Improved Dynamic Range in Fiber-Optic Acoustic Sensing Systems With Enhanced Phase Demodulation Structure
Large dynamic range (DR) is one of the primary requirements in fiber-optic acoustic sensing systems, wherein acoustic signals are converted into phase-modulated (PM) signals for detection. In the signal transduction stage, research has been conducted to increase the phase sensitivity. This allows fo...
Saved in:
| Published in | IEEE sensors journal Vol. 25; no. 3; pp. 4541 - 4554 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1530-437X 1558-1748 |
| DOI | 10.1109/JSEN.2024.3437646 |
Cover
| Abstract | Large dynamic range (DR) is one of the primary requirements in fiber-optic acoustic sensing systems, wherein acoustic signals are converted into phase-modulated (PM) signals for detection. In the signal transduction stage, research has been conducted to increase the phase sensitivity. This allows for the conversion of acoustic signals into PM signals with higher phase modulation indices (PMIs), therefore improving the detection of weak acoustic signals. However, higher PMIs induced by strong acoustic signals correspondingly broaden the signal bandwidth. A phase demodulation structure that provides both high-bandwidth capability and low-noise performance is needed to improve both the upper and lower limits of DR. To solve the contradiction between phase demodulation noise and bandwidth, we proposed a novel phase demodulation structure featuring an enhanced phase acquisition method and an enhanced feedback control algorithm. The enhanced phase acquisition method combines high-precision analog-to-digital converter (ADC) sampling data with high-frequency comparator data, enhancing the capability to capture dynamic phase variations. The enhanced feedback control algorithm incorporates a predictive control method using high-order signal models and Kalman filter (KF) iteration to optimize the phase tracking performance. With the proposed demodulation structure, phase variation in the residual signal is reduced and the residual signal bandwidth is compressed before sampling. This combined approach effectively balances noise and bandwidth. The performance of the proposed structure is validated through simulations and experiments, achieving a DR of 170.1 dB at 1 kHz with a phase resolution of <inline-formula> <tex-math notation="LaTeX">4 \times 10^{-{6}} </tex-math></inline-formula> rad/<inline-formula> <tex-math notation="LaTeX"> \sqrt {\text {Hz}} </tex-math></inline-formula> in practical tests. Based on our estimation, the optimal DR is approximately 211.5 dB at 1 kHz. |
|---|---|
| AbstractList | Large dynamic range (DR) is one of the primary requirements in fiber-optic acoustic sensing systems, wherein acoustic signals are converted into phase-modulated (PM) signals for detection. In the signal transduction stage, research has been conducted to increase the phase sensitivity. This allows for the conversion of acoustic signals into PM signals with higher phase modulation indices (PMIs), therefore improving the detection of weak acoustic signals. However, higher PMIs induced by strong acoustic signals correspondingly broaden the signal bandwidth. A phase demodulation structure that provides both high-bandwidth capability and low-noise performance is needed to improve both the upper and lower limits of DR. To solve the contradiction between phase demodulation noise and bandwidth, we proposed a novel phase demodulation structure featuring an enhanced phase acquisition method and an enhanced feedback control algorithm. The enhanced phase acquisition method combines high-precision analog-to-digital converter (ADC) sampling data with high-frequency comparator data, enhancing the capability to capture dynamic phase variations. The enhanced feedback control algorithm incorporates a predictive control method using high-order signal models and Kalman filter (KF) iteration to optimize the phase tracking performance. With the proposed demodulation structure, phase variation in the residual signal is reduced and the residual signal bandwidth is compressed before sampling. This combined approach effectively balances noise and bandwidth. The performance of the proposed structure is validated through simulations and experiments, achieving a DR of 170.1 dB at 1 kHz with a phase resolution of <inline-formula> <tex-math notation="LaTeX">4 \times 10^{-{6}} </tex-math></inline-formula> rad/<inline-formula> <tex-math notation="LaTeX"> \sqrt {\text {Hz}} </tex-math></inline-formula> in practical tests. Based on our estimation, the optimal DR is approximately 211.5 dB at 1 kHz. Large dynamic range (DR) is one of the primary requirements in fiber-optic acoustic sensing systems, wherein acoustic signals are converted into phase-modulated (PM) signals for detection. In the signal transduction stage, research has been conducted to increase the phase sensitivity. This allows for the conversion of acoustic signals into PM signals with higher phase modulation indices (PMIs), therefore improving the detection of weak acoustic signals. However, higher PMIs induced by strong acoustic signals correspondingly broaden the signal bandwidth. A phase demodulation structure that provides both high-bandwidth capability and low-noise performance is needed to improve both the upper and lower limits of DR. To solve the contradiction between phase demodulation noise and bandwidth, we proposed a novel phase demodulation structure featuring an enhanced phase acquisition method and an enhanced feedback control algorithm. The enhanced phase acquisition method combines high-precision analog-to-digital converter (ADC) sampling data with high-frequency comparator data, enhancing the capability to capture dynamic phase variations. The enhanced feedback control algorithm incorporates a predictive control method using high-order signal models and Kalman filter (KF) iteration to optimize the phase tracking performance. With the proposed demodulation structure, phase variation in the residual signal is reduced and the residual signal bandwidth is compressed before sampling. This combined approach effectively balances noise and bandwidth. The performance of the proposed structure is validated through simulations and experiments, achieving a DR of 170.1 dB at 1 kHz with a phase resolution of [Formula Omitted] rad/[Formula Omitted] in practical tests. Based on our estimation, the optimal DR is approximately 211.5 dB at 1 kHz. |
| Author | Zhu, Zhijuan Bao, Qidong Sun, Xinglin Song, Kaichen Ye, Lingyun Wang, Wenrui Wu, Haojie |
| Author_xml | – sequence: 1 givenname: Haojie orcidid: 0000-0003-2470-9017 surname: Wu fullname: Wu, Haojie email: whj666@zju.edu.cn organization: College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China – sequence: 2 givenname: Zhijuan orcidid: 0000-0002-1161-6535 surname: Zhu fullname: Zhu, Zhijuan email: zjzhu@zju.edu.cn organization: College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China – sequence: 3 givenname: Qidong orcidid: 0009-0001-9970-1717 surname: Bao fullname: Bao, Qidong email: 22215026@zju.edu.cn organization: College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China – sequence: 4 givenname: Wenrui orcidid: 0009-0001-3991-397X surname: Wang fullname: Wang, Wenrui email: wangwenrui@zju.edu.cn organization: School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, China – sequence: 5 givenname: Lingyun orcidid: 0000-0002-3260-5157 surname: Ye fullname: Ye, Lingyun email: lyye@zju.edu.cn organization: College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China – sequence: 6 givenname: Kaichen orcidid: 0000-0003-4046-0004 surname: Song fullname: Song, Kaichen email: kcsong@zju.edu.cn organization: School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, China – sequence: 7 givenname: Xinglin orcidid: 0000-0002-0019-850X surname: Sun fullname: Sun, Xinglin email: xlsun@zju.edu.cn organization: College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China |
| BookMark | eNpNUMtOwzAQtFCRKIUPQOJgiXOKHcdJfKz6gKKKIgKCm-Ukm9ZV4xQ7Qerf46g9cFjtaHdmVjvXaGAaAwjdUTKmlIjHl2z-Og5JGI1ZxJI4ii_QkHKeBjSJ0kGPGQn85vsKXTu3I4SKhCdDpJf1wTa_UOLZ0ahaF_hdmQ1gbfBC52CD9aH1w0nRdK4HGRinzQZnR9dC7fCXbrd4brbKFN7jbasc4BnUTdntVasbg7PWdkXbWbhBl5XaO7g99xH6XMw_ps_Bav20nE5WQRFGcRtUJMpDEKHKWaRUnJS0DBWkDHieirAKucppkXDmK60I4yBiVaaiyguacyESNkIPJ1__108HrpW7prPGn5SMxozHEaHUs-iJVdjGOQuVPFhdK3uUlMg-UdknKvtE5TlRr7k_aTQA_OOn3jam7A8lDnTq |
| CODEN | ISJEAZ |
| Cites_doi | 10.1109/LPT.2015.2444421 10.3390/s20226422 10.1166/sl.2012.2482 10.1088/0957-0233/22/5/052001 10.3389/fphy.2021.745487 10.1109/JLT.2022.3209018 10.1109/LPT.2016.2538318 10.1117/12.2190842 10.1109/JLT.2008.928926 10.1109/JLT.2017.2657640 10.1109/TIM.2023.3244835 10.1364/OE.402099 10.1109/MWSCAS.1991.252024 10.1109/JLT.2017.2768587 10.3390/s22207822 10.1109/LPT.2012.2220129 10.1016/j.ijleo.2021.166298 10.1088/0022-3727/37/18/R01 10.1109/JSEN.2021.3121489 10.1364/OL.480828 10.1016/j.adhoc.2005.01.004 10.1364/OE.27.024300 10.1109/JPHOT.2018.2827059 10.1364/OE.27.025031 10.1109/JSEN.2014.2388153 10.1109/JSEN.2022.3160730 10.1109/TPWRD.2010.2051820 10.1109/JSEN.2018.2792540 10.1109/JSEN.2021.3135909 10.1364/AO.56.000731 10.1109/JSEN.2024.3374811 10.1109/JSEN.2021.3076860 10.1364/OE.23.029268 10.1117/12.2285277 10.1007/s42417-022-00635-4 10.1007/s10291-014-0408-2 10.1016/j.measurement.2019.01.073 10.1109/LPT.2015.2487498 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2024.3437646 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 4554 |
| ExternalDocumentID | 10_1109_JSEN_2024_3437646 10816361 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c246t-f04b2e92ab34aa67d1d2ae83e5b892f25ab1c753c758f035e96ad89fbc1b59973 |
| IEDL.DBID | RIE |
| ISSN | 1530-437X |
| IngestDate | Tue Jul 22 22:53:38 EDT 2025 Wed Oct 01 03:42:45 EDT 2025 Wed Aug 27 01:53:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-f04b2e92ab34aa67d1d2ae83e5b892f25ab1c753c758f035e96ad89fbc1b59973 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2470-9017 0000-0003-4046-0004 0009-0001-3991-397X 0000-0002-3260-5157 0009-0001-9970-1717 0000-0002-0019-850X 0000-0002-1161-6535 |
| PQID | 3163564011 |
| PQPubID | 75733 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_10816361 proquest_journals_3163564011 crossref_primary_10_1109_JSEN_2024_3437646 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref19 doi: 10.1109/LPT.2015.2444421 – ident: ref14 doi: 10.3390/s20226422 – ident: ref7 doi: 10.1166/sl.2012.2482 – ident: ref16 doi: 10.1088/0957-0233/22/5/052001 – ident: ref3 doi: 10.3389/fphy.2021.745487 – ident: ref33 doi: 10.1109/JLT.2022.3209018 – ident: ref12 doi: 10.1109/LPT.2016.2538318 – ident: ref23 doi: 10.1117/12.2190842 – ident: ref20 doi: 10.1109/JLT.2008.928926 – ident: ref30 doi: 10.1109/JLT.2017.2657640 – ident: ref5 doi: 10.1109/TIM.2023.3244835 – ident: ref13 doi: 10.1364/OE.402099 – ident: ref4 doi: 10.1109/MWSCAS.1991.252024 – ident: ref27 doi: 10.1109/JLT.2017.2768587 – ident: ref34 doi: 10.3390/s22207822 – ident: ref22 doi: 10.1109/LPT.2012.2220129 – ident: ref32 doi: 10.1016/j.ijleo.2021.166298 – ident: ref6 doi: 10.1088/0022-3727/37/18/R01 – ident: ref18 doi: 10.1109/JSEN.2021.3121489 – ident: ref29 doi: 10.1364/OL.480828 – ident: ref1 doi: 10.1016/j.adhoc.2005.01.004 – ident: ref10 doi: 10.1364/OE.27.024300 – ident: ref36 doi: 10.1109/JPHOT.2018.2827059 – ident: ref31 doi: 10.1364/OE.27.025031 – ident: ref37 doi: 10.1109/JSEN.2014.2388153 – ident: ref26 doi: 10.1109/JSEN.2022.3160730 – ident: ref8 doi: 10.1109/TPWRD.2010.2051820 – ident: ref25 doi: 10.1109/JSEN.2018.2792540 – ident: ref15 doi: 10.1109/JSEN.2021.3135909 – ident: ref24 doi: 10.1364/AO.56.000731 – ident: ref35 doi: 10.1109/JSEN.2024.3374811 – ident: ref2 doi: 10.1109/JSEN.2021.3076860 – ident: ref9 doi: 10.1364/OE.23.029268 – ident: ref28 doi: 10.1117/12.2285277 – ident: ref21 doi: 10.1007/s42417-022-00635-4 – ident: ref38 doi: 10.1007/s10291-014-0408-2 – ident: ref17 doi: 10.1016/j.measurement.2019.01.073 – ident: ref11 doi: 10.1109/LPT.2015.2487498 |
| SSID | ssj0019757 |
| Score | 2.422577 |
| Snippet | Large dynamic range (DR) is one of the primary requirements in fiber-optic acoustic sensing systems, wherein acoustic signals are converted into... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 4541 |
| SubjectTerms | Acoustic sensors Acoustics Algorithms Analog to digital converters Bandwidth Bandwidths Closed-loop control algorithm Control algorithms Control methods Control systems Control theory data fusion Demodulation Dynamic range dynamic range (DR) Feedback control Feedback control systems Fiber optics fiber-optic acoustic sensing system Kalman filter (KF) Kalman filters Noise Noise control Noise levels Noise prediction Optical fiber couplers Optical fiber sensors Optimization Phase demodulation phase demodulation structure Phase modulation Predictive control Sampling Sensitivity Sensors Signal transduction |
| Title | Improved Dynamic Range in Fiber-Optic Acoustic Sensing Systems With Enhanced Phase Demodulation Structure |
| URI | https://ieeexplore.ieee.org/document/10816361 https://www.proquest.com/docview/3163564011 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZpLmkPzWtLtnmgQ08Fb23JD-kYkl2WQDah25C9GT3G9VJqh8Z7SH99RrI2LA2FHAwGyyBmNJoZaeb7CPkiBFTSoqVxU8kIFwWaVGZ5xBVTWiquY-P6na9n-fQuvVpki9Cs7nthAMAXn8HIvfq7fNualTsqQwsXGD64ZOddIfK-WevlykAWHtYTLTiOUl4swhVmEstvV_PxDFNBlo44fsldsLvhhDyryqut2PuXyS6ZrWfWl5X8Gq06PTJ__wFtfPPU98jHEGnS835p7JMtaA7Ihw38wQOyEyjQ66dDsuyPF8DSy56knn53fQd02dCJqyqJbnBzMfTctJ7_i85d5XvzkwbIc3q_7Go6bmpfUUBva_SO9BJ-tzbwg9G5R6pd_YEBuZuMf1xMo8DDEBmW5l1UxalmIFF5PFUqL2ximQLBIdNCsoplSicG0x58RBXzDGSurJCVNonOpCz4J7LdtA0cEWptxRPmGvChSHNRSdCpxRQQpCgUMDMkX9eKKR96uI3SpymxLJ0WS6fFMmhxSAZO0BsDexkPyclal2WwyMeSJw6JD7PJ5PN_fjsm75kj9_Ul2SdkG6UCpxhxdPrMr7RnUHjS_Q |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-h7WHwwMcYojDADzwhpSS2k9iPE2tVxlYQ3UTfIn9caIVIEWsftr-es-OiCoTEQ6RIcSTrzue7s-9-P4DXSmGrPVmacK3OaFGQSZVeZMJwY7URNneh3_liWk2u5Nm8nKdm9dgLg4ix-AyH4TXe5fuV24SjMrJwReFDSHb2Syll2bdr_b400HUE9iQbzjMp6nm6xCxy_fZsNppSMsjlUNCXKoS7O24o8qr8tRlHDzN-ANPt3PrCkm_DzdoO3e0fsI3_PfmHcD_FmuykXxyP4A52h3BvB4HwEA4SCfri5jEs-wMG9Oy0p6lnn0PnAVt2bBzqSrKPtL04duJWkQGMzULte_eVJdBz9mW5XrBRt4g1BezTgvwjO8XvK58YwtgsYtVufuIRXI1Hl-8mWWJiyByX1Tprc2k5alKfkMZUtS88N6gEllZp3vLS2MJR4kOPanNRoq6MV7q1rrCl1rV4AnvdqsOnwLxvRcFDCz7WslKtRis9JYGoVW2QuwG82Sqm-dEDbjQxUcl1E7TYBC02SYsDOAqC3hnYy3gAx1tdNskmrxtRBCw-yieLZ__47RUcTC4vzpvz99MPz-EuD1S_sUD7GPZIQviC4o-1fRlX3S-GctZK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Dynamic+Range+in+Fiber-Optic+Acoustic+Sensing+Systems+With+Enhanced+Phase+Demodulation+Structure&rft.jtitle=IEEE+sensors+journal&rft.au=Wu%2C+Haojie&rft.au=Zhu%2C+Zhijuan&rft.au=Bao%2C+Qidong&rft.au=Wang%2C+Wenrui&rft.date=2025-02-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=25&rft.issue=3&rft.spage=4541&rft.epage=4554&rft_id=info:doi/10.1109%2FJSEN.2024.3437646&rft.externalDocID=10816361 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |