exhibits strong performance for cross-subject seizure detection. |
| Author | Hu, Dinghan Cui, Xiaonan Hu, Wenbin Jiang, Tiejia Cao, Jiuwen |
| Author_xml | – sequence: 1 givenname: Dinghan orcidid: 0000-0003-1493-0041 surname: Hu fullname: Hu, Dinghan organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China – sequence: 2 givenname: Xiaonan surname: Cui fullname: Cui, Xiaonan organization: School of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang, China – sequence: 3 givenname: Tiejia orcidid: 0000-0003-3688-8366 surname: Jiang fullname: Jiang, Tiejia organization: Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China – sequence: 4 givenname: Wenbin orcidid: 0009-0001-4470-4208 surname: Hu fullname: Hu, Wenbin organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China – sequence: 5 givenname: Jiuwen orcidid: 0000-0002-6480-5794 surname: Cao fullname: Cao, Jiuwen email: jwcao@hdu.edu.cn organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China |
| BookMark | eNpFkM1Lw0AQxRepYFu9e_AQ8Jw4-5HN7lFaPwoRxdbzskkmktJu6iYR9K93Swqe5s3wezPDm5GJax0Sck0hoRT0Xb5-SxiwNOFpJqVgZ2RK01TFjEs6CRoyiLUGdUFmXbcFAEVVOiUfL0M_2F20cnXr97ZvWhctffONLnrHg8cOXT9Oc7TeNe4zCmC08G3Xxeuh2GLZR2tsfgeP0RL70Ab4kpzXdtfh1anOyebxYbN4jvPXp9XiPo9LJrI-ZpWVhQVWlUoIjVVRa1RYZIJTbUFKWVmlWM0yy8uCKhBKSAoWgtK6tnxObse1B99-Ddj1ZtsO3oWLhjPGdZZxLQMFI1Uen_ZYm4Nv9tb_GArmmJ0J2ZljduaUXbDcjJYGEf9xCkwABf4HCGZs0w |
| CODEN | ISPLEM |
| Cites_doi | 10.1109/LSP.2024.3465348 10.1109/TNSRE.2022.3180155 10.1109/TII.2021.3133307 10.1109/ICDM.2019.00088 10.1109/TAI.2023.3293473 10.1109/TNSRE.2020.2973434 10.1109/TNNLS.2021.3100583 10.1109/TIM.2025.3551437 10.3389/fncom.2023.1195334 10.1109/TCYB.2021.3071860 10.1609/aaai.v38i14.29500 10.1088/1741-2552/aace8c 10.1109/TCSII.2020.3031399 10.1007/978-3-030-58589-1_28 10.1109/LSP.2024.3400037 10.1109/CVPR.2018.00392 10.1016/j.bspc.2023.105664 10.3389/fninf.2024.1303380 10.1109/TNSRE.2022.3229066 10.1109/TNNLS.2020.2988928 10.1186/s40708-020-00105-1 10.1109/CVPR.2019.00503 10.1109/JBHI.2022.3210158 10.1109/JBHI.2020.2971610 10.1109/TIM.2023.3248101 10.1109/TCSII.2022.3208197 10.1109/TNSRE.2023.3322275 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/LSP.2025.3576642 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEL CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2361 |
| EndPage | 2438 |
| ExternalDocumentID | 10_1109_LSP_2025_3576642 11024010 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U1909209 funderid: 10.13039/501100001809 – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LQN25F030013; LZ24F030010 – fundername: National Key Research and Development Program of China grantid: 2021YFE0100100 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c247t-2da6ba02dc8449edbf9e8eb74319a0666da882f27a3cb180484610a080499fa3 |
| IEDL.DBID | RIE |
| ISSN | 1070-9908 |
| IngestDate | Mon Jun 30 07:17:14 EDT 2025 Wed Oct 01 05:40:31 EDT 2025 Wed Aug 27 02:00:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c247t-2da6ba02dc8449edbf9e8eb74319a0666da882f27a3cb180484610a080499fa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0001-4470-4208 0000-0002-6480-5794 0000-0003-1493-0041 0000-0003-3688-8366 |
| PQID | 3223977396 |
| PQPubID | 75747 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_11024010 proquest_journals_3223977396 crossref_primary_10_1109_LSP_2025_3576642 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE signal processing letters |
| PublicationTitleAbbrev | LSP |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref31 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 Hjelm (ref15) 2019 ref24 ref23 Gu (ref12) 2022 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 Belghazi (ref14) 2018 ref5 Tang (ref13) 2023 |
| References_xml | – ident: ref6 doi: 10.1109/LSP.2024.3465348 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations year: 2022 ident: ref12 article-title: Efficiently modeling long sequences with structured state spaces – ident: ref24 doi: 10.1109/TNSRE.2022.3180155 – start-page: 50 volume-title: Proc. Conf. Health, Inference, Learn. year: 2023 ident: ref13 article-title: Modeling multivariate biosignals with graph neural networks and structured state space models – start-page: 531 volume-title: Proc. 35th Int. Conf. Mach. Learn. year: 2018 ident: ref14 article-title: Mutual information neural estimation – ident: ref20 doi: 10.1109/TII.2021.3133307 – ident: ref27 doi: 10.1109/ICDM.2019.00088 – ident: ref31 doi: 10.1109/TAI.2023.3293473 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations year: 2019 ident: ref15 article-title: Learning deep representations by mutual information estimation and maximization – ident: ref21 doi: 10.1109/TNSRE.2020.2973434 – ident: ref16 doi: 10.1109/TNNLS.2021.3100583 – ident: ref18 doi: 10.1109/TIM.2025.3551437 – ident: ref8 doi: 10.3389/fncom.2023.1195334 – ident: ref23 doi: 10.1109/TCYB.2021.3071860 – ident: ref25 doi: 10.1609/aaai.v38i14.29500 – ident: ref19 doi: 10.1088/1741-2552/aace8c – ident: ref1 doi: 10.1109/TCSII.2020.3031399 – ident: ref17 doi: 10.1007/978-3-030-58589-1_28 – ident: ref3 doi: 10.1109/LSP.2024.3400037 – ident: ref28 doi: 10.1109/CVPR.2018.00392 – ident: ref10 doi: 10.1016/j.bspc.2023.105664 – ident: ref11 doi: 10.3389/fninf.2024.1303380 – ident: ref4 doi: 10.1109/TNSRE.2022.3229066 – ident: ref26 doi: 10.1109/TNNLS.2020.2988928 – ident: ref2 doi: 10.1186/s40708-020-00105-1 – ident: ref29 doi: 10.1109/CVPR.2019.00503 – ident: ref30 doi: 10.1109/JBHI.2022.3210158 – ident: ref5 doi: 10.1109/JBHI.2020.2971610 – ident: ref7 doi: 10.1109/TIM.2023.3248101 – ident: ref9 doi: 10.1109/TCSII.2022.3208197 – ident: ref22 doi: 10.1109/TNSRE.2023.3322275 |
| SSID | ssj0008185 |
| Score | 2.4407032 |
| Snippet | Developing a generalizable model across subjects is crucial for the practical application of Electroencephalogram (EEG) based seizure detection model. However,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 2434 |
| SubjectTerms | Adaptation models Algorithms Brain modeling Cognitive tasks Convulsions & seizures Decomposition Electroencephalography Epilepsy Feature extraction individual variability Machine learning Mutual information Representation learning Representations Seizure detection Spatiotemporal phenomena Temperature measurement Training transfer learning |
| Title | Mutual Information Driven Representation Learning for Cross-Subject Seizure Detection |
| URI | https://ieeexplore.ieee.org/document/11024010 https://www.proquest.com/docview/3223977396 |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2361 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008185 issn: 1070-9908 databaseCode: RIE dateStart: 19940101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7qSQ--xfVFDl48ZO0m2TY5ig9E3EV8gLfSvESEKmt78dc7k2Z9InjrIS1pZjLzzWS-CSH7FhQnOGeYstYyOXAFMyoIFqxTTvAguMGE_micn9_Ji_vhfSKrRy6M9z4Wn_k-PsazfPdsW0yVHYKrAgeEhKrZQuUdWevD7KLn6QoMMwYmVk3PJDN9eHlzBZEgH_YFoOtc8m8-KF6q8ssSR_dytkTG04l1VSVP_bYxffv2o2fjv2e-TBYT0KRHnWaskBlfr5KFL-0H18jdqEX2CE2UJBQRPZmg-aPXsUA28ZJqmrqwPlAYSI_xpxhYHEzh0Bv_-NZOPD3xTazqqtfJ7dnp7fE5S9csMMtl0TDuqtxUGXdWSam9M0F75Q1CC11heOMqgOGBF5WwZqBgy2OP9gqgJkRLoRIbZK5-rv0moVoEPpAWQkArpXQQq2R50ENdDX2hjPA9cjBd9_Kla6ZRxiAk0yXIqEQZlUlGPbKOy_g5Lq1gj-xMJVWm7fZaglVCICt0vvXHa9tkHr_eJU92yFwzaf0uwInG7EU1egeVTMca |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxELYqOBQOPIOaQosPXHpwsrG9m_URQVGgSVRBIuW2Wr8QQtpUYffCr--M16GUCqm3PXi1Xs945pvxfGNCzgwojrdWs9wYw-TADpnOvWDe2NwK7gXXmNCfTLPRXN4s0kUkqwcujHMuFJ-5Hj6Gs3y7NA2myvrgqsABIaFqM5VSpi1d68Xwou9pSwwTBkY2X59KJqo_vvsJsSBPewLwdSb5X14oXKvyjy0ODuZql0zXU2vrSh57Ta175vlN18b_nvse2YlQk563urFPPrjqgGy_akB4SOaTBvkjNJKSUEj0coUGkN6GEtnITKpo7MN6T2EgvcCfYmBzMIlD79zDc7Ny9NLVoa6r6pDZ1ffZxYjFixaY4XJYM27LTJcJtyaXUjmrvXK50wguVIkBji0BiHs-LIXRgxw2PXZpLwFsQrzkS3FENqpl5T4RqoTnA2kgCDQgIAvRSpJ5laoydcNcC9cl39brXvxq22kUIQxJVAEyKlBGRZRRl3RwGf-MiyvYJSdrSRVxwz0VYJcQygqVfX7ntVPycTSbjIvx9fTHMdnCL7WplBOyUa8a9wXARa2_BpX6DTBlymc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutual+Information+Driven+Representation+Learning+for+Cross-Subject+Seizure+Detection&rft.jtitle=IEEE+signal+processing+letters&rft.au=Hu%2C+Dinghan&rft.au=Cui%2C+Xiaonan&rft.au=Jiang%2C+Tiejia&rft.au=Hu%2C+Wenbin&rft.date=2025&rft.pub=IEEE&rft.issn=1070-9908&rft.volume=32&rft.spage=2434&rft.epage=2438&rft_id=info:doi/10.1109%2FLSP.2025.3576642&rft.externalDocID=11024010 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon |