Cost‐Effective High Entropy Core–Shell Fiber for Stable Oxygen Evolution Reaction at 2 A cm−2

Exploring highly efficient oxygen evolution reaction (OER) electrocatalysts is important for industrial water electrolysis, especially under high current densities (>1 A cm−2). High‐entropy alloy (HEA) with high surface OER activity and excellent electrical conductivity of the core is an ideal ro...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 50
Main Authors Cui, Yi‐Fan, Jiang, Si‐Da, Fu, Qiang, Wang, Ran, Xu, Ping, Sui, Yu, Wang, Xian‐Jie, Ning, Zhi‐Liang, Sun, Jian‐Fei, Sun, Xun, Nikiforov, Alexander, Song, Bo
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.12.2023
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202306889

Cover

Abstract Exploring highly efficient oxygen evolution reaction (OER) electrocatalysts is important for industrial water electrolysis, especially under high current densities (>1 A cm−2). High‐entropy alloy (HEA) with high surface OER activity and excellent electrical conductivity of the core is an ideal route to improve the catalytic activity. Herein, a combined theoretical and experimental approach to establish core–shell FeCoNiMoAl‐based HEA as a promising OER electrocatalyst is presented. Theoretical calculations combined with structure analyses indicate crystalline–amorphous (c–a) heterostructure of shell reduces the electron transfer resistance and generates more active sites, furthermore the crystalline core improves the conductivity and self‐supporting ability. HEA electrodes demonstrate superior OER performance with an overpotential (η) of 470 mV at 2 A cm−2 and no apparent degradation even after 330 h of continuous testing, notably,  for overall water splitting the stability is more than 120 h at 2.06 V. The special core–shell structure achieves a win–win strategy for high OER activity and stability. These findings shed light on the structural design of HEA electrocatalysts and present a promising route to achieve highly efficient electrocatalysts for industrial water electrolysis and relevant energy conversion processes. Cost‐effective high entropy core–shell fiber prepared by melt‐extracted are constructed as a bifunctional electrocatalyst. The c–a heterostructure effectively enhances the oxygen evolution reaction activity by increasing the number of active sites and accelerating the electron transfer, demonstrating an overpotential of 470 mV in alkaline electrolyte with outstanding long‐term stability over 330 h at 2 A cm−2.
AbstractList Exploring highly efficient oxygen evolution reaction (OER) electrocatalysts is important for industrial water electrolysis, especially under high current densities (>1 A cm−2). High‐entropy alloy (HEA) with high surface OER activity and excellent electrical conductivity of the core is an ideal route to improve the catalytic activity. Herein, a combined theoretical and experimental approach to establish core–shell FeCoNiMoAl‐based HEA as a promising OER electrocatalyst is presented. Theoretical calculations combined with structure analyses indicate crystalline–amorphous (c–a) heterostructure of shell reduces the electron transfer resistance and generates more active sites, furthermore the crystalline core improves the conductivity and self‐supporting ability. HEA electrodes demonstrate superior OER performance with an overpotential (η) of 470 mV at 2 A cm−2 and no apparent degradation even after 330 h of continuous testing, notably, for overall water splitting the stability is more than 120 h at 2.06 V. The special core–shell structure achieves a win–win strategy for high OER activity and stability. These findings shed light on the structural design of HEA electrocatalysts and present a promising route to achieve highly efficient electrocatalysts for industrial water electrolysis and relevant energy conversion processes.
Exploring highly efficient oxygen evolution reaction (OER) electrocatalysts is important for industrial water electrolysis, especially under high current densities (>1 A cm −2 ). High‐entropy alloy (HEA) with high surface OER activity and excellent electrical conductivity of the core is an ideal route to improve the catalytic activity. Herein, a combined theoretical and experimental approach to establish core–shell FeCoNiMoAl‐based HEA as a promising OER electrocatalyst is presented. Theoretical calculations combined with structure analyses indicate crystalline–amorphous ( c–a ) heterostructure of shell reduces the electron transfer resistance and generates more active sites, furthermore the crystalline core improves the conductivity and self‐supporting ability. HEA electrodes demonstrate superior OER performance with an overpotential ( η ) of 470 mV at 2 A cm −2  and no apparent degradation even after 330 h of continuous testing, notably,  for overall water splitting the stability is more than 120 h at 2.06 V. The special core–shell structure achieves a win–win strategy for high OER activity and stability. These findings shed light on the structural design of HEA electrocatalysts and present a promising route to achieve highly efficient electrocatalysts for industrial water electrolysis and relevant energy conversion processes.
Exploring highly efficient oxygen evolution reaction (OER) electrocatalysts is important for industrial water electrolysis, especially under high current densities (>1 A cm−2). High‐entropy alloy (HEA) with high surface OER activity and excellent electrical conductivity of the core is an ideal route to improve the catalytic activity. Herein, a combined theoretical and experimental approach to establish core–shell FeCoNiMoAl‐based HEA as a promising OER electrocatalyst is presented. Theoretical calculations combined with structure analyses indicate crystalline–amorphous (c–a) heterostructure of shell reduces the electron transfer resistance and generates more active sites, furthermore the crystalline core improves the conductivity and self‐supporting ability. HEA electrodes demonstrate superior OER performance with an overpotential (η) of 470 mV at 2 A cm−2 and no apparent degradation even after 330 h of continuous testing, notably,  for overall water splitting the stability is more than 120 h at 2.06 V. The special core–shell structure achieves a win–win strategy for high OER activity and stability. These findings shed light on the structural design of HEA electrocatalysts and present a promising route to achieve highly efficient electrocatalysts for industrial water electrolysis and relevant energy conversion processes. Cost‐effective high entropy core–shell fiber prepared by melt‐extracted are constructed as a bifunctional electrocatalyst. The c–a heterostructure effectively enhances the oxygen evolution reaction activity by increasing the number of active sites and accelerating the electron transfer, demonstrating an overpotential of 470 mV in alkaline electrolyte with outstanding long‐term stability over 330 h at 2 A cm−2.
Author Wang, Xian‐Jie
Nikiforov, Alexander
Wang, Ran
Jiang, Si‐Da
Sun, Xun
Fu, Qiang
Song, Bo
Cui, Yi‐Fan
Xu, Ping
Sun, Jian‐Fei
Ning, Zhi‐Liang
Sui, Yu
Author_xml – sequence: 1
  givenname: Yi‐Fan
  surname: Cui
  fullname: Cui, Yi‐Fan
  organization: Harbin Institute of Technology
– sequence: 2
  givenname: Si‐Da
  surname: Jiang
  fullname: Jiang, Si‐Da
  email: jiangsida@hit.edu.cn
  organization: Harbin Institute of Technology
– sequence: 3
  givenname: Qiang
  surname: Fu
  fullname: Fu, Qiang
  organization: The Hong Kong Polytechnic University
– sequence: 4
  givenname: Ran
  surname: Wang
  fullname: Wang, Ran
  organization: Harbin Institute of Technology
– sequence: 5
  givenname: Ping
  surname: Xu
  fullname: Xu, Ping
  organization: Harbin Institute of Technology
– sequence: 6
  givenname: Yu
  surname: Sui
  fullname: Sui, Yu
  organization: Harbin Institute of Technology
– sequence: 7
  givenname: Xian‐Jie
  surname: Wang
  fullname: Wang, Xian‐Jie
  organization: Harbin Institute of Technology
– sequence: 8
  givenname: Zhi‐Liang
  surname: Ning
  fullname: Ning, Zhi‐Liang
  organization: Harbin Institute of Technology
– sequence: 9
  givenname: Jian‐Fei
  surname: Sun
  fullname: Sun, Jian‐Fei
  organization: Harbin Institute of Technology
– sequence: 10
  givenname: Xun
  surname: Sun
  fullname: Sun, Xun
  organization: Guizhou Aerospace Institute of Measuring and Testing Technology
– sequence: 11
  givenname: Alexander
  surname: Nikiforov
  fullname: Nikiforov, Alexander
  organization: Siberian Branch of the Russian Academy of Sciences
– sequence: 12
  givenname: Bo
  orcidid: 0000-0003-2000-5071
  surname: Song
  fullname: Song, Bo
  email: songbo@hit.edu.cn
  organization: Harbin Institute of Technology
BookMark eNqFkM1LAkEYxocwSK1r54HO2nzs1xxl0wwMIQu6LePsO7qy7tjsaO3NY8eo_9C_JM0wCKLT-xye3_PwPg1UK0wBCJ1T0qaEsEuZ6nmbEcZJEEXiCNVpQIMWJyyqHTR9PEGNspwRQsOQe3WkYlO6zfqtqzUol60A97PJFHcLZ82iwrGxsFl_jKaQ57iXjcFibSweOTnOAQ9fqgkUuLsy-dJlpsB3INWXkA4z3MFqvnl9Z6foWMu8hLPv20QPve593G8Nhtc3cWfQUswLRcujHtUEIu77wD0lAqJpSsRYSK1CBTwMaaj8VEuVSslBp4z4Y8akR5gOgHHeRBf73IU1T0soXTIzS1tsKxMWCeF7goVk62rvXcqasrSgk4XN5tJWCSXJbshkN2RyGHILeL8AlTm5e9NZmeV_Y2KPPWc5VP-UJJ2r3u0P-wlS0oyp
CitedBy_id crossref_primary_10_1016_j_jcis_2024_11_034
crossref_primary_10_1016_j_ijhydene_2024_11_422
crossref_primary_10_1016_j_matchemphys_2025_130609
crossref_primary_10_1016_j_mtcomm_2025_112004
crossref_primary_10_1016_j_diamond_2025_112167
crossref_primary_10_1016_j_jallcom_2025_179181
crossref_primary_10_1016_j_diamond_2025_112241
crossref_primary_10_1126_sciadv_adq6758
crossref_primary_10_1016_j_ccr_2025_216435
crossref_primary_10_1016_j_carbon_2023_118758
crossref_primary_10_1002_cmt2_26
crossref_primary_10_1016_j_ssi_2025_116784
crossref_primary_10_1039_D4TA02322F
crossref_primary_10_1016_j_fuel_2025_135160
crossref_primary_10_1016_j_vacuum_2025_114117
crossref_primary_10_1002_adfm_202418644
crossref_primary_10_1016_j_jallcom_2024_178337
crossref_primary_10_1016_j_jnoncrysol_2024_123249
crossref_primary_10_1016_j_fuel_2025_134993
crossref_primary_10_1016_j_ijhydene_2025_01_304
crossref_primary_10_1016_j_jallcom_2025_178498
crossref_primary_10_1016_j_jpcs_2025_112711
crossref_primary_10_1016_j_fuel_2025_134595
crossref_primary_10_1016_j_jwpe_2025_107139
crossref_primary_10_1016_j_matchemphys_2025_130738
crossref_primary_10_1016_j_synthmet_2025_117830
crossref_primary_10_1002_smtd_202400793
crossref_primary_10_1016_j_synthmet_2025_117838
crossref_primary_10_1016_j_scp_2025_101951
crossref_primary_10_1039_D4CY00557K
crossref_primary_10_1016_j_jallcom_2025_179315
crossref_primary_10_1016_j_jallcom_2025_179830
crossref_primary_10_1016_j_ensm_2024_103718
crossref_primary_10_1039_D4GC02329C
crossref_primary_10_1016_j_solidstatesciences_2025_107823
crossref_primary_10_1016_j_diamond_2025_112069
crossref_primary_10_1002_aenm_202403744
crossref_primary_10_1039_D4TA06855F
crossref_primary_10_1016_j_nanoen_2024_109703
crossref_primary_10_1039_D4CS00844H
crossref_primary_10_1002_metm_31
crossref_primary_10_1016_j_cej_2025_160285
crossref_primary_10_1016_j_jpcs_2025_112576
crossref_primary_10_1016_j_diamond_2025_112235
crossref_primary_10_3390_catal15030237
crossref_primary_10_1007_s42864_024_00286_w
crossref_primary_10_1002_adfm_202316539
crossref_primary_10_1016_j_ceramint_2025_03_209
crossref_primary_10_1016_j_jelechem_2025_119083
crossref_primary_10_1016_j_checat_2025_101324
crossref_primary_10_1039_D4NR05426A
crossref_primary_10_1002_adfm_202413088
crossref_primary_10_1021_acsmaterialslett_4c00248
crossref_primary_10_1016_j_jallcom_2024_177855
crossref_primary_10_3390_molecules30030488
crossref_primary_10_1016_j_cej_2024_157426
crossref_primary_10_1016_j_ijhydene_2025_03_166
crossref_primary_10_1016_j_mtcomm_2025_111823
crossref_primary_10_1021_acsami_4c20528
Cites_doi 10.1002/adma.202206890
10.1002/anie.202109212
10.1016/j.jallcom.2022.164669
10.1002/smll.202104339
10.1039/D1TA04755H
10.1002/adfm.202009610
10.1002/adma.202101845
10.1002/aenm.202200742
10.1016/j.apcatb.2022.121472
10.1021/acsmaterialslett.0c00434
10.1002/adma.201904989
10.1039/C4CS00448E
10.1002/adma.202000385
10.1016/j.pmatsci.2021.100777
10.1021/acsmaterialslett.2c00371
10.1021/acsenergylett.9b02359
10.1038/s41929-021-00715-w
10.1016/j.joule.2018.12.015
10.1002/adma.202110511
10.1038/s41563-021-01006-2
10.1039/D0EE00921K
10.1007/s12274-022-4179-8
10.1021/jacs.2c02755
10.1038/s41467-021-27664-z
10.1016/j.apcatb.2022.121917
10.1039/D1TA06568H
10.1002/smll.202101727
10.1039/C9EE00950G
10.1002/adma.201606793
10.1126/science.aaf5050
10.1002/adfm.202107056
10.1038/s41467-022-30064-6
10.1016/j.joule.2021.10.002
10.1021/acscatal.2c01241
10.1002/adfm.202009032
10.1038/nmat3087
10.1002/adfm.202101632
10.1016/j.pmatsci.2013.10.001
10.1021/acscatal.0c01104
10.1039/C5CC05511C
10.1021/acscatal.0c00340
10.1016/j.cej.2023.142613
10.1038/s41467-022-30148-3
10.1002/aenm.202002887
10.1002/aenm.202102353
10.1126/science.aan5412
10.1016/j.ijhydene.2013.01.151
10.1021/jacs.8b04546
10.1002/anie.202106631
10.1002/adem.200300567
10.1038/s41467-021-23907-1
10.1016/j.apcatb.2021.120764
10.1038/s41929-020-0465-6
10.1021/ja503557x
10.1016/j.scib.2021.02.033
10.1038/s41467-022-33725-8
10.1002/smll.202205683
10.1021/acscatal.2c02946
10.1021/acsnano.2c03818
10.1038/s41467-021-23390-8
10.1002/adma.202302007
10.1038/s41467-021-23896-1
10.1016/j.apcatb.2022.121127
10.1038/s41467-022-28260-5
10.1038/s41467-022-34121-y
10.1126/science.aaf1525
10.1039/C9EE02388G
10.1038/s41467-022-33846-0
10.1002/anie.201909939
10.1002/aenm.202003755
10.1002/ange.201609080
10.1039/C7EE02052J
10.1021/ja511559d
10.1002/smll.201904180
10.1038/s41467-020-17934-7
10.1002/anie.201801834
10.1002/adma.201606570
10.1021/jacs.9b05268
10.1002/anie.202109938
10.1002/aenm.201703189
10.1002/aenm.202100968
10.1016/j.actamat.2012.06.047
10.1016/j.apcatb.2021.120600
10.1016/j.apcatb.2018.11.008
10.1038/s41467-019-10303-z
10.1038/ncomms14969
10.1038/s41929-019-0365-9
10.1002/advs.201900246
10.1016/j.matdes.2021.109642
10.1002/adfm.202107333
10.1038/s41560-021-00925-3
10.1002/adma.202100745
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202306889
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202306889
ADFM202306889
Genre article
GrantInformation_xml – fundername: National Science Fund for Distinguished Young Scholars
  funderid: 52225201
– fundername: National Key Research and Development Program of China
  funderid: 2023YFE0201000
– fundername: Fundamental Research Funds for the Central Universities
  funderid: HIT.BRET.2022001; 2023FRFK06001
– fundername: National Natural Science Foundation of China
  funderid: 52271028; 52072085; 52071118; 51827801
– fundername: Natural Science Foundation of Heilongjiang Province
  funderid: LH2022D017
– fundername: China Postdoctoral Science Foundation
  funderid: 2019M661275; 2020T130030ZX
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c2479-4141f0e8355e34c960f1d09b9afc7ce37717c5dfacdaa3efd205b22a402f6e233
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 03:31:10 EDT 2025
Tue Jul 01 00:30:47 EDT 2025
Thu Apr 24 22:54:06 EDT 2025
Wed Jan 22 16:19:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 50
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2479-4141f0e8355e34c960f1d09b9afc7ce37717c5dfacdaa3efd205b22a402f6e233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2000-5071
PQID 2899549270
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2899549270
crossref_primary_10_1002_adfm_202306889
crossref_citationtrail_10_1002_adfm_202306889
wiley_primary_10_1002_adfm_202306889_ADFM202306889
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012; 60
2021 2022; 12 13
2017; 8
2020 2017 2021 2019; 3 10 11 141
2018 2019; 359 10
2021; 204
2016 2021 2022 2022 2022 2022; 353 5 13 12 13 319
2021 2022; 33 34
2020 2017; 13 129
2021 2022; 4 13
2019 2021; 58 9
2017 2023; 29 464
2018 2021; 57 31
2020; 11
2015 2019 2022 2022 2022 2023; 44 2 13 13 13 35
2020; 10
2019; 243
2021; 31
2015; 137
2004 2014; 6 61
2021 2021; 11 11
2021; 118
2022; 32
2021; 9
2019 2021; 15 298
2019; 4
2019; 6
2019; 31
2015; 51
2022 2022; 4 15
2021 2021 2022; 33 31 12
2017; 29
2020 2018; 2 8
2020; 32
2021 2019 2022 2021; 60 12 11
2011 2014; 10 136
2022; 313
2021 2021 2021; 60 31 66
2022 2019; 301 3
2022; 144
2018 2022; 140 15
2013; 38
2021; 17
2021 2022; 20 306
2022; 908
2022; 12
2021; 60
2016 2020 2021 2021 2021; 352 13 6 12 12
2022; 16
2022; 18
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_24_2
e_1_2_8_26_1
e_1_2_8_47_3
e_1_2_8_49_1
e_1_2_8_26_2
e_1_2_8_47_2
e_1_2_8_9_2
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_1_5
e_1_2_8_3_3
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_3_2
e_1_2_8_3_5
e_1_2_8_7_1
e_1_2_8_1_6
e_1_2_8_3_4
e_1_2_8_5_2
e_1_2_8_9_1
e_1_2_8_3_6
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_41_2
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_13_2
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_30_2
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_11_2
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_21_4
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_25_2
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_2_4
e_1_2_8_4_2
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_4_4
e_1_2_8_6_2
e_1_2_8_2_5
e_1_2_8_4_3
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_21_2
e_1_2_8_21_3
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_2
e_1_2_8_40_1
e_1_2_8_39_2
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_12_2
e_1_2_8_12_3
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 140 15
  start-page: 7748
  year: 2018 2022
  publication-title: J. Am. Chem. Soc. Small
– volume: 118
  year: 2021
  publication-title: Prog. Mater. Sci.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 4411
  year: 2020
  publication-title: ACS Catal.
– volume: 11
  start-page: 4066
  year: 2020
  publication-title: Nat. Commun.
– volume: 13 129
  start-page: 86 334
  year: 2020 2017
  publication-title: Energy Environ. Sci. Angew. Chem., Int. Ed.
– volume: 44 2 13 13 13 35
  start-page: 5148 1107 6249 2294 6382
  year: 2015 2019 2022 2022 2022 2023
  publication-title: Chem. Soc. Rev. Nat. Catal. Nat. Commun. Nat. Commun. Nat. Commun. Adv. Mater.
– volume: 51
  year: 2015
  publication-title: Chem. Commun.
– volume: 137
  start-page: 1305
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 60 31 66
  start-page: 1063
  year: 2021 2021 2021
  publication-title: Angew. Chem., Int. Ed. Adv. Funct. Mater. Sci. Bull.
– volume: 204
  year: 2021
  publication-title: Mater. Des.
– volume: 29 464
  year: 2017 2023
  publication-title: Adv. Mater. Chem. Eng. J.
– volume: 33 31 12
  year: 2021 2021 2022
  publication-title: Adv. Mater. Adv. Funct. Mater. Adv. Energy Mater.
– volume: 301 3
  start-page: 834
  year: 2022 2019
  publication-title: Appl. Catal., B Joule
– volume: 2 8
  start-page: 1698
  year: 2020 2018
  publication-title: ACS Mater. Lett. Adv. Energy Mater.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 144
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 352 13 6 12 12
  start-page: 333 3439 1054 3634 3540
  year: 2016 2020 2021 2021 2021
  publication-title: Science Energy Environ. Sci. Nat. Energy Nat. Commun. Nat. Commun.
– volume: 3 10 11 141
  start-page: 554 2190
  year: 2020 2017 2021 2019
  publication-title: Nat. Catal. Energy Environ. Sci. Adv. Energy Mater. J. Am. Chem. Soc.
– volume: 12 13
  start-page: 3036 605
  year: 2021 2022
  publication-title: Nat. Commun. Nat. Commun.
– volume: 38
  start-page: 4901
  year: 2013
  publication-title: Int. J. Hydrogen Energy
– volume: 58 9
  year: 2019 2021
  publication-title: Angew. Chem., Int. Ed. J. Mater. Chem. A
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 4 15
  start-page: 1389 8751
  year: 2022 2022
  publication-title: ACS Mater. Lett. Nano Res.
– volume: 11 11
  year: 2021 2021
  publication-title: Adv. Energy Mater. Adv. Energy Mater.
– volume: 4 13
  start-page: 1050 6094
  year: 2021 2022
  publication-title: Nat. Catal. Nat. Commun.
– volume: 908
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 12
  year: 2022
  publication-title: ACS Catal.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 359 10
  start-page: 1489 2650
  year: 2018 2019
  publication-title: Science Nat. Commun.
– volume: 6 61
  start-page: 299 1
  year: 2004 2014
  publication-title: Adv. Eng. Mater. Prog. Mater. Sci.
– volume: 4
  start-page: 3002
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 57 31
  start-page: 5076
  year: 2018 2021
  publication-title: Angew. Chem., Int. Ed. Adv. Funct. Mater.
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 17
  year: 2021
  publication-title: Small
– volume: 60 12 11
  start-page: 2443
  year: 2021 2019 2022 2021
  publication-title: Angew. Chem., Int. Ed. Energy Environ. Sci. Adv. Mater. Adv. Energy Mater.
– volume: 20 306
  start-page: 1240
  year: 2021 2022
  publication-title: Nat. Mater. Appl. Catal., B
– volume: 10
  start-page: 4664
  year: 2020
  publication-title: ACS Catal.
– volume: 313
  year: 2022
  publication-title: Appl. Catal., B
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 33 34
  year: 2021 2022
  publication-title: Adv. Mater. Adv. Mater.
– volume: 60
  start-page: 5425
  year: 2012
  publication-title: Acta Mater.
– volume: 15 298
  year: 2019 2021
  publication-title: Small Appl. Catal., B
– volume: 243
  start-page: 678
  year: 2019
  publication-title: Appl. Catal., B
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 353 5 13 12 13 319
  start-page: 1011 3221 2473 8658 24
  year: 2016 2021 2022 2022 2022 2022
  publication-title: Science Joule Nat. Commun. ACS Catal. Nat. Commun. Appl. Catal., B
– volume: 10 136
  start-page: 780 8875
  year: 2011 2014
  publication-title: Nat. Mater. J. Am. Chem. Soc.
– ident: e_1_2_8_21_3
  doi: 10.1002/adma.202206890
– ident: e_1_2_8_16_1
  doi: 10.1002/anie.202109212
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jallcom.2022.164669
– ident: e_1_2_8_15_1
  doi: 10.1002/smll.202104339
– ident: e_1_2_8_42_1
  doi: 10.1039/D1TA04755H
– ident: e_1_2_8_47_2
  doi: 10.1002/adfm.202009610
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.202101845
– ident: e_1_2_8_12_3
  doi: 10.1002/aenm.202200742
– ident: e_1_2_8_20_1
  doi: 10.1016/j.apcatb.2022.121472
– ident: e_1_2_8_6_1
  doi: 10.1021/acsmaterialslett.0c00434
– ident: e_1_2_8_51_1
  doi: 10.1002/adma.201904989
– ident: e_1_2_8_1_1
  doi: 10.1039/C4CS00448E
– ident: e_1_2_8_37_1
  doi: 10.1002/adma.202000385
– ident: e_1_2_8_10_1
  doi: 10.1016/j.pmatsci.2021.100777
– ident: e_1_2_8_13_1
  doi: 10.1021/acsmaterialslett.2c00371
– ident: e_1_2_8_48_1
  doi: 10.1021/acsenergylett.9b02359
– ident: e_1_2_8_5_1
  doi: 10.1038/s41929-021-00715-w
– ident: e_1_2_8_17_2
  doi: 10.1016/j.joule.2018.12.015
– ident: e_1_2_8_8_2
  doi: 10.1002/adma.202110511
– ident: e_1_2_8_22_1
  doi: 10.1038/s41563-021-01006-2
– ident: e_1_2_8_2_2
  doi: 10.1039/D0EE00921K
– ident: e_1_2_8_13_2
  doi: 10.1007/s12274-022-4179-8
– ident: e_1_2_8_19_1
  doi: 10.1021/jacs.2c02755
– ident: e_1_2_8_3_5
  doi: 10.1038/s41467-021-27664-z
– ident: e_1_2_8_3_6
  doi: 10.1016/j.apcatb.2022.121917
– ident: e_1_2_8_30_2
  doi: 10.1039/D1TA06568H
– ident: e_1_2_8_35_1
  doi: 10.1002/smll.202101727
– ident: e_1_2_8_21_2
  doi: 10.1039/C9EE00950G
– ident: e_1_2_8_40_1
  doi: 10.1002/adma.201606793
– ident: e_1_2_8_3_1
  doi: 10.1126/science.aaf5050
– ident: e_1_2_8_32_1
  doi: 10.1002/adfm.202107056
– ident: e_1_2_8_1_4
  doi: 10.1038/s41467-022-30064-6
– ident: e_1_2_8_3_2
  doi: 10.1016/j.joule.2021.10.002
– ident: e_1_2_8_3_4
  doi: 10.1021/acscatal.2c01241
– ident: e_1_2_8_29_1
  doi: 10.1002/adfm.202009032
– ident: e_1_2_8_38_1
  doi: 10.1038/nmat3087
– ident: e_1_2_8_12_2
  doi: 10.1002/adfm.202101632
– ident: e_1_2_8_7_2
  doi: 10.1016/j.pmatsci.2013.10.001
– ident: e_1_2_8_27_1
  doi: 10.1021/acscatal.0c01104
– ident: e_1_2_8_45_1
  doi: 10.1039/C5CC05511C
– ident: e_1_2_8_46_1
  doi: 10.1021/acscatal.0c00340
– ident: e_1_2_8_40_2
  doi: 10.1016/j.cej.2023.142613
– ident: e_1_2_8_3_3
  doi: 10.1038/s41467-022-30148-3
– ident: e_1_2_8_9_1
  doi: 10.1002/aenm.202002887
– ident: e_1_2_8_9_2
  doi: 10.1002/aenm.202102353
– ident: e_1_2_8_11_1
  doi: 10.1126/science.aan5412
– ident: e_1_2_8_50_1
  doi: 10.1016/j.ijhydene.2013.01.151
– ident: e_1_2_8_25_1
  doi: 10.1021/jacs.8b04546
– ident: e_1_2_8_21_1
  doi: 10.1002/anie.202106631
– ident: e_1_2_8_7_1
  doi: 10.1002/adem.200300567
– ident: e_1_2_8_2_5
  doi: 10.1038/s41467-021-23907-1
– ident: e_1_2_8_17_1
  doi: 10.1016/j.apcatb.2021.120764
– ident: e_1_2_8_4_1
  doi: 10.1038/s41929-020-0465-6
– ident: e_1_2_8_38_2
  doi: 10.1021/ja503557x
– ident: e_1_2_8_47_3
  doi: 10.1016/j.scib.2021.02.033
– ident: e_1_2_8_1_3
  doi: 10.1038/s41467-022-33725-8
– ident: e_1_2_8_25_2
  doi: 10.1002/smll.202205683
– ident: e_1_2_8_31_1
  doi: 10.1021/acscatal.2c02946
– ident: e_1_2_8_18_1
  doi: 10.1021/acsnano.2c03818
– ident: e_1_2_8_26_1
  doi: 10.1038/s41467-021-23390-8
– ident: e_1_2_8_1_6
  doi: 10.1002/adma.202302007
– ident: e_1_2_8_2_4
  doi: 10.1038/s41467-021-23896-1
– ident: e_1_2_8_22_2
  doi: 10.1016/j.apcatb.2022.121127
– ident: e_1_2_8_26_2
  doi: 10.1038/s41467-022-28260-5
– ident: e_1_2_8_1_5
  doi: 10.1038/s41467-022-34121-y
– ident: e_1_2_8_2_1
  doi: 10.1126/science.aaf1525
– ident: e_1_2_8_41_1
  doi: 10.1039/C9EE02388G
– ident: e_1_2_8_5_2
  doi: 10.1038/s41467-022-33846-0
– ident: e_1_2_8_30_1
  doi: 10.1002/anie.201909939
– ident: e_1_2_8_4_3
  doi: 10.1002/aenm.202003755
– ident: e_1_2_8_41_2
  doi: 10.1002/ange.201609080
– ident: e_1_2_8_4_2
  doi: 10.1039/C7EE02052J
– ident: e_1_2_8_43_1
  doi: 10.1021/ja511559d
– ident: e_1_2_8_24_1
  doi: 10.1002/smll.201904180
– ident: e_1_2_8_49_1
  doi: 10.1038/s41467-020-17934-7
– ident: e_1_2_8_39_1
  doi: 10.1002/anie.201801834
– ident: e_1_2_8_33_1
  doi: 10.1002/adma.201606570
– ident: e_1_2_8_4_4
  doi: 10.1021/jacs.9b05268
– ident: e_1_2_8_47_1
  doi: 10.1002/anie.202109938
– ident: e_1_2_8_6_2
  doi: 10.1002/aenm.201703189
– ident: e_1_2_8_21_4
  doi: 10.1002/aenm.202100968
– ident: e_1_2_8_23_1
  doi: 10.1016/j.actamat.2012.06.047
– ident: e_1_2_8_24_2
  doi: 10.1016/j.apcatb.2021.120600
– ident: e_1_2_8_36_1
  doi: 10.1016/j.apcatb.2018.11.008
– ident: e_1_2_8_11_2
  doi: 10.1038/s41467-019-10303-z
– ident: e_1_2_8_34_1
  doi: 10.1038/ncomms14969
– ident: e_1_2_8_1_2
  doi: 10.1038/s41929-019-0365-9
– ident: e_1_2_8_44_1
  doi: 10.1002/advs.201900246
– ident: e_1_2_8_28_1
  doi: 10.1016/j.matdes.2021.109642
– ident: e_1_2_8_39_2
  doi: 10.1002/adfm.202107333
– ident: e_1_2_8_2_3
  doi: 10.1038/s41560-021-00925-3
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.202100745
SSID ssj0017734
Score 2.670489
Snippet Exploring highly efficient oxygen evolution reaction (OER) electrocatalysts is important for industrial water electrolysis, especially under high current...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms alkaline water splitting
Catalytic activity
Core-shell structure
Electrical resistivity
electrocatalysis
Electrocatalysts
Electrolysis
Electron transfer
Energy conversion
Heterostructures
high current density
High entropy alloys
high‐entropy alloy fibers
Industrial water
Materials science
oxygen evolution reaction
Oxygen evolution reactions
Structural design
Water splitting
Title Cost‐Effective High Entropy Core–Shell Fiber for Stable Oxygen Evolution Reaction at 2 A cm−2
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202306889
https://www.proquest.com/docview/2899549270
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA7iSQ_-FqdTchA8VdO0abfj2A-GMIXpYLeSpMlF3cR14jzt6FH0P9xfYl7Tdpsggt5aSEqb95J8r_ne9xA6FVQRqTV3YmI82CcycLgB5g4Tkgmz4wjJIcG5cxW0e_5ln_UXsvitPkTxww1mRrpewwTnYnQxFw3lsYZMcoDQlQpk8LleAOL5jW6hH-WGoT1WDlwgeLn9XLWR0Ivl7su70hxqLgLWdMdpbSKev6slmtydjxNxLl-_yTj-52O20EYGR3HN-s82WlGDHbS-IFK4i2R9OEpm03erc2wWRwzcENwEivvjBNeHT2o2_bwBQiluAf8EGxyMDYgV9wpfv0yMh-Lmc-bhuKtsJgXmCaa4huXD7O2D7qFeq3lbbztZaQZHUj-Es2Pf1UQZ-MaU50sTBmk3JlVR5VqGUnmhiRIlizWXMeee0jElTFDKTbSqA0U9bx-tDoYDdYAwFMrRnh-aQJP4kvtcuZIwyC_RrEKYKiEnN00kM91yKJ9xH1nFZRrB4EXF4JXQWdH-0Sp2_NiynFs6ymbuKIIAFFTrQlJCNDXZL0-Jao1Wp7g7_EunI7QG15YlU0arydNYHRusk4iT1J-_AKk-97U
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH7ix2HsMNgvrayAD5M4pThO3LTHqmtVoO2krkjcItuxL3RtVQICTj3uOG3_Yf-S-cVJoEjTpO2YyLYS-9n-nt_3PgN8kkxTZYzwEmotOKSq7gkLzD0uFZd2x5FKYILzYFjvXYRnl7xgE2IujNOHKA_ccGZk6zVOcDyQPnlUDRWJwVRyxNCNRnMTtrMgHeKiUakg5UeRCyzXfaR4-ZeFbiNlJ-v11_elR7D5FLJme053F2TxtY5qclW7SWVNPTwTcvyv39mDVzkiJS1nQq9hQ0_fwMsnOoVvQbVn1-lq-cNJHdv1kSA9hHSQ5T6_J-3ZQq-Wv74ip5R0kYJCLBQmFsfKiSZf7u6tkZLObW7kZKRdMgURKWGkRdS31fef7B1cdDvjds_Lb2fwFAsjDB-HvqHaIjiug1BZT8j4CW3KpjAqUjqIrKOoeGKESoQItEkY5ZIxYR1WU9csCN7D1nQ21R-A4F05Jggj62vSUIlQaF9Rjikmhjco1xXwirGJVS5djjdoTGInusxi7Ly47LwKHJfl5060448lq8VQx_nkvY7RB0XhuohWgGVj9pdW4tbn7qB82v-XSkfwojce9OP-6fD8I-zge0eaqcJWurjRBxb6pPIwM-7fMMv70w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xIK2WA7APRHmtD0h7CjiOnbTHqjTiscCKh9RbZDv2BWgrCAg4ceSI4B_2l-Cp01CQ0Eq7x0R2lHjGnm_ibz4DrClmqLZWBjl1HsypjgPpgHkglBbKRRylJRY47-3HWyd8pyM6Y1X8Xh-i-uGGM2O4XuME7-d241U0VOYWK8kRQtfrjU8wxWMXKxEWHVYCUmGS-H3lOESGV9gZyTZStvG2_9uw9Io1xxHrMOSksyBHL-uZJqfrV4Va13fvdBz_52vmYKbEo6TpHegrTJjuN5geUyn8DrrVuywG949e6NitjgTJIaSNHPf-LWn1Lszg_vkIGaUkRQIKcUCYOBSrzgw5uLl1Lkra16WLk0PjSymILAgjTaLPBw9P7AecpO3j1lZQns0QaMYT3DzmoaXG4TdhIq5dHmTDnDZUQ1qdaBMlLk3UIrdS51JGxuaMCsWYdOmqjQ2LonmY7Pa6ZgEInpRjI564TJNyLbk0oaYCC0ysqFNhahCMTJPpUrgcz884y7zkMstw8LJq8Grwq2rf95IdH7ZcHlk6K6fuZYYZKMrWJbQGbGiyvzwla26me9XV4r90-gmf_2ym2e_t_d0l-IK3PWNmGSaLiyuz4nBPoVaHrv0CPsX6gg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost%E2%80%90Effective+High+Entropy+Core%E2%80%93Shell+Fiber+for+Stable+Oxygen+Evolution+Reaction+at+2+A+cm%E2%88%922&rft.jtitle=Advanced+functional+materials&rft.au=Yi%E2%80%90Fan+Cui&rft.au=Si%E2%80%90Da+Jiang&rft.au=Fu%2C+Qiang&rft.au=Wang%2C+Ran&rft.date=2023-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=50&rft_id=info:doi/10.1002%2Fadfm.202306889&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon