Practical Sensitivity Bound for Multiple Phase Estimation with Multi‐Mode N00N$N00N$ States
Quantum enhanced multiple phase estimation is essential for various applications in quantum sensors and imaging. For multiple phase estimation, the sensitivity enhancement is dependent on both quantum probe states and measurement. It is known that multi‐mode N00N$N00N$ states can outperform other pr...
Saved in:
| Published in | Laser & photonics reviews Vol. 16; no. 9 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Weinheim
Wiley Subscription Services, Inc
01.09.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1863-8880 1863-8899 |
| DOI | 10.1002/lpor.202100682 |
Cover
| Abstract | Quantum enhanced multiple phase estimation is essential for various applications in quantum sensors and imaging. For multiple phase estimation, the sensitivity enhancement is dependent on both quantum probe states and measurement. It is known that multi‐mode N00N$N00N$ states can outperform other probe states for estimating multiple phases. However, it is generally not feasible in practice to implement an optimal measurement to achieve the quantum Cramer–Rao bound (QCRB) under a practical measurement scheme using a multi‐mode beam splitter in interferometric phase estimation. Here, a strategy to achieve the best practical sensitivity by optimizing both mode‐amplitudes of multi‐mode N00N$N00N$ states and a split ratio of a multi‐mode beam splitter is investigated. Then, it is experimentally demonstrated that the best sensitivity is achieved when an amplitude‐balanced multi‐mode N00N$N00N$ state and a multi‐mode beam splitter with an unbalanced ratio are used in three‐mode interferometric phase estimation. The results show that the lower QCRB cannot guarantee better sensitivity under a practical measurement scheme, thus it is more desirable to enhance the practical sensitivity rather than the QCRB. It is believed that this strategy can provide a powerful tool for practical applications in multiple phase estimation.
To achieve the best practical sensitivity of multiple phase estimation in multi‐mode interferometers, both the mode‐amplitude of multi‐mode N00N states and a split ratio of a multi‐mode beam splitter are optimized. An experimental demonstration in a three‐mode interferometer shows that the Cramer–Rao bound plays an important role under practical applications rather than the Quantum Cramer–Rao bound. |
|---|---|
| AbstractList | Quantum enhanced multiple phase estimation is essential for various applications in quantum sensors and imaging. For multiple phase estimation, the sensitivity enhancement is dependent on both quantum probe states and measurement. It is known that multi‐mode N00N$N00N$ states can outperform other probe states for estimating multiple phases. However, it is generally not feasible in practice to implement an optimal measurement to achieve the quantum Cramer–Rao bound (QCRB) under a practical measurement scheme using a multi‐mode beam splitter in interferometric phase estimation. Here, a strategy to achieve the best practical sensitivity by optimizing both mode‐amplitudes of multi‐mode N00N$N00N$ states and a split ratio of a multi‐mode beam splitter is investigated. Then, it is experimentally demonstrated that the best sensitivity is achieved when an amplitude‐balanced multi‐mode N00N$N00N$ state and a multi‐mode beam splitter with an unbalanced ratio are used in three‐mode interferometric phase estimation. The results show that the lower QCRB cannot guarantee better sensitivity under a practical measurement scheme, thus it is more desirable to enhance the practical sensitivity rather than the QCRB. It is believed that this strategy can provide a powerful tool for practical applications in multiple phase estimation.
To achieve the best practical sensitivity of multiple phase estimation in multi‐mode interferometers, both the mode‐amplitude of multi‐mode N00N states and a split ratio of a multi‐mode beam splitter are optimized. An experimental demonstration in a three‐mode interferometer shows that the Cramer–Rao bound plays an important role under practical applications rather than the Quantum Cramer–Rao bound. Quantum enhanced multiple phase estimation is essential for various applications in quantum sensors and imaging. For multiple phase estimation, the sensitivity enhancement is dependent on both quantum probe states and measurement. It is known that multi‐mode N00N$N00N$ states can outperform other probe states for estimating multiple phases. However, it is generally not feasible in practice to implement an optimal measurement to achieve the quantum Cramer–Rao bound (QCRB) under a practical measurement scheme using a multi‐mode beam splitter in interferometric phase estimation. Here, a strategy to achieve the best practical sensitivity by optimizing both mode‐amplitudes of multi‐mode N00N$N00N$ states and a split ratio of a multi‐mode beam splitter is investigated. Then, it is experimentally demonstrated that the best sensitivity is achieved when an amplitude‐balanced multi‐mode N00N$N00N$ state and a multi‐mode beam splitter with an unbalanced ratio are used in three‐mode interferometric phase estimation. The results show that the lower QCRB cannot guarantee better sensitivity under a practical measurement scheme, thus it is more desirable to enhance the practical sensitivity rather than the QCRB. It is believed that this strategy can provide a powerful tool for practical applications in multiple phase estimation. Quantum enhanced multiple phase estimation is essential for various applications in quantum sensors and imaging. For multiple phase estimation, the sensitivity enhancement is dependent on both quantum probe states and measurement. It is known that multi‐mode states can outperform other probe states for estimating multiple phases. However, it is generally not feasible in practice to implement an optimal measurement to achieve the quantum Cramer–Rao bound (QCRB) under a practical measurement scheme using a multi‐mode beam splitter in interferometric phase estimation. Here, a strategy to achieve the best practical sensitivity by optimizing both mode‐amplitudes of multi‐mode states and a split ratio of a multi‐mode beam splitter is investigated. Then, it is experimentally demonstrated that the best sensitivity is achieved when an amplitude‐balanced multi‐mode state and a multi‐mode beam splitter with an unbalanced ratio are used in three‐mode interferometric phase estimation. The results show that the lower QCRB cannot guarantee better sensitivity under a practical measurement scheme, thus it is more desirable to enhance the practical sensitivity rather than the QCRB. It is believed that this strategy can provide a powerful tool for practical applications in multiple phase estimation. |
| Author | Kim, Yong‐Su Rehman, Junaid ur Lee, Seung‐Woo Cho, Young‐Wook Hong, Seongjin Lim, Hyang‐Tag Lee, Su‐Yong |
| Author_xml | – sequence: 1 givenname: Seongjin surname: Hong fullname: Hong, Seongjin organization: Korea Institute of Science and Technology (KIST) – sequence: 2 givenname: Junaid ur surname: Rehman fullname: Rehman, Junaid ur organization: Kyung Hee University – sequence: 3 givenname: Yong‐Su surname: Kim fullname: Kim, Yong‐Su organization: Korea University of Science and Technology – sequence: 4 givenname: Young‐Wook surname: Cho fullname: Cho, Young‐Wook organization: Yonsei University – sequence: 5 givenname: Seung‐Woo surname: Lee fullname: Lee, Seung‐Woo organization: Korea Institute of Science and Technology (KIST) – sequence: 6 givenname: Su‐Yong surname: Lee fullname: Lee, Su‐Yong organization: Agency for Defense Development – sequence: 7 givenname: Hyang‐Tag orcidid: 0000-0002-4068-2902 surname: Lim fullname: Lim, Hyang‐Tag email: forestht@gmail.com organization: Korea University of Science and Technology |
| BookMark | eNqFkM1KAzEUhYNUsFa3rgO6bU0y05lkqaX-QP-wupQhk96hKeNkTDKW7nwEn9EncdqRCoJ4F-cm5Hw33HOMWoUpAKEzSnqUEHaZl8b2GGH1JeLsALUpj4Iu50K09mdOjtCxcytC-nVFbfQ8s1J5rWSO51A47fWb9ht8bapigTNj8bjKvS5zwLOldICHzusX6bUp8Fr7ZfP8-f4xNgvAE0ImFzvBcy89uBN0mMncwel376Cnm-Hj4K47mt7eD65GXcXCmHUh4jSVJKYBjQBUGFIOop_WIlMp-0LFQSoocCliYHEUZlypBYkV1KvKQEHQQefN3NKa1wqcT1amskX9ZcJiyiiNmBC1K2xcyhrnLGSJ0n63i7dS5wklyTbIZBtksg-yxnq_sNLWGdjN34BogLXOYfOPOxnNpg8_7BebSIk3 |
| CitedBy_id | crossref_primary_10_1088_1367_2630_ad5eaf crossref_primary_10_1364_AOP_497143 crossref_primary_10_3788_CJL231494 crossref_primary_10_1103_PhysRevA_106_032612 crossref_primary_10_1038_s41467_023_44204_z crossref_primary_10_1364_JOSAB_534086 |
| Cites_doi | 10.1364/OPTICA.5.001171 10.1038/nphoton.2017.99 10.1364/OE.436075 10.1103/PhysRevLett.126.070503 10.3390/electronics10050569 10.1038/s41598-017-16710-w 10.1103/PhysRevA.68.052315 10.1103/PhysRevApplied.16.014035 10.1364/AO.54.004727 10.1103/PhysRevA.83.063836 10.1088/1367-2630/ab7a32 10.1103/PhysRevLett.121.043604 10.1038/nphoton.2012.300 10.1103/PhysRevA.96.062304 10.1038/s41467-021-25451-4 10.1038/s41598-018-29828-2 10.1088/1751-8121/ab5d4d 10.1038/ncomms3426 10.1103/PhysRevLett.124.150502 10.1038/s41566-018-0301-6 10.1038/nphoton.2010.29 10.1103/PhysRevLett.117.010503 10.1103/PhysRevLett.111.070403 10.1038/s41534-020-00320-y 10.1038/s41467-020-17471-3 10.1103/PhysRevLett.119.130504 10.1103/PhysRevLett.104.103602 10.1016/j.physrep.2015.12.002 10.1038/ncomms11411 10.1038/s41566-017-0011-5 10.1038/s41567-019-0743-x 10.1103/PhysRevA.94.062312 10.1103/PhysRevLett.119.080502 10.1116/5.0007577 10.1103/PhysRevA.73.012316 10.1103/PhysRevLett.121.130503 10.1103/PhysRevApplied.15.044003 10.1073/pnas.1206910110 10.1364/OL.42.000855 10.1126/sciadv.abd2986 10.1103/PhysRevLett.126.010503 10.1063/5.0063294 10.1038/s41534-021-00425-y 10.1038/s41534-020-00326-6 10.1103/PhysRevLett.110.153901 10.1038/ncomms2616 10.1103/PhysRevA.95.032321 10.1038/s42254-019-0056-0 10.1038/ncomms6913 10.1364/OPTICA.6.000288 10.1103/PhysRevLett.59.2044 10.1038/s41566-020-00718-2 10.1364/OE.24.010869 10.1103/PhysRevA.102.022230 10.1038/ncomms4532 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. Laser & Photonics Reviews published by Wiley‐VCH GmbH 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. Laser & Photonics Reviews published by Wiley‐VCH GmbH – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1002/lpor.202100682 |
| DatabaseName | Wiley Online Library (Open Access collection) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1863-8899 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_lpor_202100682 LPOR202100682 |
| Genre | article |
| GrantInformation_xml | – fundername: Institute for Information and Communications Technology Promotion funderid: 2020‐0‐00947 – fundername: National Research Foundation of Korea funderid: 2021R1C1C1003625; 2019M3E4A1079777 – fundername: Korea Institute of Science and Technology funderid: 2E31531 – fundername: Defense Acquisition Program Administration and Agency for Defense Development – fundername: National Research Council of Science and Technology funderid: CAP21031‐200 |
| GroupedDBID | 05W 0R~ 1OC 24P 31~ 33P 3SF 3WU 4.4 52U 66C 8-1 A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS EJD F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c2472-e681ba071316eec4418e95b8e9abaa59c73b91e8a97e2764f8ccd07ce100a3ce3 |
| IEDL.DBID | DR2 |
| ISSN | 1863-8880 |
| IngestDate | Fri Jul 25 12:25:33 EDT 2025 Wed Oct 01 05:09:35 EDT 2025 Thu Apr 24 23:10:41 EDT 2025 Wed Jan 22 16:23:00 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | Attribution-NonCommercial |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2472-e681ba071316eec4418e95b8e9abaa59c73b91e8a97e2764f8ccd07ce100a3ce3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4068-2902 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202100682 |
| PQID | 2712116299 |
| PQPubID | 1016358 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2712116299 crossref_citationtrail_10_1002_lpor_202100682 crossref_primary_10_1002_lpor_202100682 wiley_primary_10_1002_lpor_202100682_LPOR202100682 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 20220901 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Laser & photonics reviews |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 119 2021; 8 2021; 7 2017; 42 2017; 7 2018; 121 2015; 6 2021; 5 2021; 4 2013; 4 2019; 6 2006; 73 2019; 53 2021; 126 2019; 1 2021; 29 2010; 104 2015; 54 2011; 83 2020; 16 2016; 94 2020; 102 2020; 11 2020; 124 2013; 7 1987; 59 2017; 95 2021; 16 2020; 6 2021; 15 2016; 7 2018; 8 2017; 96 2014; 5 2020; 2 2018; 5 2021; 12 2016; 615 2017; 11 2003; 68 2013; 111 2016; 117 2020; 22 2013; 110 2018; 12 2010; 4 2016; 24 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – volume: 7 start-page: 89 year: 2021 publication-title: npj Quantum Inf. – volume: 4 start-page: 1606 year: 2013 publication-title: Nat. Commun. – volume: 12 start-page: 5211 year: 2021 publication-title: Q. Nat. Commun. – volume: 121 year: 2018 publication-title: Phys. Rev. Lett. – volume: 1 start-page: 367 year: 2019 publication-title: Nat. Rev. Phys. – volume: 6 start-page: 92 year: 2020 publication-title: npj Quantum Inf. – volume: 6 start-page: 288 year: 2019 publication-title: Optica – volume: 11 start-page: 700 year: 2017 publication-title: Nat. Photonics – volume: 12 start-page: 724 year: 2018 publication-title: Nat. Photonics – volume: 615 start-page: 1 year: 2016 publication-title: Phys. Rep. – volume: 104 year: 2010 publication-title: Phys. Rev. Lett. – volume: 53 year: 2019 publication-title: J. Phys. A: Math. Theor. – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 16 start-page: 281 year: 2020 publication-title: Nat. Phys. – volume: 11 start-page: 477 year: 2017 publication-title: Nat. Photonics – volume: 117 year: 2016 publication-title: Phys. Rev. Lett. – volume: 83 year: 2011 publication-title: Phys. Rev. A – volume: 54 start-page: 4727 year: 2015 publication-title: Appl. Opt. – volume: 4 start-page: 2426 year: 2013 publication-title: Nat. Commun. – volume: 95 year: 2017 publication-title: Phys. Rev. A – volume: 11 start-page: 3817 year: 2020 publication-title: Nat. Commun. – volume: 8 year: 2018 publication-title: Sci. Rep. – volume: 5 start-page: 1171 year: 2018 publication-title: Optica – volume: 5 start-page: 3532 year: 2014 publication-title: Nat. Commun. – volume: 22 year: 2020 publication-title: New J. Phys. – volume: 7 start-page: 28 year: 2013 publication-title: Nat. Photon. – volume: 126 year: 2021 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 569 year: 2021 publication-title: Electronics – volume: 111 year: 2013 publication-title: Phys. Rev. Lett. – volume: 73 year: 2006 publication-title: Phys. Rev. A – volume: 110 start-page: 1227 year: 2013 publication-title: Proc. Natl Acad. Sci. U. S. A. – volume: 4 year: 2021 publication-title: Sci. Adv. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 16 year: 2021 publication-title: Phys. Rev. Appl. – volume: 24 year: 2016 publication-title: Opt. Express – volume: 2 year: 2020 publication-title: AVS Quantum Sci. – volume: 8 year: 2021 publication-title: Appl. Phys. Rev. – volume: 68 year: 2003 publication-title: Phys. Rev. A – volume: 96 year: 2017 publication-title: Phys. Rev. A – volume: 119 year: 2017 publication-title: Phys. Rev. Lett. – volume: 59 start-page: 2044 year: 1987 publication-title: Phys. Rev. Lett. – volume: 42 start-page: 855 year: 2017 publication-title: Opt. Lett. – volume: 15 start-page: 137 year: 2021 publication-title: Nat. Photonics – volume: 6 start-page: 89 year: 2020 publication-title: npj Quantum Inf. – volume: 4 start-page: 227 year: 2010 publication-title: Nat. Photonics – volume: 15 year: 2021 publication-title: Phys. Rev. Appl. – volume: 110 year: 2013 publication-title: Phys. Rev. Lett. – volume: 124 year: 2020 publication-title: Phys. Rev. Lett. – volume: 29 year: 2021 publication-title: Opt. Express – volume: 6 start-page: 5913 year: 2015 publication-title: Nat. Commun. – volume: 102 year: 2020 publication-title: Phys. Rev. A – volume: 94 year: 2016 publication-title: Phys. Rev. A – ident: e_1_2_8_11_1 doi: 10.1364/OPTICA.5.001171 – ident: e_1_2_8_22_1 doi: 10.1038/nphoton.2017.99 – ident: e_1_2_8_41_1 doi: 10.1364/OE.436075 – ident: e_1_2_8_15_1 doi: 10.1103/PhysRevLett.126.070503 – ident: e_1_2_8_45_1 doi: 10.3390/electronics10050569 – ident: e_1_2_8_55_1 doi: 10.1038/s41598-017-16710-w – ident: e_1_2_8_40_1 doi: 10.1103/PhysRevA.68.052315 – ident: e_1_2_8_36_1 doi: 10.1103/PhysRevApplied.16.014035 – ident: e_1_2_8_44_1 doi: 10.1364/AO.54.004727 – ident: e_1_2_8_47_1 doi: 10.1103/PhysRevA.83.063836 – ident: e_1_2_8_17_1 doi: 10.1088/1367-2630/ab7a32 – ident: e_1_2_8_13_1 doi: 10.1103/PhysRevLett.121.043604 – ident: e_1_2_8_26_1 doi: 10.1038/nphoton.2012.300 – ident: e_1_2_8_48_1 doi: 10.1103/PhysRevA.96.062304 – ident: e_1_2_8_32_1 doi: 10.1038/s41467-021-25451-4 – ident: e_1_2_8_35_1 doi: 10.1038/s41598-018-29828-2 – ident: e_1_2_8_30_1 doi: 10.1088/1751-8121/ab5d4d – ident: e_1_2_8_24_1 doi: 10.1038/ncomms3426 – ident: e_1_2_8_28_1 doi: 10.1103/PhysRevLett.124.150502 – ident: e_1_2_8_1_1 doi: 10.1038/s41566-018-0301-6 – ident: e_1_2_8_20_1 doi: 10.1038/nphoton.2010.29 – ident: e_1_2_8_37_1 doi: 10.1103/PhysRevLett.117.010503 – ident: e_1_2_8_4_1 doi: 10.1103/PhysRevLett.111.070403 – ident: e_1_2_8_53_1 doi: 10.1038/s41534-020-00320-y – ident: e_1_2_8_18_1 doi: 10.1038/s41467-020-17471-3 – ident: e_1_2_8_5_1 doi: 10.1103/PhysRevLett.119.130504 – ident: e_1_2_8_7_1 doi: 10.1103/PhysRevLett.104.103602 – ident: e_1_2_8_25_1 doi: 10.1016/j.physrep.2015.12.002 – ident: e_1_2_8_10_1 doi: 10.1038/ncomms11411 – ident: e_1_2_8_50_1 doi: 10.1038/s41566-017-0011-5 – ident: e_1_2_8_29_1 doi: 10.1038/s41567-019-0743-x – ident: e_1_2_8_8_1 doi: 10.1103/PhysRevA.94.062312 – ident: e_1_2_8_31_1 doi: 10.1103/PhysRevLett.119.080502 – ident: e_1_2_8_2_1 doi: 10.1116/5.0007577 – ident: e_1_2_8_42_1 doi: 10.1103/PhysRevA.73.012316 – ident: e_1_2_8_6_1 doi: 10.1103/PhysRevLett.121.130503 – ident: e_1_2_8_16_1 doi: 10.1103/PhysRevApplied.15.044003 – ident: e_1_2_8_54_1 doi: 10.1073/pnas.1206910110 – ident: e_1_2_8_46_1 doi: 10.1364/OL.42.000855 – ident: e_1_2_8_12_1 doi: 10.1126/sciadv.abd2986 – ident: e_1_2_8_52_1 doi: 10.1103/PhysRevLett.126.010503 – ident: e_1_2_8_51_1 doi: 10.1063/5.0063294 – ident: e_1_2_8_3_1 doi: 10.1038/s41534-021-00425-y – ident: e_1_2_8_38_1 doi: 10.1038/s41534-020-00326-6 – ident: e_1_2_8_21_1 doi: 10.1103/PhysRevLett.110.153901 – ident: e_1_2_8_39_1 doi: 10.1038/ncomms2616 – ident: e_1_2_8_34_1 doi: 10.1103/PhysRevA.95.032321 – ident: e_1_2_8_19_1 doi: 10.1038/s42254-019-0056-0 – ident: e_1_2_8_27_1 doi: 10.1038/ncomms6913 – ident: e_1_2_8_33_1 doi: 10.1364/OPTICA.6.000288 – ident: e_1_2_8_43_1 doi: 10.1103/PhysRevLett.59.2044 – ident: e_1_2_8_9_1 doi: 10.1038/s41566-020-00718-2 – ident: e_1_2_8_49_1 doi: 10.1364/OE.24.010869 – ident: e_1_2_8_14_1 doi: 10.1103/PhysRevA.102.022230 – ident: e_1_2_8_23_1 doi: 10.1038/ncomms4532 |
| SSID | ssj0055556 |
| Score | 2.394673 |
| Snippet | Quantum enhanced multiple phase estimation is essential for various applications in quantum sensors and imaging. For multiple phase estimation, the sensitivity... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Amplitudes Cramer-Rao bounds Estimation Interferometry Optimization quantum metrology quantum optics Quantum sensors Sensitivity enhancement |
| Title | Practical Sensitivity Bound for Multiple Phase Estimation with Multi‐Mode N00N$N00N$ States |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202100682 https://www.proquest.com/docview/2712116299 |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1863-8899 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0055556 issn: 1863-8880 databaseCode: ADMLS dateStart: 20120701 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1863-8880 databaseCode: DR2 dateStart: 20070101 customDbUrl: isFulltext: true eissn: 1863-8899 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055556 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60Xrz4Fqu15CB42nY3m2azx_pCpK3FKniRJUmzCEoV2148-RP8jf4SJ8l2fYAIuofAstllk0lmvgkz3wDsoVpUaNZ0QCObkpPmIhBaIZDTEdVoUWXq0se6PX56xc6uW9efsvg9P0R54GZ3htPXdoNLNW5-kIbeIz5F_w5dlpALq4SjmDuf6qLkj2rh5dKLBI8DdPXCGWtjSJtfX_9qlT6g5mfA6izOyTLI2b_6QJO7xnSiGvr5G43jfwazAksFHCVtv35WYc6M1mC5gKak2PjjdbjxvEYoUDKwIe--5gQ5sEWZCOJe0i0CE0n_Fu0iOUbN4ZMiiT3p9Y_fXl5t6TXSC8PenmuIx7obcHVyfHl4GhSVGQJNWUIDwxHtSuvgRtwYjZBKmLSlsJFKylaqk1ilkREyTQxNOMuF1sMw0QbHJ2Nt4k2ojB5GZguI1JJKJtgQVQNLYi7pMBU8VCzPdZ5qVoVgJplMF7TltnrGfeYJl2lm5y4r564K-2X_R0_Y8WPP2kzQWbFxxxlNLOcdRyNdBeok9stXsk7__KK82_7LSzuwSG1ShYtcq0Fl8jQ1uwh1JqoO85T167DQPup2BnW3uN8Bx4L4CA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELYQDLDwjygU8FCJKWriuI49AmpVoA0VtBILshzXEUNVEC07j8Az8iSc7SSlA0Iig6XIdoZz7u476-47hBpgFjNwazogkS3JETkPuM4AyOmIaPCoSrjysX7KuiN689gqswltLYznh6gu3KxmOHttFdxeSDcXrKETAKgQ4EHMEjIOVniNsojZ-IvQQWmMW_C4AiPO4gCCvbDkbQxJc3n_sl9agM2fkNX5nM422izAIr7wp7uDVsx0F20VwBEXajnbQ0-edQjEjR9sQrrvCIEvbcskDKgU94u0QTx4Bq-F26DXvmQR23tYP_318Wkbo-E0DNOGG7BHovto1GkPr7pB0Tch0IQmJDAMsKiy4WfEjNEAeLgRrQwGlSnVEjqJMxEZrkRiSMJozrUeh4k2IAkVaxMfoNXpy9QcIqy0IopyOgbFpUnMFBkLzsKM5rnOhaY1FJRSk7ogFbe9LSbS0yETaaUsKynX0Hm1_tXTafy6sl4egizUaiZJYhnpGLjQGiLuYP74iuwN7u6rt6P_bDpD691hvyd71-ntMdogtvzB5ZjV0er87d2cACiZZ6fut_sGb1vXww |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yQXxxXnFe8zDwqbNL0zR59LLhdY6p4IuUJE0RHHO47cUnf4K_0V_iSdN2KoigfQiUpqXJSc75TjjnOwjVQS0qMGvaI02bkiNS7nGtAMjpJtFgUaXI0scuO-zklp7dhUU0oc2FcfwQ5YGb3RmZvrYb3AyTdH_KGtoHgAoOHvgsPuOghWdpKLiN6jvulQxSIVxZghFngQfOnl_wNvpk_-v7X-3SFGx-hqyZzWlXkSr-1oWaPDYmY9XQL9-IHP81nEW0kCNSfOCW0BKaMYNlVM3RKc73_mgF3TtqI5ApvrZR767sBD60dZkwQF98mccm4u4DmEbcAuXh8iKxPex1j99f32z1Ndzx_U49a7CDu6vott26OTrx8uIMniY0Ip5hAHil9XGbzBgNqIobESpopJIyFDoKlGgaLkVkSMRoyrVO_EgbGJ8MtAnWUGXwNDDrCEstiaScJqAdaBQwSRLBma9omupUaFpDXiGaWOfM5baARj92nMsktnMXl3NXQ3tl_6Hj7Pix51Yh6Tjfu6OYRJb2joGdriGSieyXr8QX3ateebfxl5d20Vz3uB1fnHbON9E8sSkWWRzbFqqMnydmG4DPWO1kS_sDaRD5Qg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+Sensitivity+Bound+for+Multiple+Phase+Estimation+with+Multi%E2%80%90Mode+N00N%24N00N%24+States&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Hong%2C+Seongjin&rft.au=Rehman%2C+Junaid+ur&rft.au=Kim%2C+Yong%E2%80%90Su&rft.au=Cho%2C+Young%E2%80%90Wook&rft.date=2022-09-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=16&rft.issue=9&rft_id=info:doi/10.1002%2Flpor.202100682&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_lpor_202100682 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |