Practical Sensitivity Bound for Multiple Phase Estimation with Multi‐Mode N00N$N00N$ States

Quantum enhanced multiple phase estimation is essential for various applications in quantum sensors and imaging. For multiple phase estimation, the sensitivity enhancement is dependent on both quantum probe states and measurement. It is known that multi‐mode N00N$N00N$ states can outperform other pr...

Full description

Saved in:
Bibliographic Details
Published inLaser & photonics reviews Vol. 16; no. 9
Main Authors Hong, Seongjin, Rehman, Junaid ur, Kim, Yong‐Su, Cho, Young‐Wook, Lee, Seung‐Woo, Lee, Su‐Yong, Lim, Hyang‐Tag
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.09.2022
Subjects
Online AccessGet full text
ISSN1863-8880
1863-8899
DOI10.1002/lpor.202100682

Cover

Abstract Quantum enhanced multiple phase estimation is essential for various applications in quantum sensors and imaging. For multiple phase estimation, the sensitivity enhancement is dependent on both quantum probe states and measurement. It is known that multi‐mode N00N$N00N$ states can outperform other probe states for estimating multiple phases. However, it is generally not feasible in practice to implement an optimal measurement to achieve the quantum Cramer–Rao bound (QCRB) under a practical measurement scheme using a multi‐mode beam splitter in interferometric phase estimation. Here, a strategy to achieve the best practical sensitivity by optimizing both mode‐amplitudes of multi‐mode N00N$N00N$ states and a split ratio of a multi‐mode beam splitter is investigated. Then, it is experimentally demonstrated that the best sensitivity is achieved when an amplitude‐balanced multi‐mode N00N$N00N$ state and a multi‐mode beam splitter with an unbalanced ratio are used in three‐mode interferometric phase estimation. The results show that the lower QCRB cannot guarantee better sensitivity under a practical measurement scheme, thus it is more desirable to enhance the practical sensitivity rather than the QCRB. It is believed that this strategy can provide a powerful tool for practical applications in multiple phase estimation. To achieve the best practical sensitivity of multiple phase estimation in multi‐mode interferometers, both the mode‐amplitude of multi‐mode N00N states and a split ratio of a multi‐mode beam splitter are optimized. An experimental demonstration in a three‐mode interferometer shows that the Cramer–Rao bound plays an important role under practical applications rather than the Quantum Cramer–Rao bound.
AbstractList Quantum enhanced multiple phase estimation is essential for various applications in quantum sensors and imaging. For multiple phase estimation, the sensitivity enhancement is dependent on both quantum probe states and measurement. It is known that multi‐mode N00N$N00N$ states can outperform other probe states for estimating multiple phases. However, it is generally not feasible in practice to implement an optimal measurement to achieve the quantum Cramer–Rao bound (QCRB) under a practical measurement scheme using a multi‐mode beam splitter in interferometric phase estimation. Here, a strategy to achieve the best practical sensitivity by optimizing both mode‐amplitudes of multi‐mode N00N$N00N$ states and a split ratio of a multi‐mode beam splitter is investigated. Then, it is experimentally demonstrated that the best sensitivity is achieved when an amplitude‐balanced multi‐mode N00N$N00N$ state and a multi‐mode beam splitter with an unbalanced ratio are used in three‐mode interferometric phase estimation. The results show that the lower QCRB cannot guarantee better sensitivity under a practical measurement scheme, thus it is more desirable to enhance the practical sensitivity rather than the QCRB. It is believed that this strategy can provide a powerful tool for practical applications in multiple phase estimation. To achieve the best practical sensitivity of multiple phase estimation in multi‐mode interferometers, both the mode‐amplitude of multi‐mode N00N states and a split ratio of a multi‐mode beam splitter are optimized. An experimental demonstration in a three‐mode interferometer shows that the Cramer–Rao bound plays an important role under practical applications rather than the Quantum Cramer–Rao bound.
Quantum enhanced multiple phase estimation is essential for various applications in quantum sensors and imaging. For multiple phase estimation, the sensitivity enhancement is dependent on both quantum probe states and measurement. It is known that multi‐mode N00N$N00N$ states can outperform other probe states for estimating multiple phases. However, it is generally not feasible in practice to implement an optimal measurement to achieve the quantum Cramer–Rao bound (QCRB) under a practical measurement scheme using a multi‐mode beam splitter in interferometric phase estimation. Here, a strategy to achieve the best practical sensitivity by optimizing both mode‐amplitudes of multi‐mode N00N$N00N$ states and a split ratio of a multi‐mode beam splitter is investigated. Then, it is experimentally demonstrated that the best sensitivity is achieved when an amplitude‐balanced multi‐mode N00N$N00N$ state and a multi‐mode beam splitter with an unbalanced ratio are used in three‐mode interferometric phase estimation. The results show that the lower QCRB cannot guarantee better sensitivity under a practical measurement scheme, thus it is more desirable to enhance the practical sensitivity rather than the QCRB. It is believed that this strategy can provide a powerful tool for practical applications in multiple phase estimation.
Quantum enhanced multiple phase estimation is essential for various applications in quantum sensors and imaging. For multiple phase estimation, the sensitivity enhancement is dependent on both quantum probe states and measurement. It is known that multi‐mode states can outperform other probe states for estimating multiple phases. However, it is generally not feasible in practice to implement an optimal measurement to achieve the quantum Cramer–Rao bound (QCRB) under a practical measurement scheme using a multi‐mode beam splitter in interferometric phase estimation. Here, a strategy to achieve the best practical sensitivity by optimizing both mode‐amplitudes of multi‐mode states and a split ratio of a multi‐mode beam splitter is investigated. Then, it is experimentally demonstrated that the best sensitivity is achieved when an amplitude‐balanced multi‐mode state and a multi‐mode beam splitter with an unbalanced ratio are used in three‐mode interferometric phase estimation. The results show that the lower QCRB cannot guarantee better sensitivity under a practical measurement scheme, thus it is more desirable to enhance the practical sensitivity rather than the QCRB. It is believed that this strategy can provide a powerful tool for practical applications in multiple phase estimation.
Author Kim, Yong‐Su
Rehman, Junaid ur
Lee, Seung‐Woo
Cho, Young‐Wook
Hong, Seongjin
Lim, Hyang‐Tag
Lee, Su‐Yong
Author_xml – sequence: 1
  givenname: Seongjin
  surname: Hong
  fullname: Hong, Seongjin
  organization: Korea Institute of Science and Technology (KIST)
– sequence: 2
  givenname: Junaid ur
  surname: Rehman
  fullname: Rehman, Junaid ur
  organization: Kyung Hee University
– sequence: 3
  givenname: Yong‐Su
  surname: Kim
  fullname: Kim, Yong‐Su
  organization: Korea University of Science and Technology
– sequence: 4
  givenname: Young‐Wook
  surname: Cho
  fullname: Cho, Young‐Wook
  organization: Yonsei University
– sequence: 5
  givenname: Seung‐Woo
  surname: Lee
  fullname: Lee, Seung‐Woo
  organization: Korea Institute of Science and Technology (KIST)
– sequence: 6
  givenname: Su‐Yong
  surname: Lee
  fullname: Lee, Su‐Yong
  organization: Agency for Defense Development
– sequence: 7
  givenname: Hyang‐Tag
  orcidid: 0000-0002-4068-2902
  surname: Lim
  fullname: Lim, Hyang‐Tag
  email: forestht@gmail.com
  organization: Korea University of Science and Technology
BookMark eNqFkM1KAzEUhYNUsFa3rgO6bU0y05lkqaX-QP-wupQhk96hKeNkTDKW7nwEn9EncdqRCoJ4F-cm5Hw33HOMWoUpAKEzSnqUEHaZl8b2GGH1JeLsALUpj4Iu50K09mdOjtCxcytC-nVFbfQ8s1J5rWSO51A47fWb9ht8bapigTNj8bjKvS5zwLOldICHzusX6bUp8Fr7ZfP8-f4xNgvAE0ImFzvBcy89uBN0mMncwel376Cnm-Hj4K47mt7eD65GXcXCmHUh4jSVJKYBjQBUGFIOop_WIlMp-0LFQSoocCliYHEUZlypBYkV1KvKQEHQQefN3NKa1wqcT1amskX9ZcJiyiiNmBC1K2xcyhrnLGSJ0n63i7dS5wklyTbIZBtksg-yxnq_sNLWGdjN34BogLXOYfOPOxnNpg8_7BebSIk3
CitedBy_id crossref_primary_10_1088_1367_2630_ad5eaf
crossref_primary_10_1364_AOP_497143
crossref_primary_10_3788_CJL231494
crossref_primary_10_1103_PhysRevA_106_032612
crossref_primary_10_1038_s41467_023_44204_z
crossref_primary_10_1364_JOSAB_534086
Cites_doi 10.1364/OPTICA.5.001171
10.1038/nphoton.2017.99
10.1364/OE.436075
10.1103/PhysRevLett.126.070503
10.3390/electronics10050569
10.1038/s41598-017-16710-w
10.1103/PhysRevA.68.052315
10.1103/PhysRevApplied.16.014035
10.1364/AO.54.004727
10.1103/PhysRevA.83.063836
10.1088/1367-2630/ab7a32
10.1103/PhysRevLett.121.043604
10.1038/nphoton.2012.300
10.1103/PhysRevA.96.062304
10.1038/s41467-021-25451-4
10.1038/s41598-018-29828-2
10.1088/1751-8121/ab5d4d
10.1038/ncomms3426
10.1103/PhysRevLett.124.150502
10.1038/s41566-018-0301-6
10.1038/nphoton.2010.29
10.1103/PhysRevLett.117.010503
10.1103/PhysRevLett.111.070403
10.1038/s41534-020-00320-y
10.1038/s41467-020-17471-3
10.1103/PhysRevLett.119.130504
10.1103/PhysRevLett.104.103602
10.1016/j.physrep.2015.12.002
10.1038/ncomms11411
10.1038/s41566-017-0011-5
10.1038/s41567-019-0743-x
10.1103/PhysRevA.94.062312
10.1103/PhysRevLett.119.080502
10.1116/5.0007577
10.1103/PhysRevA.73.012316
10.1103/PhysRevLett.121.130503
10.1103/PhysRevApplied.15.044003
10.1073/pnas.1206910110
10.1364/OL.42.000855
10.1126/sciadv.abd2986
10.1103/PhysRevLett.126.010503
10.1063/5.0063294
10.1038/s41534-021-00425-y
10.1038/s41534-020-00326-6
10.1103/PhysRevLett.110.153901
10.1038/ncomms2616
10.1103/PhysRevA.95.032321
10.1038/s42254-019-0056-0
10.1038/ncomms6913
10.1364/OPTICA.6.000288
10.1103/PhysRevLett.59.2044
10.1038/s41566-020-00718-2
10.1364/OE.24.010869
10.1103/PhysRevA.102.022230
10.1038/ncomms4532
ContentType Journal Article
Copyright 2022 The Authors. Laser & Photonics Reviews published by Wiley‐VCH GmbH
2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Laser & Photonics Reviews published by Wiley‐VCH GmbH
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1002/lpor.202100682
DatabaseName Wiley Online Library (Open Access collection)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1863-8899
EndPage n/a
ExternalDocumentID 10_1002_lpor_202100682
LPOR202100682
Genre article
GrantInformation_xml – fundername: Institute for Information and Communications Technology Promotion
  funderid: 2020‐0‐00947
– fundername: National Research Foundation of Korea
  funderid: 2021R1C1C1003625; 2019M3E4A1079777
– fundername: Korea Institute of Science and Technology
  funderid: 2E31531
– fundername: Defense Acquisition Program Administration and Agency for Defense Development
– fundername: National Research Council of Science and Technology
  funderid: CAP21031‐200
GroupedDBID 05W
0R~
1OC
24P
31~
33P
3SF
3WU
4.4
52U
66C
8-1
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c2472-e681ba071316eec4418e95b8e9abaa59c73b91e8a97e2764f8ccd07ce100a3ce3
IEDL.DBID DR2
ISSN 1863-8880
IngestDate Fri Jul 25 12:25:33 EDT 2025
Wed Oct 01 05:09:35 EDT 2025
Thu Apr 24 23:10:41 EDT 2025
Wed Jan 22 16:23:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2472-e681ba071316eec4418e95b8e9abaa59c73b91e8a97e2764f8ccd07ce100a3ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4068-2902
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202100682
PQID 2712116299
PQPubID 1016358
PageCount 8
ParticipantIDs proquest_journals_2712116299
crossref_citationtrail_10_1002_lpor_202100682
crossref_primary_10_1002_lpor_202100682
wiley_primary_10_1002_lpor_202100682_LPOR202100682
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Laser & photonics reviews
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 119
2021; 8
2021; 7
2017; 42
2017; 7
2018; 121
2015; 6
2021; 5
2021; 4
2013; 4
2019; 6
2006; 73
2019; 53
2021; 126
2019; 1
2021; 29
2010; 104
2015; 54
2011; 83
2020; 16
2016; 94
2020; 102
2020; 11
2020; 124
2013; 7
1987; 59
2017; 95
2021; 16
2020; 6
2021; 15
2016; 7
2018; 8
2017; 96
2014; 5
2020; 2
2018; 5
2021; 12
2016; 615
2017; 11
2003; 68
2013; 111
2016; 117
2020; 22
2013; 110
2018; 12
2010; 4
2016; 24
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 7
  start-page: 89
  year: 2021
  publication-title: npj Quantum Inf.
– volume: 4
  start-page: 1606
  year: 2013
  publication-title: Nat. Commun.
– volume: 12
  start-page: 5211
  year: 2021
  publication-title: Q. Nat. Commun.
– volume: 121
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 1
  start-page: 367
  year: 2019
  publication-title: Nat. Rev. Phys.
– volume: 6
  start-page: 92
  year: 2020
  publication-title: npj Quantum Inf.
– volume: 6
  start-page: 288
  year: 2019
  publication-title: Optica
– volume: 11
  start-page: 700
  year: 2017
  publication-title: Nat. Photonics
– volume: 12
  start-page: 724
  year: 2018
  publication-title: Nat. Photonics
– volume: 615
  start-page: 1
  year: 2016
  publication-title: Phys. Rep.
– volume: 104
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 53
  year: 2019
  publication-title: J. Phys. A: Math. Theor.
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 16
  start-page: 281
  year: 2020
  publication-title: Nat. Phys.
– volume: 11
  start-page: 477
  year: 2017
  publication-title: Nat. Photonics
– volume: 117
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 83
  year: 2011
  publication-title: Phys. Rev. A
– volume: 54
  start-page: 4727
  year: 2015
  publication-title: Appl. Opt.
– volume: 4
  start-page: 2426
  year: 2013
  publication-title: Nat. Commun.
– volume: 95
  year: 2017
  publication-title: Phys. Rev. A
– volume: 11
  start-page: 3817
  year: 2020
  publication-title: Nat. Commun.
– volume: 8
  year: 2018
  publication-title: Sci. Rep.
– volume: 5
  start-page: 1171
  year: 2018
  publication-title: Optica
– volume: 5
  start-page: 3532
  year: 2014
  publication-title: Nat. Commun.
– volume: 22
  year: 2020
  publication-title: New J. Phys.
– volume: 7
  start-page: 28
  year: 2013
  publication-title: Nat. Photon.
– volume: 126
  year: 2021
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 569
  year: 2021
  publication-title: Electronics
– volume: 111
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 73
  year: 2006
  publication-title: Phys. Rev. A
– volume: 110
  start-page: 1227
  year: 2013
  publication-title: Proc. Natl Acad. Sci. U. S. A.
– volume: 4
  year: 2021
  publication-title: Sci. Adv.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 16
  year: 2021
  publication-title: Phys. Rev. Appl.
– volume: 24
  year: 2016
  publication-title: Opt. Express
– volume: 2
  year: 2020
  publication-title: AVS Quantum Sci.
– volume: 8
  year: 2021
  publication-title: Appl. Phys. Rev.
– volume: 68
  year: 2003
  publication-title: Phys. Rev. A
– volume: 96
  year: 2017
  publication-title: Phys. Rev. A
– volume: 119
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 59
  start-page: 2044
  year: 1987
  publication-title: Phys. Rev. Lett.
– volume: 42
  start-page: 855
  year: 2017
  publication-title: Opt. Lett.
– volume: 15
  start-page: 137
  year: 2021
  publication-title: Nat. Photonics
– volume: 6
  start-page: 89
  year: 2020
  publication-title: npj Quantum Inf.
– volume: 4
  start-page: 227
  year: 2010
  publication-title: Nat. Photonics
– volume: 15
  year: 2021
  publication-title: Phys. Rev. Appl.
– volume: 110
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 124
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: 29
  year: 2021
  publication-title: Opt. Express
– volume: 6
  start-page: 5913
  year: 2015
  publication-title: Nat. Commun.
– volume: 102
  year: 2020
  publication-title: Phys. Rev. A
– volume: 94
  year: 2016
  publication-title: Phys. Rev. A
– ident: e_1_2_8_11_1
  doi: 10.1364/OPTICA.5.001171
– ident: e_1_2_8_22_1
  doi: 10.1038/nphoton.2017.99
– ident: e_1_2_8_41_1
  doi: 10.1364/OE.436075
– ident: e_1_2_8_15_1
  doi: 10.1103/PhysRevLett.126.070503
– ident: e_1_2_8_45_1
  doi: 10.3390/electronics10050569
– ident: e_1_2_8_55_1
  doi: 10.1038/s41598-017-16710-w
– ident: e_1_2_8_40_1
  doi: 10.1103/PhysRevA.68.052315
– ident: e_1_2_8_36_1
  doi: 10.1103/PhysRevApplied.16.014035
– ident: e_1_2_8_44_1
  doi: 10.1364/AO.54.004727
– ident: e_1_2_8_47_1
  doi: 10.1103/PhysRevA.83.063836
– ident: e_1_2_8_17_1
  doi: 10.1088/1367-2630/ab7a32
– ident: e_1_2_8_13_1
  doi: 10.1103/PhysRevLett.121.043604
– ident: e_1_2_8_26_1
  doi: 10.1038/nphoton.2012.300
– ident: e_1_2_8_48_1
  doi: 10.1103/PhysRevA.96.062304
– ident: e_1_2_8_32_1
  doi: 10.1038/s41467-021-25451-4
– ident: e_1_2_8_35_1
  doi: 10.1038/s41598-018-29828-2
– ident: e_1_2_8_30_1
  doi: 10.1088/1751-8121/ab5d4d
– ident: e_1_2_8_24_1
  doi: 10.1038/ncomms3426
– ident: e_1_2_8_28_1
  doi: 10.1103/PhysRevLett.124.150502
– ident: e_1_2_8_1_1
  doi: 10.1038/s41566-018-0301-6
– ident: e_1_2_8_20_1
  doi: 10.1038/nphoton.2010.29
– ident: e_1_2_8_37_1
  doi: 10.1103/PhysRevLett.117.010503
– ident: e_1_2_8_4_1
  doi: 10.1103/PhysRevLett.111.070403
– ident: e_1_2_8_53_1
  doi: 10.1038/s41534-020-00320-y
– ident: e_1_2_8_18_1
  doi: 10.1038/s41467-020-17471-3
– ident: e_1_2_8_5_1
  doi: 10.1103/PhysRevLett.119.130504
– ident: e_1_2_8_7_1
  doi: 10.1103/PhysRevLett.104.103602
– ident: e_1_2_8_25_1
  doi: 10.1016/j.physrep.2015.12.002
– ident: e_1_2_8_10_1
  doi: 10.1038/ncomms11411
– ident: e_1_2_8_50_1
  doi: 10.1038/s41566-017-0011-5
– ident: e_1_2_8_29_1
  doi: 10.1038/s41567-019-0743-x
– ident: e_1_2_8_8_1
  doi: 10.1103/PhysRevA.94.062312
– ident: e_1_2_8_31_1
  doi: 10.1103/PhysRevLett.119.080502
– ident: e_1_2_8_2_1
  doi: 10.1116/5.0007577
– ident: e_1_2_8_42_1
  doi: 10.1103/PhysRevA.73.012316
– ident: e_1_2_8_6_1
  doi: 10.1103/PhysRevLett.121.130503
– ident: e_1_2_8_16_1
  doi: 10.1103/PhysRevApplied.15.044003
– ident: e_1_2_8_54_1
  doi: 10.1073/pnas.1206910110
– ident: e_1_2_8_46_1
  doi: 10.1364/OL.42.000855
– ident: e_1_2_8_12_1
  doi: 10.1126/sciadv.abd2986
– ident: e_1_2_8_52_1
  doi: 10.1103/PhysRevLett.126.010503
– ident: e_1_2_8_51_1
  doi: 10.1063/5.0063294
– ident: e_1_2_8_3_1
  doi: 10.1038/s41534-021-00425-y
– ident: e_1_2_8_38_1
  doi: 10.1038/s41534-020-00326-6
– ident: e_1_2_8_21_1
  doi: 10.1103/PhysRevLett.110.153901
– ident: e_1_2_8_39_1
  doi: 10.1038/ncomms2616
– ident: e_1_2_8_34_1
  doi: 10.1103/PhysRevA.95.032321
– ident: e_1_2_8_19_1
  doi: 10.1038/s42254-019-0056-0
– ident: e_1_2_8_27_1
  doi: 10.1038/ncomms6913
– ident: e_1_2_8_33_1
  doi: 10.1364/OPTICA.6.000288
– ident: e_1_2_8_43_1
  doi: 10.1103/PhysRevLett.59.2044
– ident: e_1_2_8_9_1
  doi: 10.1038/s41566-020-00718-2
– ident: e_1_2_8_49_1
  doi: 10.1364/OE.24.010869
– ident: e_1_2_8_14_1
  doi: 10.1103/PhysRevA.102.022230
– ident: e_1_2_8_23_1
  doi: 10.1038/ncomms4532
SSID ssj0055556
Score 2.394673
Snippet Quantum enhanced multiple phase estimation is essential for various applications in quantum sensors and imaging. For multiple phase estimation, the sensitivity...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Amplitudes
Cramer-Rao bounds
Estimation
Interferometry
Optimization
quantum metrology
quantum optics
Quantum sensors
Sensitivity enhancement
Title Practical Sensitivity Bound for Multiple Phase Estimation with Multi‐Mode N00N$N00N$ States
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202100682
https://www.proquest.com/docview/2712116299
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1863-8899
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0055556
  issn: 1863-8880
  databaseCode: ADMLS
  dateStart: 20120701
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1863-8880
  databaseCode: DR2
  dateStart: 20070101
  customDbUrl:
  isFulltext: true
  eissn: 1863-8899
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055556
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60Xrz4Fqu15CB42nY3m2azx_pCpK3FKniRJUmzCEoV2148-RP8jf4SJ8l2fYAIuofAstllk0lmvgkz3wDsoVpUaNZ0QCObkpPmIhBaIZDTEdVoUWXq0se6PX56xc6uW9efsvg9P0R54GZ3htPXdoNLNW5-kIbeIz5F_w5dlpALq4SjmDuf6qLkj2rh5dKLBI8DdPXCGWtjSJtfX_9qlT6g5mfA6izOyTLI2b_6QJO7xnSiGvr5G43jfwazAksFHCVtv35WYc6M1mC5gKak2PjjdbjxvEYoUDKwIe--5gQ5sEWZCOJe0i0CE0n_Fu0iOUbN4ZMiiT3p9Y_fXl5t6TXSC8PenmuIx7obcHVyfHl4GhSVGQJNWUIDwxHtSuvgRtwYjZBKmLSlsJFKylaqk1ilkREyTQxNOMuF1sMw0QbHJ2Nt4k2ojB5GZguI1JJKJtgQVQNLYi7pMBU8VCzPdZ5qVoVgJplMF7TltnrGfeYJl2lm5y4r564K-2X_R0_Y8WPP2kzQWbFxxxlNLOcdRyNdBeok9stXsk7__KK82_7LSzuwSG1ShYtcq0Fl8jQ1uwh1JqoO85T167DQPup2BnW3uN8Bx4L4CA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELYQDLDwjygU8FCJKWriuI49AmpVoA0VtBILshzXEUNVEC07j8Az8iSc7SSlA0Iig6XIdoZz7u476-47hBpgFjNwazogkS3JETkPuM4AyOmIaPCoSrjysX7KuiN689gqswltLYznh6gu3KxmOHttFdxeSDcXrKETAKgQ4EHMEjIOVniNsojZ-IvQQWmMW_C4AiPO4gCCvbDkbQxJc3n_sl9agM2fkNX5nM422izAIr7wp7uDVsx0F20VwBEXajnbQ0-edQjEjR9sQrrvCIEvbcskDKgU94u0QTx4Bq-F26DXvmQR23tYP_318Wkbo-E0DNOGG7BHovto1GkPr7pB0Tch0IQmJDAMsKiy4WfEjNEAeLgRrQwGlSnVEjqJMxEZrkRiSMJozrUeh4k2IAkVaxMfoNXpy9QcIqy0IopyOgbFpUnMFBkLzsKM5rnOhaY1FJRSk7ogFbe9LSbS0yETaaUsKynX0Hm1_tXTafy6sl4egizUaiZJYhnpGLjQGiLuYP74iuwN7u6rt6P_bDpD691hvyd71-ntMdogtvzB5ZjV0er87d2cACiZZ6fut_sGb1vXww
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yQXxxXnFe8zDwqbNL0zR59LLhdY6p4IuUJE0RHHO47cUnf4K_0V_iSdN2KoigfQiUpqXJSc75TjjnOwjVQS0qMGvaI02bkiNS7nGtAMjpJtFgUaXI0scuO-zklp7dhUU0oc2FcfwQ5YGb3RmZvrYb3AyTdH_KGtoHgAoOHvgsPuOghWdpKLiN6jvulQxSIVxZghFngQfOnl_wNvpk_-v7X-3SFGx-hqyZzWlXkSr-1oWaPDYmY9XQL9-IHP81nEW0kCNSfOCW0BKaMYNlVM3RKc73_mgF3TtqI5ApvrZR767sBD60dZkwQF98mccm4u4DmEbcAuXh8iKxPex1j99f32z1Ndzx_U49a7CDu6vott26OTrx8uIMniY0Ip5hAHil9XGbzBgNqIobESpopJIyFDoKlGgaLkVkSMRoyrVO_EgbGJ8MtAnWUGXwNDDrCEstiaScJqAdaBQwSRLBma9omupUaFpDXiGaWOfM5baARj92nMsktnMXl3NXQ3tl_6Hj7Pix51Yh6Tjfu6OYRJb2joGdriGSieyXr8QX3ateebfxl5d20Vz3uB1fnHbON9E8sSkWWRzbFqqMnydmG4DPWO1kS_sDaRD5Qg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+Sensitivity+Bound+for+Multiple+Phase+Estimation+with+Multi%E2%80%90Mode+N00N%24N00N%24+States&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Hong%2C+Seongjin&rft.au=Rehman%2C+Junaid+ur&rft.au=Kim%2C+Yong%E2%80%90Su&rft.au=Cho%2C+Young%E2%80%90Wook&rft.date=2022-09-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=16&rft.issue=9&rft_id=info:doi/10.1002%2Flpor.202100682&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_lpor_202100682
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon