Cost‐Effective High Entropy Core–Shell Fiber for Stable Oxygen Evolution Reaction at 2 A cm−2
Exploring highly efficient oxygen evolution reaction (OER) electrocatalysts is important for industrial water electrolysis, especially under high current densities (>1 A cm−2). High‐entropy alloy (HEA) with high surface OER activity and excellent electrical conductivity of the core is an ideal ro...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 50 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202306889 |
Cover
Abstract | Exploring highly efficient oxygen evolution reaction (OER) electrocatalysts is important for industrial water electrolysis, especially under high current densities (>1 A cm−2). High‐entropy alloy (HEA) with high surface OER activity and excellent electrical conductivity of the core is an ideal route to improve the catalytic activity. Herein, a combined theoretical and experimental approach to establish core–shell FeCoNiMoAl‐based HEA as a promising OER electrocatalyst is presented. Theoretical calculations combined with structure analyses indicate crystalline–amorphous (c–a) heterostructure of shell reduces the electron transfer resistance and generates more active sites, furthermore the crystalline core improves the conductivity and self‐supporting ability. HEA electrodes demonstrate superior OER performance with an overpotential (η) of 470 mV at 2 A cm−2 and no apparent degradation even after 330 h of continuous testing, notably, for overall water splitting the stability is more than 120 h at 2.06 V. The special core–shell structure achieves a win–win strategy for high OER activity and stability. These findings shed light on the structural design of HEA electrocatalysts and present a promising route to achieve highly efficient electrocatalysts for industrial water electrolysis and relevant energy conversion processes.
Cost‐effective high entropy core–shell fiber prepared by melt‐extracted are constructed as a bifunctional electrocatalyst. The c–a heterostructure effectively enhances the oxygen evolution reaction activity by increasing the number of active sites and accelerating the electron transfer, demonstrating an overpotential of 470 mV in alkaline electrolyte with outstanding long‐term stability over 330 h at 2 A cm−2. |
---|---|
AbstractList | Exploring highly efficient oxygen evolution reaction (OER) electrocatalysts is important for industrial water electrolysis, especially under high current densities (>1 A cm−2). High‐entropy alloy (HEA) with high surface OER activity and excellent electrical conductivity of the core is an ideal route to improve the catalytic activity. Herein, a combined theoretical and experimental approach to establish core–shell FeCoNiMoAl‐based HEA as a promising OER electrocatalyst is presented. Theoretical calculations combined with structure analyses indicate crystalline–amorphous (c–a) heterostructure of shell reduces the electron transfer resistance and generates more active sites, furthermore the crystalline core improves the conductivity and self‐supporting ability. HEA electrodes demonstrate superior OER performance with an overpotential (η) of 470 mV at 2 A cm−2 and no apparent degradation even after 330 h of continuous testing, notably, for overall water splitting the stability is more than 120 h at 2.06 V. The special core–shell structure achieves a win–win strategy for high OER activity and stability. These findings shed light on the structural design of HEA electrocatalysts and present a promising route to achieve highly efficient electrocatalysts for industrial water electrolysis and relevant energy conversion processes. Exploring highly efficient oxygen evolution reaction (OER) electrocatalysts is important for industrial water electrolysis, especially under high current densities (>1 A cm −2 ). High‐entropy alloy (HEA) with high surface OER activity and excellent electrical conductivity of the core is an ideal route to improve the catalytic activity. Herein, a combined theoretical and experimental approach to establish core–shell FeCoNiMoAl‐based HEA as a promising OER electrocatalyst is presented. Theoretical calculations combined with structure analyses indicate crystalline–amorphous ( c–a ) heterostructure of shell reduces the electron transfer resistance and generates more active sites, furthermore the crystalline core improves the conductivity and self‐supporting ability. HEA electrodes demonstrate superior OER performance with an overpotential ( η ) of 470 mV at 2 A cm −2 and no apparent degradation even after 330 h of continuous testing, notably, for overall water splitting the stability is more than 120 h at 2.06 V. The special core–shell structure achieves a win–win strategy for high OER activity and stability. These findings shed light on the structural design of HEA electrocatalysts and present a promising route to achieve highly efficient electrocatalysts for industrial water electrolysis and relevant energy conversion processes. Exploring highly efficient oxygen evolution reaction (OER) electrocatalysts is important for industrial water electrolysis, especially under high current densities (>1 A cm−2). High‐entropy alloy (HEA) with high surface OER activity and excellent electrical conductivity of the core is an ideal route to improve the catalytic activity. Herein, a combined theoretical and experimental approach to establish core–shell FeCoNiMoAl‐based HEA as a promising OER electrocatalyst is presented. Theoretical calculations combined with structure analyses indicate crystalline–amorphous (c–a) heterostructure of shell reduces the electron transfer resistance and generates more active sites, furthermore the crystalline core improves the conductivity and self‐supporting ability. HEA electrodes demonstrate superior OER performance with an overpotential (η) of 470 mV at 2 A cm−2 and no apparent degradation even after 330 h of continuous testing, notably, for overall water splitting the stability is more than 120 h at 2.06 V. The special core–shell structure achieves a win–win strategy for high OER activity and stability. These findings shed light on the structural design of HEA electrocatalysts and present a promising route to achieve highly efficient electrocatalysts for industrial water electrolysis and relevant energy conversion processes. Cost‐effective high entropy core–shell fiber prepared by melt‐extracted are constructed as a bifunctional electrocatalyst. The c–a heterostructure effectively enhances the oxygen evolution reaction activity by increasing the number of active sites and accelerating the electron transfer, demonstrating an overpotential of 470 mV in alkaline electrolyte with outstanding long‐term stability over 330 h at 2 A cm−2. |
Author | Wang, Xian‐Jie Nikiforov, Alexander Wang, Ran Jiang, Si‐Da Sun, Xun Fu, Qiang Song, Bo Cui, Yi‐Fan Xu, Ping Sun, Jian‐Fei Ning, Zhi‐Liang Sui, Yu |
Author_xml | – sequence: 1 givenname: Yi‐Fan surname: Cui fullname: Cui, Yi‐Fan organization: Harbin Institute of Technology – sequence: 2 givenname: Si‐Da surname: Jiang fullname: Jiang, Si‐Da email: jiangsida@hit.edu.cn organization: Harbin Institute of Technology – sequence: 3 givenname: Qiang surname: Fu fullname: Fu, Qiang organization: The Hong Kong Polytechnic University – sequence: 4 givenname: Ran surname: Wang fullname: Wang, Ran organization: Harbin Institute of Technology – sequence: 5 givenname: Ping surname: Xu fullname: Xu, Ping organization: Harbin Institute of Technology – sequence: 6 givenname: Yu surname: Sui fullname: Sui, Yu organization: Harbin Institute of Technology – sequence: 7 givenname: Xian‐Jie surname: Wang fullname: Wang, Xian‐Jie organization: Harbin Institute of Technology – sequence: 8 givenname: Zhi‐Liang surname: Ning fullname: Ning, Zhi‐Liang organization: Harbin Institute of Technology – sequence: 9 givenname: Jian‐Fei surname: Sun fullname: Sun, Jian‐Fei organization: Harbin Institute of Technology – sequence: 10 givenname: Xun surname: Sun fullname: Sun, Xun organization: Guizhou Aerospace Institute of Measuring and Testing Technology – sequence: 11 givenname: Alexander surname: Nikiforov fullname: Nikiforov, Alexander organization: Siberian Branch of the Russian Academy of Sciences – sequence: 12 givenname: Bo orcidid: 0000-0003-2000-5071 surname: Song fullname: Song, Bo email: songbo@hit.edu.cn organization: Harbin Institute of Technology |
BookMark | eNqFkM1LAkEYxocwSK1r54HO2nzs1xxl0wwMIQu6LePsO7qy7tjsaO3NY8eo_9C_JM0wCKLT-xye3_PwPg1UK0wBCJ1T0qaEsEuZ6nmbEcZJEEXiCNVpQIMWJyyqHTR9PEGNspwRQsOQe3WkYlO6zfqtqzUol60A97PJFHcLZ82iwrGxsFl_jKaQ57iXjcFibSweOTnOAQ9fqgkUuLsy-dJlpsB3INWXkA4z3MFqvnl9Z6foWMu8hLPv20QPve593G8Nhtc3cWfQUswLRcujHtUEIu77wD0lAqJpSsRYSK1CBTwMaaj8VEuVSslBp4z4Y8akR5gOgHHeRBf73IU1T0soXTIzS1tsKxMWCeF7goVk62rvXcqasrSgk4XN5tJWCSXJbshkN2RyGHILeL8AlTm5e9NZmeV_Y2KPPWc5VP-UJJ2r3u0P-wlS0oyp |
CitedBy_id | crossref_primary_10_1016_j_jcis_2024_11_034 crossref_primary_10_1016_j_ijhydene_2024_11_422 crossref_primary_10_1016_j_matchemphys_2025_130609 crossref_primary_10_1016_j_mtcomm_2025_112004 crossref_primary_10_1016_j_diamond_2025_112167 crossref_primary_10_1016_j_jallcom_2025_179181 crossref_primary_10_1016_j_diamond_2025_112241 crossref_primary_10_1126_sciadv_adq6758 crossref_primary_10_1016_j_ccr_2025_216435 crossref_primary_10_1016_j_carbon_2023_118758 crossref_primary_10_1002_cmt2_26 crossref_primary_10_1016_j_ssi_2025_116784 crossref_primary_10_1039_D4TA02322F crossref_primary_10_1016_j_fuel_2025_135160 crossref_primary_10_1016_j_vacuum_2025_114117 crossref_primary_10_1002_adfm_202418644 crossref_primary_10_1016_j_jallcom_2024_178337 crossref_primary_10_1016_j_jnoncrysol_2024_123249 crossref_primary_10_1016_j_fuel_2025_134993 crossref_primary_10_1016_j_ijhydene_2025_01_304 crossref_primary_10_1016_j_jallcom_2025_178498 crossref_primary_10_1016_j_jpcs_2025_112711 crossref_primary_10_1016_j_fuel_2025_134595 crossref_primary_10_1016_j_jwpe_2025_107139 crossref_primary_10_1016_j_matchemphys_2025_130738 crossref_primary_10_1016_j_synthmet_2025_117830 crossref_primary_10_1002_smtd_202400793 crossref_primary_10_1016_j_synthmet_2025_117838 crossref_primary_10_1016_j_scp_2025_101951 crossref_primary_10_1039_D4CY00557K crossref_primary_10_1016_j_jallcom_2025_179315 crossref_primary_10_1016_j_jallcom_2025_179830 crossref_primary_10_1016_j_ensm_2024_103718 crossref_primary_10_1039_D4GC02329C crossref_primary_10_1016_j_solidstatesciences_2025_107823 crossref_primary_10_1016_j_diamond_2025_112069 crossref_primary_10_1002_aenm_202403744 crossref_primary_10_1039_D4TA06855F crossref_primary_10_1016_j_nanoen_2024_109703 crossref_primary_10_1039_D4CS00844H crossref_primary_10_1002_metm_31 crossref_primary_10_1016_j_cej_2025_160285 crossref_primary_10_1016_j_jpcs_2025_112576 crossref_primary_10_1016_j_diamond_2025_112235 crossref_primary_10_3390_catal15030237 crossref_primary_10_1007_s42864_024_00286_w crossref_primary_10_1002_adfm_202316539 crossref_primary_10_1016_j_ceramint_2025_03_209 crossref_primary_10_1016_j_jelechem_2025_119083 crossref_primary_10_1016_j_checat_2025_101324 crossref_primary_10_1039_D4NR05426A crossref_primary_10_1002_adfm_202413088 crossref_primary_10_1021_acsmaterialslett_4c00248 crossref_primary_10_1016_j_jallcom_2024_177855 crossref_primary_10_3390_molecules30030488 crossref_primary_10_1016_j_cej_2024_157426 crossref_primary_10_1016_j_ijhydene_2025_03_166 crossref_primary_10_1016_j_mtcomm_2025_111823 crossref_primary_10_1021_acsami_4c20528 |
Cites_doi | 10.1002/adma.202206890 10.1002/anie.202109212 10.1016/j.jallcom.2022.164669 10.1002/smll.202104339 10.1039/D1TA04755H 10.1002/adfm.202009610 10.1002/adma.202101845 10.1002/aenm.202200742 10.1016/j.apcatb.2022.121472 10.1021/acsmaterialslett.0c00434 10.1002/adma.201904989 10.1039/C4CS00448E 10.1002/adma.202000385 10.1016/j.pmatsci.2021.100777 10.1021/acsmaterialslett.2c00371 10.1021/acsenergylett.9b02359 10.1038/s41929-021-00715-w 10.1016/j.joule.2018.12.015 10.1002/adma.202110511 10.1038/s41563-021-01006-2 10.1039/D0EE00921K 10.1007/s12274-022-4179-8 10.1021/jacs.2c02755 10.1038/s41467-021-27664-z 10.1016/j.apcatb.2022.121917 10.1039/D1TA06568H 10.1002/smll.202101727 10.1039/C9EE00950G 10.1002/adma.201606793 10.1126/science.aaf5050 10.1002/adfm.202107056 10.1038/s41467-022-30064-6 10.1016/j.joule.2021.10.002 10.1021/acscatal.2c01241 10.1002/adfm.202009032 10.1038/nmat3087 10.1002/adfm.202101632 10.1016/j.pmatsci.2013.10.001 10.1021/acscatal.0c01104 10.1039/C5CC05511C 10.1021/acscatal.0c00340 10.1016/j.cej.2023.142613 10.1038/s41467-022-30148-3 10.1002/aenm.202002887 10.1002/aenm.202102353 10.1126/science.aan5412 10.1016/j.ijhydene.2013.01.151 10.1021/jacs.8b04546 10.1002/anie.202106631 10.1002/adem.200300567 10.1038/s41467-021-23907-1 10.1016/j.apcatb.2021.120764 10.1038/s41929-020-0465-6 10.1021/ja503557x 10.1016/j.scib.2021.02.033 10.1038/s41467-022-33725-8 10.1002/smll.202205683 10.1021/acscatal.2c02946 10.1021/acsnano.2c03818 10.1038/s41467-021-23390-8 10.1002/adma.202302007 10.1038/s41467-021-23896-1 10.1016/j.apcatb.2022.121127 10.1038/s41467-022-28260-5 10.1038/s41467-022-34121-y 10.1126/science.aaf1525 10.1039/C9EE02388G 10.1038/s41467-022-33846-0 10.1002/anie.201909939 10.1002/aenm.202003755 10.1002/ange.201609080 10.1039/C7EE02052J 10.1021/ja511559d 10.1002/smll.201904180 10.1038/s41467-020-17934-7 10.1002/anie.201801834 10.1002/adma.201606570 10.1021/jacs.9b05268 10.1002/anie.202109938 10.1002/aenm.201703189 10.1002/aenm.202100968 10.1016/j.actamat.2012.06.047 10.1016/j.apcatb.2021.120600 10.1016/j.apcatb.2018.11.008 10.1038/s41467-019-10303-z 10.1038/ncomms14969 10.1038/s41929-019-0365-9 10.1002/advs.201900246 10.1016/j.matdes.2021.109642 10.1002/adfm.202107333 10.1038/s41560-021-00925-3 10.1002/adma.202100745 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202306889 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202306889 ADFM202306889 |
Genre | article |
GrantInformation_xml | – fundername: National Science Fund for Distinguished Young Scholars funderid: 52225201 – fundername: National Key Research and Development Program of China funderid: 2023YFE0201000 – fundername: Fundamental Research Funds for the Central Universities funderid: HIT.BRET.2022001; 2023FRFK06001 – fundername: National Natural Science Foundation of China funderid: 52271028; 52072085; 52071118; 51827801 – fundername: Natural Science Foundation of Heilongjiang Province funderid: LH2022D017 – fundername: China Postdoctoral Science Foundation funderid: 2019M661275; 2020T130030ZX |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c2479-4141f0e8355e34c960f1d09b9afc7ce37717c5dfacdaa3efd205b22a402f6e233 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 03:31:10 EDT 2025 Tue Jul 01 00:30:47 EDT 2025 Thu Apr 24 22:54:06 EDT 2025 Wed Jan 22 16:19:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2479-4141f0e8355e34c960f1d09b9afc7ce37717c5dfacdaa3efd205b22a402f6e233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2000-5071 |
PQID | 2899549270 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2899549270 crossref_primary_10_1002_adfm_202306889 crossref_citationtrail_10_1002_adfm_202306889 wiley_primary_10_1002_adfm_202306889_ADFM202306889 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2012; 60 2021 2022; 12 13 2017; 8 2020 2017 2021 2019; 3 10 11 141 2018 2019; 359 10 2021; 204 2016 2021 2022 2022 2022 2022; 353 5 13 12 13 319 2021 2022; 33 34 2020 2017; 13 129 2021 2022; 4 13 2019 2021; 58 9 2017 2023; 29 464 2018 2021; 57 31 2020; 11 2015 2019 2022 2022 2022 2023; 44 2 13 13 13 35 2020; 10 2019; 243 2021; 31 2015; 137 2004 2014; 6 61 2021 2021; 11 11 2021; 118 2022; 32 2021; 9 2019 2021; 15 298 2019; 4 2019; 6 2019; 31 2015; 51 2022 2022; 4 15 2021 2021 2022; 33 31 12 2017; 29 2020 2018; 2 8 2020; 32 2021 2019 2022 2021; 60 12 11 2011 2014; 10 136 2022; 313 2021 2021 2021; 60 31 66 2022 2019; 301 3 2022; 144 2018 2022; 140 15 2013; 38 2021; 17 2021 2022; 20 306 2022; 908 2022; 12 2021; 60 2016 2020 2021 2021 2021; 352 13 6 12 12 2022; 16 2022; 18 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_24_2 e_1_2_8_26_1 e_1_2_8_47_3 e_1_2_8_49_1 e_1_2_8_26_2 e_1_2_8_47_2 e_1_2_8_9_2 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_1_5 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_3_2 e_1_2_8_3_5 e_1_2_8_7_1 e_1_2_8_1_6 e_1_2_8_3_4 e_1_2_8_5_2 e_1_2_8_9_1 e_1_2_8_3_6 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_41_2 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_13_2 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_30_2 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_11_2 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_21_4 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_25_2 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_4_2 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_4_4 e_1_2_8_6_2 e_1_2_8_2_5 e_1_2_8_4_3 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_21_2 e_1_2_8_21_3 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_2 e_1_2_8_40_1 e_1_2_8_39_2 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_12_2 e_1_2_8_12_3 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – volume: 140 15 start-page: 7748 year: 2018 2022 publication-title: J. Am. Chem. Soc. Small – volume: 118 year: 2021 publication-title: Prog. Mater. Sci. – volume: 18 year: 2022 publication-title: Small – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 4411 year: 2020 publication-title: ACS Catal. – volume: 11 start-page: 4066 year: 2020 publication-title: Nat. Commun. – volume: 13 129 start-page: 86 334 year: 2020 2017 publication-title: Energy Environ. Sci. Angew. Chem., Int. Ed. – volume: 44 2 13 13 13 35 start-page: 5148 1107 6249 2294 6382 year: 2015 2019 2022 2022 2022 2023 publication-title: Chem. Soc. Rev. Nat. Catal. Nat. Commun. Nat. Commun. Nat. Commun. Adv. Mater. – volume: 51 year: 2015 publication-title: Chem. Commun. – volume: 137 start-page: 1305 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 60 31 66 start-page: 1063 year: 2021 2021 2021 publication-title: Angew. Chem., Int. Ed. Adv. Funct. Mater. Sci. Bull. – volume: 204 year: 2021 publication-title: Mater. Des. – volume: 29 464 year: 2017 2023 publication-title: Adv. Mater. Chem. Eng. J. – volume: 33 31 12 year: 2021 2021 2022 publication-title: Adv. Mater. Adv. Funct. Mater. Adv. Energy Mater. – volume: 301 3 start-page: 834 year: 2022 2019 publication-title: Appl. Catal., B Joule – volume: 2 8 start-page: 1698 year: 2020 2018 publication-title: ACS Mater. Lett. Adv. Energy Mater. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 144 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 352 13 6 12 12 start-page: 333 3439 1054 3634 3540 year: 2016 2020 2021 2021 2021 publication-title: Science Energy Environ. Sci. Nat. Energy Nat. Commun. Nat. Commun. – volume: 3 10 11 141 start-page: 554 2190 year: 2020 2017 2021 2019 publication-title: Nat. Catal. Energy Environ. Sci. Adv. Energy Mater. J. Am. Chem. Soc. – volume: 12 13 start-page: 3036 605 year: 2021 2022 publication-title: Nat. Commun. Nat. Commun. – volume: 38 start-page: 4901 year: 2013 publication-title: Int. J. Hydrogen Energy – volume: 58 9 year: 2019 2021 publication-title: Angew. Chem., Int. Ed. J. Mater. Chem. A – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 4 15 start-page: 1389 8751 year: 2022 2022 publication-title: ACS Mater. Lett. Nano Res. – volume: 11 11 year: 2021 2021 publication-title: Adv. Energy Mater. Adv. Energy Mater. – volume: 4 13 start-page: 1050 6094 year: 2021 2022 publication-title: Nat. Catal. Nat. Commun. – volume: 908 year: 2022 publication-title: J. Alloys Compd. – volume: 12 year: 2022 publication-title: ACS Catal. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 359 10 start-page: 1489 2650 year: 2018 2019 publication-title: Science Nat. Commun. – volume: 6 61 start-page: 299 1 year: 2004 2014 publication-title: Adv. Eng. Mater. Prog. Mater. Sci. – volume: 4 start-page: 3002 year: 2019 publication-title: ACS Energy Lett. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 57 31 start-page: 5076 year: 2018 2021 publication-title: Angew. Chem., Int. Ed. Adv. Funct. Mater. – volume: 16 year: 2022 publication-title: ACS Nano – volume: 17 year: 2021 publication-title: Small – volume: 60 12 11 start-page: 2443 year: 2021 2019 2022 2021 publication-title: Angew. Chem., Int. Ed. Energy Environ. Sci. Adv. Mater. Adv. Energy Mater. – volume: 20 306 start-page: 1240 year: 2021 2022 publication-title: Nat. Mater. Appl. Catal., B – volume: 10 start-page: 4664 year: 2020 publication-title: ACS Catal. – volume: 313 year: 2022 publication-title: Appl. Catal., B – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 33 34 year: 2021 2022 publication-title: Adv. Mater. Adv. Mater. – volume: 60 start-page: 5425 year: 2012 publication-title: Acta Mater. – volume: 15 298 year: 2019 2021 publication-title: Small Appl. Catal., B – volume: 243 start-page: 678 year: 2019 publication-title: Appl. Catal., B – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 353 5 13 12 13 319 start-page: 1011 3221 2473 8658 24 year: 2016 2021 2022 2022 2022 2022 publication-title: Science Joule Nat. Commun. ACS Catal. Nat. Commun. Appl. Catal., B – volume: 10 136 start-page: 780 8875 year: 2011 2014 publication-title: Nat. Mater. J. Am. Chem. Soc. – ident: e_1_2_8_21_3 doi: 10.1002/adma.202206890 – ident: e_1_2_8_16_1 doi: 10.1002/anie.202109212 – ident: e_1_2_8_14_1 doi: 10.1016/j.jallcom.2022.164669 – ident: e_1_2_8_15_1 doi: 10.1002/smll.202104339 – ident: e_1_2_8_42_1 doi: 10.1039/D1TA04755H – ident: e_1_2_8_47_2 doi: 10.1002/adfm.202009610 – ident: e_1_2_8_12_1 doi: 10.1002/adma.202101845 – ident: e_1_2_8_12_3 doi: 10.1002/aenm.202200742 – ident: e_1_2_8_20_1 doi: 10.1016/j.apcatb.2022.121472 – ident: e_1_2_8_6_1 doi: 10.1021/acsmaterialslett.0c00434 – ident: e_1_2_8_51_1 doi: 10.1002/adma.201904989 – ident: e_1_2_8_1_1 doi: 10.1039/C4CS00448E – ident: e_1_2_8_37_1 doi: 10.1002/adma.202000385 – ident: e_1_2_8_10_1 doi: 10.1016/j.pmatsci.2021.100777 – ident: e_1_2_8_13_1 doi: 10.1021/acsmaterialslett.2c00371 – ident: e_1_2_8_48_1 doi: 10.1021/acsenergylett.9b02359 – ident: e_1_2_8_5_1 doi: 10.1038/s41929-021-00715-w – ident: e_1_2_8_17_2 doi: 10.1016/j.joule.2018.12.015 – ident: e_1_2_8_8_2 doi: 10.1002/adma.202110511 – ident: e_1_2_8_22_1 doi: 10.1038/s41563-021-01006-2 – ident: e_1_2_8_2_2 doi: 10.1039/D0EE00921K – ident: e_1_2_8_13_2 doi: 10.1007/s12274-022-4179-8 – ident: e_1_2_8_19_1 doi: 10.1021/jacs.2c02755 – ident: e_1_2_8_3_5 doi: 10.1038/s41467-021-27664-z – ident: e_1_2_8_3_6 doi: 10.1016/j.apcatb.2022.121917 – ident: e_1_2_8_30_2 doi: 10.1039/D1TA06568H – ident: e_1_2_8_35_1 doi: 10.1002/smll.202101727 – ident: e_1_2_8_21_2 doi: 10.1039/C9EE00950G – ident: e_1_2_8_40_1 doi: 10.1002/adma.201606793 – ident: e_1_2_8_3_1 doi: 10.1126/science.aaf5050 – ident: e_1_2_8_32_1 doi: 10.1002/adfm.202107056 – ident: e_1_2_8_1_4 doi: 10.1038/s41467-022-30064-6 – ident: e_1_2_8_3_2 doi: 10.1016/j.joule.2021.10.002 – ident: e_1_2_8_3_4 doi: 10.1021/acscatal.2c01241 – ident: e_1_2_8_29_1 doi: 10.1002/adfm.202009032 – ident: e_1_2_8_38_1 doi: 10.1038/nmat3087 – ident: e_1_2_8_12_2 doi: 10.1002/adfm.202101632 – ident: e_1_2_8_7_2 doi: 10.1016/j.pmatsci.2013.10.001 – ident: e_1_2_8_27_1 doi: 10.1021/acscatal.0c01104 – ident: e_1_2_8_45_1 doi: 10.1039/C5CC05511C – ident: e_1_2_8_46_1 doi: 10.1021/acscatal.0c00340 – ident: e_1_2_8_40_2 doi: 10.1016/j.cej.2023.142613 – ident: e_1_2_8_3_3 doi: 10.1038/s41467-022-30148-3 – ident: e_1_2_8_9_1 doi: 10.1002/aenm.202002887 – ident: e_1_2_8_9_2 doi: 10.1002/aenm.202102353 – ident: e_1_2_8_11_1 doi: 10.1126/science.aan5412 – ident: e_1_2_8_50_1 doi: 10.1016/j.ijhydene.2013.01.151 – ident: e_1_2_8_25_1 doi: 10.1021/jacs.8b04546 – ident: e_1_2_8_21_1 doi: 10.1002/anie.202106631 – ident: e_1_2_8_7_1 doi: 10.1002/adem.200300567 – ident: e_1_2_8_2_5 doi: 10.1038/s41467-021-23907-1 – ident: e_1_2_8_17_1 doi: 10.1016/j.apcatb.2021.120764 – ident: e_1_2_8_4_1 doi: 10.1038/s41929-020-0465-6 – ident: e_1_2_8_38_2 doi: 10.1021/ja503557x – ident: e_1_2_8_47_3 doi: 10.1016/j.scib.2021.02.033 – ident: e_1_2_8_1_3 doi: 10.1038/s41467-022-33725-8 – ident: e_1_2_8_25_2 doi: 10.1002/smll.202205683 – ident: e_1_2_8_31_1 doi: 10.1021/acscatal.2c02946 – ident: e_1_2_8_18_1 doi: 10.1021/acsnano.2c03818 – ident: e_1_2_8_26_1 doi: 10.1038/s41467-021-23390-8 – ident: e_1_2_8_1_6 doi: 10.1002/adma.202302007 – ident: e_1_2_8_2_4 doi: 10.1038/s41467-021-23896-1 – ident: e_1_2_8_22_2 doi: 10.1016/j.apcatb.2022.121127 – ident: e_1_2_8_26_2 doi: 10.1038/s41467-022-28260-5 – ident: e_1_2_8_1_5 doi: 10.1038/s41467-022-34121-y – ident: e_1_2_8_2_1 doi: 10.1126/science.aaf1525 – ident: e_1_2_8_41_1 doi: 10.1039/C9EE02388G – ident: e_1_2_8_5_2 doi: 10.1038/s41467-022-33846-0 – ident: e_1_2_8_30_1 doi: 10.1002/anie.201909939 – ident: e_1_2_8_4_3 doi: 10.1002/aenm.202003755 – ident: e_1_2_8_41_2 doi: 10.1002/ange.201609080 – ident: e_1_2_8_4_2 doi: 10.1039/C7EE02052J – ident: e_1_2_8_43_1 doi: 10.1021/ja511559d – ident: e_1_2_8_24_1 doi: 10.1002/smll.201904180 – ident: e_1_2_8_49_1 doi: 10.1038/s41467-020-17934-7 – ident: e_1_2_8_39_1 doi: 10.1002/anie.201801834 – ident: e_1_2_8_33_1 doi: 10.1002/adma.201606570 – ident: e_1_2_8_4_4 doi: 10.1021/jacs.9b05268 – ident: e_1_2_8_47_1 doi: 10.1002/anie.202109938 – ident: e_1_2_8_6_2 doi: 10.1002/aenm.201703189 – ident: e_1_2_8_21_4 doi: 10.1002/aenm.202100968 – ident: e_1_2_8_23_1 doi: 10.1016/j.actamat.2012.06.047 – ident: e_1_2_8_24_2 doi: 10.1016/j.apcatb.2021.120600 – ident: e_1_2_8_36_1 doi: 10.1016/j.apcatb.2018.11.008 – ident: e_1_2_8_11_2 doi: 10.1038/s41467-019-10303-z – ident: e_1_2_8_34_1 doi: 10.1038/ncomms14969 – ident: e_1_2_8_1_2 doi: 10.1038/s41929-019-0365-9 – ident: e_1_2_8_44_1 doi: 10.1002/advs.201900246 – ident: e_1_2_8_28_1 doi: 10.1016/j.matdes.2021.109642 – ident: e_1_2_8_39_2 doi: 10.1002/adfm.202107333 – ident: e_1_2_8_2_3 doi: 10.1038/s41560-021-00925-3 – ident: e_1_2_8_8_1 doi: 10.1002/adma.202100745 |
SSID | ssj0017734 |
Score | 2.670489 |
Snippet | Exploring highly efficient oxygen evolution reaction (OER) electrocatalysts is important for industrial water electrolysis, especially under high current... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | alkaline water splitting Catalytic activity Core-shell structure Electrical resistivity electrocatalysis Electrocatalysts Electrolysis Electron transfer Energy conversion Heterostructures high current density High entropy alloys high‐entropy alloy fibers Industrial water Materials science oxygen evolution reaction Oxygen evolution reactions Structural design Water splitting |
Title | Cost‐Effective High Entropy Core–Shell Fiber for Stable Oxygen Evolution Reaction at 2 A cm−2 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202306889 https://www.proquest.com/docview/2899549270 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA7iSQ_-FqdTchA8VdO0abfj2A-GMIXpYLeSpMlF3cR14jzt6FH0P9xfYl7Tdpsggt5aSEqb95J8r_ne9xA6FVQRqTV3YmI82CcycLgB5g4Tkgmz4wjJIcG5cxW0e_5ln_UXsvitPkTxww1mRrpewwTnYnQxFw3lsYZMcoDQlQpk8LleAOL5jW6hH-WGoT1WDlwgeLn9XLWR0Ivl7su70hxqLgLWdMdpbSKev6slmtydjxNxLl-_yTj-52O20EYGR3HN-s82WlGDHbS-IFK4i2R9OEpm03erc2wWRwzcENwEivvjBNeHT2o2_bwBQiluAf8EGxyMDYgV9wpfv0yMh-Lmc-bhuKtsJgXmCaa4huXD7O2D7qFeq3lbbztZaQZHUj-Es2Pf1UQZ-MaU50sTBmk3JlVR5VqGUnmhiRIlizWXMeee0jElTFDKTbSqA0U9bx-tDoYDdYAwFMrRnh-aQJP4kvtcuZIwyC_RrEKYKiEnN00kM91yKJ9xH1nFZRrB4EXF4JXQWdH-0Sp2_NiynFs6ymbuKIIAFFTrQlJCNDXZL0-Jao1Wp7g7_EunI7QG15YlU0arydNYHRusk4iT1J-_AKk-97U |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH7ix2HsMNgvrayAD5M4pThO3LTHqmtVoO2krkjcItuxL3RtVQICTj3uOG3_Yf-S-cVJoEjTpO2YyLYS-9n-nt_3PgN8kkxTZYzwEmotOKSq7gkLzD0uFZd2x5FKYILzYFjvXYRnl7xgE2IujNOHKA_ccGZk6zVOcDyQPnlUDRWJwVRyxNCNRnMTtrMgHeKiUakg5UeRCyzXfaR4-ZeFbiNlJ-v11_elR7D5FLJme053F2TxtY5qclW7SWVNPTwTcvyv39mDVzkiJS1nQq9hQ0_fwMsnOoVvQbVn1-lq-cNJHdv1kSA9hHSQ5T6_J-3ZQq-Wv74ip5R0kYJCLBQmFsfKiSZf7u6tkZLObW7kZKRdMgURKWGkRdS31fef7B1cdDvjds_Lb2fwFAsjDB-HvqHaIjiug1BZT8j4CW3KpjAqUjqIrKOoeGKESoQItEkY5ZIxYR1WU9csCN7D1nQ21R-A4F05Jggj62vSUIlQaF9Rjikmhjco1xXwirGJVS5djjdoTGInusxi7Ly47LwKHJfl5060448lq8VQx_nkvY7RB0XhuohWgGVj9pdW4tbn7qB82v-XSkfwojce9OP-6fD8I-zge0eaqcJWurjRBxb6pPIwM-7fMMv70w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xIK2WA7APRHmtD0h7CjiOnbTHqjTiscCKh9RbZDv2BWgrCAg4ceSI4B_2l-Cp01CQ0Eq7x0R2lHjGnm_ibz4DrClmqLZWBjl1HsypjgPpgHkglBbKRRylJRY47-3HWyd8pyM6Y1X8Xh-i-uGGM2O4XuME7-d241U0VOYWK8kRQtfrjU8wxWMXKxEWHVYCUmGS-H3lOESGV9gZyTZStvG2_9uw9Io1xxHrMOSksyBHL-uZJqfrV4Va13fvdBz_52vmYKbEo6TpHegrTJjuN5geUyn8DrrVuywG949e6NitjgTJIaSNHPf-LWn1Lszg_vkIGaUkRQIKcUCYOBSrzgw5uLl1Lkra16WLk0PjSymILAgjTaLPBw9P7AecpO3j1lZQns0QaMYT3DzmoaXG4TdhIq5dHmTDnDZUQ1qdaBMlLk3UIrdS51JGxuaMCsWYdOmqjQ2LonmY7Pa6ZgEInpRjI564TJNyLbk0oaYCC0ysqFNhahCMTJPpUrgcz884y7zkMstw8LJq8Grwq2rf95IdH7ZcHlk6K6fuZYYZKMrWJbQGbGiyvzwla26me9XV4r90-gmf_2ym2e_t_d0l-IK3PWNmGSaLiyuz4nBPoVaHrv0CPsX6gg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost%E2%80%90Effective+High+Entropy+Core%E2%80%93Shell+Fiber+for+Stable+Oxygen+Evolution+Reaction+at+2+A+cm%E2%88%922&rft.jtitle=Advanced+functional+materials&rft.au=Yi%E2%80%90Fan+Cui&rft.au=Si%E2%80%90Da+Jiang&rft.au=Fu%2C+Qiang&rft.au=Wang%2C+Ran&rft.date=2023-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=50&rft_id=info:doi/10.1002%2Fadfm.202306889&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |