Ensemble Learning-Based Mortality Prediction After Acute Myocardial Infarction
A mortality prediction model based on small acute myocardial infarction (AMI) patients coherent with low death rate is established. In total, 1 639 AMI patients are selected as research objects who received treatment in seven tertiary and secondary hospitals in Shanghai between January 1, 2016 and J...
Saved in:
| Published in | Shanghai jiao tong da xue xue bao Vol. 30; no. 1; pp. 153 - 165 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Shanghai
Shanghai Jiaotong University Press
01.02.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1007-1172 1674-8115 1995-8188 |
| DOI | 10.1007/s12204-023-2611-1 |
Cover
| Abstract | A mortality prediction model based on small acute myocardial infarction (AMI) patients coherent with low death rate is established. In total, 1 639 AMI patients are selected as research objects who received treatment in seven tertiary and secondary hospitals in Shanghai between January 1, 2016 and January 1, 2018. Among them, 72 patients deceased during the two-year follow-up. Models are established with ensemble learning framework and machine learning algorithms based on 51 physiological indicators of the patient. Shapley additive explanations algorithm and univariate test with point-biserial and phi correlation coefficients are employed to determine significant features and rank feature importance. Based on 5-fold cross validation experiment and external validation, prediction model with self-paced ensemble framework and random forest algorithm achieves the best performance with area under receiver operating characteristic curve (AUROC) score of 0.911 and recall of 0.864. Both feature ranking methods showed that ejection fractions, serum creatinine (admission), hemoglobin and Killip class are the most important features. With these top-ranked features, the simplified prediction model is capable of achieving a comparable result with AUROC score of 0.872 and recall of 0.818. This work proposes a new method to establish mortality prediction models for AMI patients based on self-paced ensemble framework, which allows models to achieve high performance with small scale of patients coherent with low death rate. It will assist in medical decision and prognosis as a new reference. |
|---|---|
| AbstractList | A mortality prediction model based on small acute myocardial infarction (AMI) patients coherent with low death rate is established. In total, 1 639 AMI patients are selected as research objects who received treatment in seven tertiary and secondary hospitals in Shanghai between January 1, 2016 and January 1, 2018. Among them, 72 patients deceased during the two-year follow-up. Models are established with ensemble learning framework and machine learning algorithms based on 51 physiological indicators of the patient. Shapley additive explanations algorithm and univariate test with point-biserial and phi correlation coefficients are employed to determine significant features and rank feature importance. Based on 5-fold cross validation experiment and external validation, prediction model with self-paced ensemble framework and random forest algorithm achieves the best performance with area under receiver operating characteristic curve (AUROC) score of 0.911 and recall of 0.864. Both feature ranking methods showed that ejection fractions, serum creatinine (admission), hemoglobin and Killip class are the most important features. With these top-ranked features, the simplified prediction model is capable of achieving a comparable result with AUROC score of 0.872 and recall of 0.818. This work proposes a new method to establish mortality prediction models for AMI patients based on self-paced ensemble framework, which allows models to achieve high performance with small scale of patients coherent with low death rate. It will assist in medical decision and prognosis as a new reference. R542.2+2; A mortality prediction model based on small acute myocardial infarction(AMI)patients coherent with low death rate is established.In total,1639 AMI patients are selected as research objects who received treatment in seven tertiary and secondary hospitals in Shanghai between January 1,2016 and January 1,2018.Among them,72 patients deceased during the two-year follow-up.Models are established with ensemble learning framework and machine learning algorithms based on 51 physiological indicators of the patient.Shapley additive explanations algorithm and univariate test with point-biserial and phi correlation coefficients are employed to determine significant features and rank feature importance.Based on 5-fold cross validation experiment and external validation,prediction model with self-paced ensemble framework and random forest algorithm achieves the best performance with area under receiver operating characteristic curve(AUROC)score of 0.911 and recall of 0.864.Both feature ranking methods showed that ejection fractions,serum creatinine(admission),hemoglobin and Killip class are the most important features.With these top-ranked features,the simplified prediction model is capable of achieving a comparable result with AUROC score of 0.872 and recall of 0.818.This work proposes a new method to establish mortality prediction models for AMI patients based on self-paced ensemble framework,which allows models to achieve high performance with small scale of patients coherent with low death rate.It will assist in medical decision and prognosis as a new reference. |
| Author | Yan, Mingxuan Gan, Xiaoying Miao, Yutong Sheng, Shuqian Shen, Lan He, Ben |
| Author_xml | – sequence: 1 givenname: Mingxuan surname: Yan fullname: Yan, Mingxuan – sequence: 2 givenname: Yutong surname: Miao fullname: Miao, Yutong – sequence: 3 givenname: Shuqian surname: Sheng fullname: Sheng, Shuqian – sequence: 4 givenname: Xiaoying surname: Gan fullname: Gan, Xiaoying – sequence: 5 givenname: Ben surname: He fullname: He, Ben – sequence: 6 givenname: Lan surname: Shen fullname: Shen, Lan |
| BookMark | eNqF0T1PwzAQBmALFQkK_AC2SIzIcOc4TjIWxEel8jHAbDnOpaRqHbBTQf89LkHqhJh8w_PeSX7HbOQ6R4ydIlwgQH4ZUAiQHETKhULkuMcOsSwzXmBRjOIcEUfMxQEbh7AAkJCm5SF7vHGBVtWSkhkZ71o351cmUJ08dL43y7bfJM-e6tb2beeSSdOTTyZ23VPysOms8XVrlsnUNcb_iGO235hloJPf94i93t68XN_z2dPd9Hoy41bIXPEcIStMqaQsrLIIIkfZ1FWdlRUQNCYlU9QlGJEqo3ILqCRJYQAtUaVUkR6x82Hvp4m33VwvurV38aIOb4u-_vqqNAkQGWDMRn026Hfffawp9DueRiWFEv8ozGShRFbmUeGgrO9C8NTod9-ujN9oBL39ZT1UoWMVeluFxpgRQyZE6-bkd5v_Dn0DKqOLIA |
| Cites_doi | 10.1016/j.hrtlng.2017.09.003 10.1145/1007730.1007735 10.1016/S0140-6736(20)32519-8 10.3389/fnbot.2013.00021 10.1186/s12911-020-1023-5 10.1109/ACCESS.2021.3064084 10.1186/s13040-017-0155-3 10.2196/24996 10.1371/journal.pone.0177678 10.1136/bmj.38985.646481.55 10.1016/j.cct.2012.01.001 10.1613/jair.953 10.1016/0005-2795(75)90109-9 10.1007/s10462-009-9124-7 10.1109/MCAS.2006.1688199 10.1161/01.CIR.102.17.2031 10.1109/TSMCB.2008.2007853 |
| ClassificationCodes | R542.2+2 |
| ContentType | Journal Article |
| Copyright | Shanghai Jiao Tong University 2023 Copyright Springer Nature B.V. 2025 Copyright Shanghai Jiaotong University Press 2025 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Shanghai Jiao Tong University 2023 – notice: Copyright Springer Nature B.V. 2025 – notice: Copyright Shanghai Jiaotong University Press 2025 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | AAYXX CITATION 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D 7QL 7QO 7QP 7T5 7TK 7TM 7TO 7U9 C1K H94 M7N P64 RC3 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1007/s12204-023-2611-1 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Engineered Materials Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Calcium & Calcified Tissue Abstracts |
| DatabaseTitleList | Materials Research Database Virology and AIDS Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Architecture Sciences (General) Computer Science |
| DocumentTitle_FL | 基于集成学习的急性心肌梗死死亡预测 |
| EISSN | 1995-8188 |
| EndPage | 165 |
| ExternalDocumentID | shjtdxxb_e202501016 10_1007_s12204_023_2611_1 |
| GroupedDBID | -5B -5G -BR -EM -SC -S~ -Y2 -~C .86 .VR 06D 0R~ 0VY 188 1N0 29~ 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 6NX 8RM 8TC 92H 92I 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFRAH AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAG CAJEC CCEZO CEKLB CHBEP COF CS3 CSCUP CW9 DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J OK1 P9P PF0 PT4 Q-- QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCL SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TGT TSG TSV TUC U1G U2A U5M UG4 UGNYK UOJIU UTJUX UY8 UZ4 UZXMN VC2 VFIZW W48 WK8 YLTOR Z7R Z7Z Z85 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D -05 7QL 7QO 7QP 7T5 7TK 7TM 7TO 7U9 C1K CIEJG GROUPED_DOAJ H94 M7N P64 RC3 4A8 PSX |
| ID | FETCH-LOGICAL-c2476-71058a96448c6c102714fdbd59b0e0fa3ea8d90a236a67c0164e42a01ceeb6683 |
| IEDL.DBID | AGYKE |
| ISSN | 1007-1172 1674-8115 |
| IngestDate | Thu May 29 03:56:07 EDT 2025 Mon Jun 30 07:40:08 EDT 2025 Fri Jul 25 11:02:43 EDT 2025 Wed Oct 01 03:06:00 EDT 2025 Fri Feb 21 02:37:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | ensemble learning A 集成学习 急性心肌梗死 机器学习 特征工程 feature engineering acute myocardial infarction (AMI) machine learning R 542.2+2 acute myocardial infarction(AMI) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2476-71058a96448c6c102714fdbd59b0e0fa3ea8d90a236a67c0164e42a01ceeb6683 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3154862597 |
| PQPubID | 2043647 |
| PageCount | 13 |
| ParticipantIDs | wanfang_journals_shjtdxxb_e202501016 proquest_journals_3202426216 proquest_journals_3154862597 crossref_primary_10_1007_s12204_023_2611_1 springer_journals_10_1007_s12204_023_2611_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250200 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 2 year: 2025 text: 20250200 |
| PublicationDecade | 2020 |
| PublicationPlace | Shanghai |
| PublicationPlace_xml | – name: Shanghai – name: Heidelberg |
| PublicationTitle | Shanghai jiao tong da xue xue bao |
| PublicationTitleAbbrev | J. Shanghai Jiaotong Univ. (Sci.) |
| PublicationTitle_FL | Journal of Shanghai Jiaotong University(Science) |
| PublicationYear | 2025 |
| Publisher | Shanghai Jiaotong University Press Springer Nature B.V |
| Publisher_xml | – name: Shanghai Jiaotong University Press – name: Springer Nature B.V |
| References | Fabrizio (2611_CR5) 2021; 397 X Wei (2611_CR11) 2017 D Chicco (2611_CR21) 2017; 10 T Q Chen (2611_CR25) 2016 2611_CR23 G E A P A Batista (2611_CR22) 2004; 6 D Chicco (2611_CR27) 2020; 20 S M Lundberg (2611_CR15) 2017 I L Kashirina (2611_CR18) 2021 Hend (2611_CR4) 2017; 46 X Y Liu (2611_CR12) 2009; 39 Z N Liu (2611_CR14) 2020 J P Guilford (2611_CR16) 1954 B W Matthews (2611_CR19) 1975; 405 R Polikar (2611_CR9) 2006; 6 A Ishaq (2611_CR7) 2021; 9 N V Chawla (2611_CR6) 2002; 16 D A Morrow (2611_CR1) 2000; 102 S Boughorbel (2611_CR20) 2017; 12 K A A Fox (2611_CR2) 2006; 333 L Rokach (2611_CR10) 2010; 33 Fabrizio (2611_CR3) 2012; 33 A Natekin (2611_CR24) 2013; 7 T R Tavares (2611_CR8) 2014 J H Zhang (2611_CR13) 2015 D F Hernandez-Suarez (2611_CR26) 2019; 12 H C Lv (2611_CR17) 2021; 23 |
| References_xml | – volume-title: Psychometric methods [M] year: 1954 ident: 2611_CR16 – volume: 46 start-page: 405 issue: 6 year: 2017 ident: 2611_CR4 publication-title: Heart & Lung doi: 10.1016/j.hrtlng.2017.09.003 – volume: 6 start-page: 20 issue: 1 year: 2004 ident: 2611_CR22 publication-title: ACM SIGKDD Explorations Newsletter doi: 10.1145/1007730.1007735 – start-page: 2569 volume-title: M-SEQ: Early detection of anxiety and depression via temporal orders of diagnoses in electronic health data [C] year: 2015 ident: 2611_CR13 – volume: 397 start-page: 199 issue: 10270 year: 2021 ident: 2611_CR5 publication-title: The Lancet doi: 10.1016/S0140-6736(20)32519-8 – start-page: 1 volume-title: Preprocessing unbalanced data using weighted support vector machines for prediction of heart disease in children [C] year: 2014 ident: 2611_CR8 – volume: 7 start-page: 21 year: 2013 ident: 2611_CR24 publication-title: Frontiers in Neurorobotics doi: 10.3389/fnbot.2013.00021 – volume: 20 start-page: 16 issue: 1 year: 2020 ident: 2611_CR27 publication-title: BMC Medical Informatics and Decision Making doi: 10.1186/s12911-020-1023-5 – volume: 9 start-page: 39707 year: 2021 ident: 2611_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3064084 – ident: 2611_CR23 – volume: 10 start-page: 35 year: 2017 ident: 2611_CR21 publication-title: BioData Mining doi: 10.1186/s13040-017-0155-3 – volume: 23 start-page: e24996 issue: 4 year: 2021 ident: 2611_CR17 publication-title: Journal of Medical Internet Research doi: 10.2196/24996 – volume: 12 start-page: e0177678 issue: 6 year: 2017 ident: 2611_CR20 publication-title: PLoS One doi: 10.1371/journal.pone.0177678 – volume: 333 start-page: 1091 issue: 7578 year: 2006 ident: 2611_CR2 publication-title: BMJ (Clinical Research Ed) doi: 10.1136/bmj.38985.646481.55 – start-page: 841 volume-title: Self-paced ensemble for highly imbalanced massive data classification [C] year: 2020 ident: 2611_CR14 – volume: 33 start-page: 507 issue: 3 year: 2012 ident: 2611_CR3 publication-title: Contemporary Clinical Trials doi: 10.1016/j.cct.2012.01.001 – volume: 16 start-page: 321 year: 2002 ident: 2611_CR6 publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.953 – volume: 405 start-page: 442 issue: 2 year: 1975 ident: 2611_CR19 publication-title: Biochimica et Biophysica Acta (BBA)- Protein Structure doi: 10.1016/0005-2795(75)90109-9 – start-page: 4768 volume-title: A unified approach to interpreting model predictions [C] year: 2017 ident: 2611_CR15 – start-page: 785 volume-title: XGBoost: A scalable tree boosting system [C] year: 2016 ident: 2611_CR25 – volume: 12 start-page: 1328 issue: 14 year: 2019 ident: 2611_CR26 publication-title: JACC: Cardiovascular Interventions – volume: 33 start-page: 1 issue: 1 year: 2010 ident: 2611_CR10 publication-title: Artificial Intelligence Review doi: 10.1007/s10462-009-9124-7 – start-page: 71 volume-title: An ensemble model for diabetes diagnosis in large-scale and imbalanced dataset [C] year: 2017 ident: 2611_CR11 – volume: 6 start-page: 21 issue: 3 year: 2006 ident: 2611_CR9 publication-title: IEEE Circuits and Systems Magazine doi: 10.1109/MCAS.2006.1688199 – volume: 102 start-page: 2031 issue: 17 year: 2000 ident: 2611_CR1 publication-title: Circulation doi: 10.1161/01.CIR.102.17.2031 – start-page: 233 volume-title: Identification of risk factors for mortality after myocardial infarction using machine learning methods [C] year: 2021 ident: 2611_CR18 – volume: 39 start-page: 539 issue: 2 year: 2009 ident: 2611_CR12 publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2008.2007853 |
| SSID | ssj0040339 ssj0001538017 |
| Score | 2.3274016 |
| Snippet | A mortality prediction model based on small acute myocardial infarction (AMI) patients coherent with low death rate is established. In total, 1 639 AMI... R542.2+2; A mortality prediction model based on small acute myocardial infarction(AMI)patients coherent with low death rate is established.In total,1639 AMI... |
| SourceID | wanfang proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 153 |
| SubjectTerms | Algorithms Architecture Computer Science Correlation coefficient Correlation coefficients Creatinine Death Decision trees Electrical Engineering Engineering Ensemble learning Heart attacks Hemoglobin Life Sciences Machine learning Materials Science Mortality Myocardial infarction Patients Prediction models Recall |
| Title | Ensemble Learning-Based Mortality Prediction After Acute Myocardial Infarction |
| URI | https://link.springer.com/article/10.1007/s12204-023-2611-1 https://www.proquest.com/docview/3154862597 https://www.proquest.com/docview/3202426216 https://d.wanfangdata.com.cn/periodical/shjtdxxb-e202501016 |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1995-8188 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001538017 issn: 1007-1172 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1995-8188 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0040339 issn: 1007-1172 databaseCode: AFBBN dateStart: 20080201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1995-8188 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0040339 issn: 1007-1172 databaseCode: AGYKE dateStart: 20080101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1995-8188 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0040339 issn: 1007-1172 databaseCode: U2A dateStart: 20080201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6h7QWQ-lhAXSiVDz3wkCvHTuzkGNCWAtqKQ1cqp8hOnCLaBrTZSoVfj8drNwuqkHrJIX4lfs03nvE3AAe1rq2Te4waa3KamkxRwxNDZc6U0Y2QLccLzrMTeTxPP51lZ-Eedx-93aNJ0u_Uw2U3ztFjggvqUH9Cncqz4em2RrBRfvj6eRo34JQJH0AMS9HECehozLyrkr_F0YAxb82i_jJP1-rufE3uHG3BafzilbvJxeH10hzWv_8hc7znL23DZsChpFxNnB14YLsxPC7XzApj2IohH0jYAcbwaI2_cAw74X1PXgX66tdP4GTa9fbKXFoSuFvP6TsnKhsy80jfoX7yZYHmIZwSpMQY5aSsXTNk9ssJVpywl-Sj64uFz_EU5kfT0_fHNERtoDVPlUTnzizXBep9tawdflFJ2jamyQrDLGu1sDpvCqa5kFqqGim-bMo1S5y4NlLm4hmMuh-d3QXCWk9VlZlWNWkr2kLzVAhVaKRNUsxM4E0cvOrnipyjGmiYsW8r17cV9m2VTGAvDm8V1mlfCdTYUAVUdydzD2F4IifwNg7hkPyftg7CpBky99--L5ubG1NZjrgTT02e36vSF_AQS65cxvdgtFxc25cOES3NflgB-_5EwT3nvPwD-zsA0Q |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6h7YEf0mAFRLcCftjDNmTJsRM7eQxoUwtrtYdV6ptlJ84mVAJqilT-e3ypQ4pUIfEaO3aUs33f-e6-AzgrTOG83mPUOpvS2CaKWh5ZKlOmrCmFrDgmOE9ncjyPPy-SRcjjbrpo984l2Z7UfbIb5xgxwQX1qD-i3uQ5RP4qJMyf87w7fmMm2vJh-A6NvHruXJn7hvhbGfUI849TtE3lqStT3-9onesXcBTgIsm38j2GR64ewLN85_Z_AM-7ygwkbNQBPN2hGRzAcXjekPPAMn3xEmZXdeO-2aUjgWL1nn70Gq0k0xaQe3BOblfoxUHJkRxLiZO88NOQ6S-v_3BdLcnEf_Sq7fEK5tdXd5_GNBRXoAWPlcQYzCQ1GZpnhSw8zFBRXJW2TDLLHKuMcCYtM2a4kEaqApm4XMwNi7xWtVKm4jUc1N9r9wYIq1pGqcRWqowrUWWGx0KozCC7kWJ2CJfdX9Y_thwaumdLRpFoLxKNItHREEadHHTYTo0WaFihpab2N_MWafBIDuFDJ7q--R9znQXp9p2bh6_rcrOx2nGEh3i5cfJfg76Hx-O76Y2-mcy-nMITHGUb5T2Cg_Xqp3vrQczavmsX7W-34-UT |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2hIiGoBHQBdaGADz3wIauO7djJMUBXLbCrHlipN8tO7CJUQrVZpPLv8WQdskgVEtfYsaM8O_Mm43kDcFjb2ke7x6jzrqDS5Zo6njmqCqadbYQKHBOc5wt1spQfz_PzVOe0G067DyHJTU4DqjS166OrJhyNiW-c4-kJLmj0ADIa3Z_bEnUS4oJe8mr4FEsm-lJieA_Noqkewpo3DfG3YRrZ5p8AaZ_W0wbbXmxZoNlDuJ-oI6k2WO_BLd9OYLfaigRM4MFQpYGkTTuBe1uSgxPYS9c78iopTr9-BIvjtvPf3aUnSW71gr6L1q0h856cR6JOzlYY0UEUSYVlxUlVx2nI_Fe0hbjGLslpfOhV3-MxLGfHX96f0FRogdZcaoXnMfPCluiq1aqOlENnMjSuyUvHPAtWeFs0JbNcKKt0japcXnLLsmhhnVKFeAI77Y_W7wNhoVeXyl3QjQwilJZLIXRpUelIMzeFN8NbNlcbPQ0zKicjJCZCYhASk03hYMDBpK3VGYFOFnpt-uZm3rMOnqkpvB2gG5v_MddhQnfs3H39tm6ur53xHKki_uh4-l-DvoQ7Zx9m5vPp4tMzuIuDbA58H8DOevXTP498Zu1e9Gv2NyD66U8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+Learning-Based+Mortality+Prediction+After+Acute+Myocardial+Infarction&rft.jtitle=Shanghai+jiao+tong+da+xue+xue+bao&rft.au=Yan%2C+Mingxuan&rft.au=Miao%2C+Yutong&rft.au=Sheng%2C+Shuqian&rft.au=Gan%2C+Xiaoying&rft.date=2025-02-01&rft.issn=1007-1172&rft.eissn=1995-8188&rft.volume=30&rft.issue=1&rft.spage=153&rft.epage=165&rft_id=info:doi/10.1007%2Fs12204-023-2611-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12204_023_2611_1 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fshjtdxxb-e%2Fshjtdxxb-e.jpg |