Ensemble Learning-Based Mortality Prediction After Acute Myocardial Infarction

A mortality prediction model based on small acute myocardial infarction (AMI) patients coherent with low death rate is established. In total, 1 639 AMI patients are selected as research objects who received treatment in seven tertiary and secondary hospitals in Shanghai between January 1, 2016 and J...

Full description

Saved in:
Bibliographic Details
Published inShanghai jiao tong da xue xue bao Vol. 30; no. 1; pp. 153 - 165
Main Authors Yan, Mingxuan, Miao, Yutong, Sheng, Shuqian, Gan, Xiaoying, He, Ben, Shen, Lan
Format Journal Article
LanguageEnglish
Published Shanghai Shanghai Jiaotong University Press 01.02.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1007-1172
1674-8115
1995-8188
DOI10.1007/s12204-023-2611-1

Cover

Abstract A mortality prediction model based on small acute myocardial infarction (AMI) patients coherent with low death rate is established. In total, 1 639 AMI patients are selected as research objects who received treatment in seven tertiary and secondary hospitals in Shanghai between January 1, 2016 and January 1, 2018. Among them, 72 patients deceased during the two-year follow-up. Models are established with ensemble learning framework and machine learning algorithms based on 51 physiological indicators of the patient. Shapley additive explanations algorithm and univariate test with point-biserial and phi correlation coefficients are employed to determine significant features and rank feature importance. Based on 5-fold cross validation experiment and external validation, prediction model with self-paced ensemble framework and random forest algorithm achieves the best performance with area under receiver operating characteristic curve (AUROC) score of 0.911 and recall of 0.864. Both feature ranking methods showed that ejection fractions, serum creatinine (admission), hemoglobin and Killip class are the most important features. With these top-ranked features, the simplified prediction model is capable of achieving a comparable result with AUROC score of 0.872 and recall of 0.818. This work proposes a new method to establish mortality prediction models for AMI patients based on self-paced ensemble framework, which allows models to achieve high performance with small scale of patients coherent with low death rate. It will assist in medical decision and prognosis as a new reference.
AbstractList A mortality prediction model based on small acute myocardial infarction (AMI) patients coherent with low death rate is established. In total, 1 639 AMI patients are selected as research objects who received treatment in seven tertiary and secondary hospitals in Shanghai between January 1, 2016 and January 1, 2018. Among them, 72 patients deceased during the two-year follow-up. Models are established with ensemble learning framework and machine learning algorithms based on 51 physiological indicators of the patient. Shapley additive explanations algorithm and univariate test with point-biserial and phi correlation coefficients are employed to determine significant features and rank feature importance. Based on 5-fold cross validation experiment and external validation, prediction model with self-paced ensemble framework and random forest algorithm achieves the best performance with area under receiver operating characteristic curve (AUROC) score of 0.911 and recall of 0.864. Both feature ranking methods showed that ejection fractions, serum creatinine (admission), hemoglobin and Killip class are the most important features. With these top-ranked features, the simplified prediction model is capable of achieving a comparable result with AUROC score of 0.872 and recall of 0.818. This work proposes a new method to establish mortality prediction models for AMI patients based on self-paced ensemble framework, which allows models to achieve high performance with small scale of patients coherent with low death rate. It will assist in medical decision and prognosis as a new reference.
R542.2+2; A mortality prediction model based on small acute myocardial infarction(AMI)patients coherent with low death rate is established.In total,1639 AMI patients are selected as research objects who received treatment in seven tertiary and secondary hospitals in Shanghai between January 1,2016 and January 1,2018.Among them,72 patients deceased during the two-year follow-up.Models are established with ensemble learning framework and machine learning algorithms based on 51 physiological indicators of the patient.Shapley additive explanations algorithm and univariate test with point-biserial and phi correlation coefficients are employed to determine significant features and rank feature importance.Based on 5-fold cross validation experiment and external validation,prediction model with self-paced ensemble framework and random forest algorithm achieves the best performance with area under receiver operating characteristic curve(AUROC)score of 0.911 and recall of 0.864.Both feature ranking methods showed that ejection fractions,serum creatinine(admission),hemoglobin and Killip class are the most important features.With these top-ranked features,the simplified prediction model is capable of achieving a comparable result with AUROC score of 0.872 and recall of 0.818.This work proposes a new method to establish mortality prediction models for AMI patients based on self-paced ensemble framework,which allows models to achieve high performance with small scale of patients coherent with low death rate.It will assist in medical decision and prognosis as a new reference.
Author Yan, Mingxuan
Gan, Xiaoying
Miao, Yutong
Sheng, Shuqian
Shen, Lan
He, Ben
Author_xml – sequence: 1
  givenname: Mingxuan
  surname: Yan
  fullname: Yan, Mingxuan
– sequence: 2
  givenname: Yutong
  surname: Miao
  fullname: Miao, Yutong
– sequence: 3
  givenname: Shuqian
  surname: Sheng
  fullname: Sheng, Shuqian
– sequence: 4
  givenname: Xiaoying
  surname: Gan
  fullname: Gan, Xiaoying
– sequence: 5
  givenname: Ben
  surname: He
  fullname: He, Ben
– sequence: 6
  givenname: Lan
  surname: Shen
  fullname: Shen, Lan
BookMark eNqF0T1PwzAQBmALFQkK_AC2SIzIcOc4TjIWxEel8jHAbDnOpaRqHbBTQf89LkHqhJh8w_PeSX7HbOQ6R4ydIlwgQH4ZUAiQHETKhULkuMcOsSwzXmBRjOIcEUfMxQEbh7AAkJCm5SF7vHGBVtWSkhkZ71o351cmUJ08dL43y7bfJM-e6tb2beeSSdOTTyZ23VPysOms8XVrlsnUNcb_iGO235hloJPf94i93t68XN_z2dPd9Hoy41bIXPEcIStMqaQsrLIIIkfZ1FWdlRUQNCYlU9QlGJEqo3ILqCRJYQAtUaVUkR6x82Hvp4m33VwvurV38aIOb4u-_vqqNAkQGWDMRn026Hfffawp9DueRiWFEv8ozGShRFbmUeGgrO9C8NTod9-ujN9oBL39ZT1UoWMVeluFxpgRQyZE6-bkd5v_Dn0DKqOLIA
Cites_doi 10.1016/j.hrtlng.2017.09.003
10.1145/1007730.1007735
10.1016/S0140-6736(20)32519-8
10.3389/fnbot.2013.00021
10.1186/s12911-020-1023-5
10.1109/ACCESS.2021.3064084
10.1186/s13040-017-0155-3
10.2196/24996
10.1371/journal.pone.0177678
10.1136/bmj.38985.646481.55
10.1016/j.cct.2012.01.001
10.1613/jair.953
10.1016/0005-2795(75)90109-9
10.1007/s10462-009-9124-7
10.1109/MCAS.2006.1688199
10.1161/01.CIR.102.17.2031
10.1109/TSMCB.2008.2007853
ClassificationCodes R542.2+2
ContentType Journal Article
Copyright Shanghai Jiao Tong University 2023
Copyright Springer Nature B.V. 2025
Copyright Shanghai Jiaotong University Press 2025
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Shanghai Jiao Tong University 2023
– notice: Copyright Springer Nature B.V. 2025
– notice: Copyright Shanghai Jiaotong University Press 2025
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
7QL
7QO
7QP
7T5
7TK
7TM
7TO
7U9
C1K
H94
M7N
P64
RC3
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s12204-023-2611-1
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Calcium & Calcified Tissue Abstracts
DatabaseTitleList Materials Research Database

Virology and AIDS Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
Sciences (General)
Computer Science
DocumentTitle_FL 基于集成学习的急性心肌梗死死亡预测
EISSN 1995-8188
EndPage 165
ExternalDocumentID shjtdxxb_e202501016
10_1007_s12204_023_2611_1
GroupedDBID -5B
-5G
-BR
-EM
-SC
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
188
1N0
29~
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VR
5VS
6NX
8RM
8TC
92H
92I
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFRAH
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
CAJEC
CCEZO
CEKLB
CHBEP
COF
CS3
CSCUP
CW9
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P9P
PF0
PT4
Q--
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TCJ
TGT
TSG
TSV
TUC
U1G
U2A
U5M
UG4
UGNYK
UOJIU
UTJUX
UY8
UZ4
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z7R
Z7Z
Z85
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
-05
7QL
7QO
7QP
7T5
7TK
7TM
7TO
7U9
C1K
CIEJG
GROUPED_DOAJ
H94
M7N
P64
RC3
4A8
PSX
ID FETCH-LOGICAL-c2476-71058a96448c6c102714fdbd59b0e0fa3ea8d90a236a67c0164e42a01ceeb6683
IEDL.DBID AGYKE
ISSN 1007-1172
1674-8115
IngestDate Thu May 29 03:56:07 EDT 2025
Mon Jun 30 07:40:08 EDT 2025
Fri Jul 25 11:02:43 EDT 2025
Wed Oct 01 03:06:00 EDT 2025
Fri Feb 21 02:37:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ensemble learning
A
集成学习
急性心肌梗死
机器学习
特征工程
feature engineering
acute myocardial infarction (AMI)
machine learning
R 542.2+2
acute myocardial infarction(AMI)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2476-71058a96448c6c102714fdbd59b0e0fa3ea8d90a236a67c0164e42a01ceeb6683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3154862597
PQPubID 2043647
PageCount 13
ParticipantIDs wanfang_journals_shjtdxxb_e202501016
proquest_journals_3202426216
proquest_journals_3154862597
crossref_primary_10_1007_s12204_023_2611_1
springer_journals_10_1007_s12204_023_2611_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250200
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 2
  year: 2025
  text: 20250200
PublicationDecade 2020
PublicationPlace Shanghai
PublicationPlace_xml – name: Shanghai
– name: Heidelberg
PublicationTitle Shanghai jiao tong da xue xue bao
PublicationTitleAbbrev J. Shanghai Jiaotong Univ. (Sci.)
PublicationTitle_FL Journal of Shanghai Jiaotong University(Science)
PublicationYear 2025
Publisher Shanghai Jiaotong University Press
Springer Nature B.V
Publisher_xml – name: Shanghai Jiaotong University Press
– name: Springer Nature B.V
References Fabrizio (2611_CR5) 2021; 397
X Wei (2611_CR11) 2017
D Chicco (2611_CR21) 2017; 10
T Q Chen (2611_CR25) 2016
2611_CR23
G E A P A Batista (2611_CR22) 2004; 6
D Chicco (2611_CR27) 2020; 20
S M Lundberg (2611_CR15) 2017
I L Kashirina (2611_CR18) 2021
Hend (2611_CR4) 2017; 46
X Y Liu (2611_CR12) 2009; 39
Z N Liu (2611_CR14) 2020
J P Guilford (2611_CR16) 1954
B W Matthews (2611_CR19) 1975; 405
R Polikar (2611_CR9) 2006; 6
A Ishaq (2611_CR7) 2021; 9
N V Chawla (2611_CR6) 2002; 16
D A Morrow (2611_CR1) 2000; 102
S Boughorbel (2611_CR20) 2017; 12
K A A Fox (2611_CR2) 2006; 333
L Rokach (2611_CR10) 2010; 33
Fabrizio (2611_CR3) 2012; 33
A Natekin (2611_CR24) 2013; 7
T R Tavares (2611_CR8) 2014
J H Zhang (2611_CR13) 2015
D F Hernandez-Suarez (2611_CR26) 2019; 12
H C Lv (2611_CR17) 2021; 23
References_xml – volume-title: Psychometric methods [M]
  year: 1954
  ident: 2611_CR16
– volume: 46
  start-page: 405
  issue: 6
  year: 2017
  ident: 2611_CR4
  publication-title: Heart & Lung
  doi: 10.1016/j.hrtlng.2017.09.003
– volume: 6
  start-page: 20
  issue: 1
  year: 2004
  ident: 2611_CR22
  publication-title: ACM SIGKDD Explorations Newsletter
  doi: 10.1145/1007730.1007735
– start-page: 2569
  volume-title: M-SEQ: Early detection of anxiety and depression via temporal orders of diagnoses in electronic health data [C]
  year: 2015
  ident: 2611_CR13
– volume: 397
  start-page: 199
  issue: 10270
  year: 2021
  ident: 2611_CR5
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(20)32519-8
– start-page: 1
  volume-title: Preprocessing unbalanced data using weighted support vector machines for prediction of heart disease in children [C]
  year: 2014
  ident: 2611_CR8
– volume: 7
  start-page: 21
  year: 2013
  ident: 2611_CR24
  publication-title: Frontiers in Neurorobotics
  doi: 10.3389/fnbot.2013.00021
– volume: 20
  start-page: 16
  issue: 1
  year: 2020
  ident: 2611_CR27
  publication-title: BMC Medical Informatics and Decision Making
  doi: 10.1186/s12911-020-1023-5
– volume: 9
  start-page: 39707
  year: 2021
  ident: 2611_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3064084
– ident: 2611_CR23
– volume: 10
  start-page: 35
  year: 2017
  ident: 2611_CR21
  publication-title: BioData Mining
  doi: 10.1186/s13040-017-0155-3
– volume: 23
  start-page: e24996
  issue: 4
  year: 2021
  ident: 2611_CR17
  publication-title: Journal of Medical Internet Research
  doi: 10.2196/24996
– volume: 12
  start-page: e0177678
  issue: 6
  year: 2017
  ident: 2611_CR20
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0177678
– volume: 333
  start-page: 1091
  issue: 7578
  year: 2006
  ident: 2611_CR2
  publication-title: BMJ (Clinical Research Ed)
  doi: 10.1136/bmj.38985.646481.55
– start-page: 841
  volume-title: Self-paced ensemble for highly imbalanced massive data classification [C]
  year: 2020
  ident: 2611_CR14
– volume: 33
  start-page: 507
  issue: 3
  year: 2012
  ident: 2611_CR3
  publication-title: Contemporary Clinical Trials
  doi: 10.1016/j.cct.2012.01.001
– volume: 16
  start-page: 321
  year: 2002
  ident: 2611_CR6
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.953
– volume: 405
  start-page: 442
  issue: 2
  year: 1975
  ident: 2611_CR19
  publication-title: Biochimica et Biophysica Acta (BBA)- Protein Structure
  doi: 10.1016/0005-2795(75)90109-9
– start-page: 4768
  volume-title: A unified approach to interpreting model predictions [C]
  year: 2017
  ident: 2611_CR15
– start-page: 785
  volume-title: XGBoost: A scalable tree boosting system [C]
  year: 2016
  ident: 2611_CR25
– volume: 12
  start-page: 1328
  issue: 14
  year: 2019
  ident: 2611_CR26
  publication-title: JACC: Cardiovascular Interventions
– volume: 33
  start-page: 1
  issue: 1
  year: 2010
  ident: 2611_CR10
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-009-9124-7
– start-page: 71
  volume-title: An ensemble model for diabetes diagnosis in large-scale and imbalanced dataset [C]
  year: 2017
  ident: 2611_CR11
– volume: 6
  start-page: 21
  issue: 3
  year: 2006
  ident: 2611_CR9
  publication-title: IEEE Circuits and Systems Magazine
  doi: 10.1109/MCAS.2006.1688199
– volume: 102
  start-page: 2031
  issue: 17
  year: 2000
  ident: 2611_CR1
  publication-title: Circulation
  doi: 10.1161/01.CIR.102.17.2031
– start-page: 233
  volume-title: Identification of risk factors for mortality after myocardial infarction using machine learning methods [C]
  year: 2021
  ident: 2611_CR18
– volume: 39
  start-page: 539
  issue: 2
  year: 2009
  ident: 2611_CR12
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2008.2007853
SSID ssj0040339
ssj0001538017
Score 2.3274016
Snippet A mortality prediction model based on small acute myocardial infarction (AMI) patients coherent with low death rate is established. In total, 1 639 AMI...
R542.2+2; A mortality prediction model based on small acute myocardial infarction(AMI)patients coherent with low death rate is established.In total,1639 AMI...
SourceID wanfang
proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 153
SubjectTerms Algorithms
Architecture
Computer Science
Correlation coefficient
Correlation coefficients
Creatinine
Death
Decision trees
Electrical Engineering
Engineering
Ensemble learning
Heart attacks
Hemoglobin
Life Sciences
Machine learning
Materials Science
Mortality
Myocardial infarction
Patients
Prediction models
Recall
Title Ensemble Learning-Based Mortality Prediction After Acute Myocardial Infarction
URI https://link.springer.com/article/10.1007/s12204-023-2611-1
https://www.proquest.com/docview/3154862597
https://www.proquest.com/docview/3202426216
https://d.wanfangdata.com.cn/periodical/shjtdxxb-e202501016
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1995-8188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001538017
  issn: 1007-1172
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1995-8188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0040339
  issn: 1007-1172
  databaseCode: AFBBN
  dateStart: 20080201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1995-8188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0040339
  issn: 1007-1172
  databaseCode: AGYKE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1995-8188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0040339
  issn: 1007-1172
  databaseCode: U2A
  dateStart: 20080201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6h7QWQ-lhAXSiVDz3wkCvHTuzkGNCWAtqKQ1cqp8hOnCLaBrTZSoVfj8drNwuqkHrJIX4lfs03nvE3AAe1rq2Te4waa3KamkxRwxNDZc6U0Y2QLccLzrMTeTxPP51lZ-Eedx-93aNJ0u_Uw2U3ztFjggvqUH9Cncqz4em2RrBRfvj6eRo34JQJH0AMS9HECehozLyrkr_F0YAxb82i_jJP1-rufE3uHG3BafzilbvJxeH10hzWv_8hc7znL23DZsChpFxNnB14YLsxPC7XzApj2IohH0jYAcbwaI2_cAw74X1PXgX66tdP4GTa9fbKXFoSuFvP6TsnKhsy80jfoX7yZYHmIZwSpMQY5aSsXTNk9ssJVpywl-Sj64uFz_EU5kfT0_fHNERtoDVPlUTnzizXBep9tawdflFJ2jamyQrDLGu1sDpvCqa5kFqqGim-bMo1S5y4NlLm4hmMuh-d3QXCWk9VlZlWNWkr2kLzVAhVaKRNUsxM4E0cvOrnipyjGmiYsW8r17cV9m2VTGAvDm8V1mlfCdTYUAVUdydzD2F4IifwNg7hkPyftg7CpBky99--L5ubG1NZjrgTT02e36vSF_AQS65cxvdgtFxc25cOES3NflgB-_5EwT3nvPwD-zsA0Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6h7YEf0mAFRLcCftjDNmTJsRM7eQxoUwtrtYdV6ptlJ84mVAJqilT-e3ypQ4pUIfEaO3aUs33f-e6-AzgrTOG83mPUOpvS2CaKWh5ZKlOmrCmFrDgmOE9ncjyPPy-SRcjjbrpo984l2Z7UfbIb5xgxwQX1qD-i3uQ5RP4qJMyf87w7fmMm2vJh-A6NvHruXJn7hvhbGfUI849TtE3lqStT3-9onesXcBTgIsm38j2GR64ewLN85_Z_AM-7ygwkbNQBPN2hGRzAcXjekPPAMn3xEmZXdeO-2aUjgWL1nn70Gq0k0xaQe3BOblfoxUHJkRxLiZO88NOQ6S-v_3BdLcnEf_Sq7fEK5tdXd5_GNBRXoAWPlcQYzCQ1GZpnhSw8zFBRXJW2TDLLHKuMcCYtM2a4kEaqApm4XMwNi7xWtVKm4jUc1N9r9wYIq1pGqcRWqowrUWWGx0KozCC7kWJ2CJfdX9Y_thwaumdLRpFoLxKNItHREEadHHTYTo0WaFihpab2N_MWafBIDuFDJ7q--R9znQXp9p2bh6_rcrOx2nGEh3i5cfJfg76Hx-O76Y2-mcy-nMITHGUb5T2Cg_Xqp3vrQczavmsX7W-34-UT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2hIiGoBHQBdaGADz3wIauO7djJMUBXLbCrHlipN8tO7CJUQrVZpPLv8WQdskgVEtfYsaM8O_Mm43kDcFjb2ke7x6jzrqDS5Zo6njmqCqadbYQKHBOc5wt1spQfz_PzVOe0G067DyHJTU4DqjS166OrJhyNiW-c4-kJLmj0ADIa3Z_bEnUS4oJe8mr4FEsm-lJieA_Noqkewpo3DfG3YRrZ5p8AaZ_W0wbbXmxZoNlDuJ-oI6k2WO_BLd9OYLfaigRM4MFQpYGkTTuBe1uSgxPYS9c78iopTr9-BIvjtvPf3aUnSW71gr6L1q0h856cR6JOzlYY0UEUSYVlxUlVx2nI_Fe0hbjGLslpfOhV3-MxLGfHX96f0FRogdZcaoXnMfPCluiq1aqOlENnMjSuyUvHPAtWeFs0JbNcKKt0japcXnLLsmhhnVKFeAI77Y_W7wNhoVeXyl3QjQwilJZLIXRpUelIMzeFN8NbNlcbPQ0zKicjJCZCYhASk03hYMDBpK3VGYFOFnpt-uZm3rMOnqkpvB2gG5v_MddhQnfs3H39tm6ur53xHKki_uh4-l-DvoQ7Zx9m5vPp4tMzuIuDbA58H8DOevXTP498Zu1e9Gv2NyD66U8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+Learning-Based+Mortality+Prediction+After+Acute+Myocardial+Infarction&rft.jtitle=Shanghai+jiao+tong+da+xue+xue+bao&rft.au=Yan%2C+Mingxuan&rft.au=Miao%2C+Yutong&rft.au=Sheng%2C+Shuqian&rft.au=Gan%2C+Xiaoying&rft.date=2025-02-01&rft.issn=1007-1172&rft.eissn=1995-8188&rft.volume=30&rft.issue=1&rft.spage=153&rft.epage=165&rft_id=info:doi/10.1007%2Fs12204-023-2611-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12204_023_2611_1
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fshjtdxxb-e%2Fshjtdxxb-e.jpg