Improved Dynamic Range in Fiber-Optic Acoustic Sensing Systems With Enhanced Phase Demodulation Structure

Large dynamic range (DR) is one of the primary requirements in fiber-optic acoustic sensing systems, wherein acoustic signals are converted into phase-modulated (PM) signals for detection. In the signal transduction stage, research has been conducted to increase the phase sensitivity. This allows fo...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 25; no. 3; pp. 4541 - 4554
Main Authors Wu, Haojie, Zhu, Zhijuan, Bao, Qidong, Wang, Wenrui, Ye, Lingyun, Song, Kaichen, Sun, Xinglin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2024.3437646

Cover

Abstract Large dynamic range (DR) is one of the primary requirements in fiber-optic acoustic sensing systems, wherein acoustic signals are converted into phase-modulated (PM) signals for detection. In the signal transduction stage, research has been conducted to increase the phase sensitivity. This allows for the conversion of acoustic signals into PM signals with higher phase modulation indices (PMIs), therefore improving the detection of weak acoustic signals. However, higher PMIs induced by strong acoustic signals correspondingly broaden the signal bandwidth. A phase demodulation structure that provides both high-bandwidth capability and low-noise performance is needed to improve both the upper and lower limits of DR. To solve the contradiction between phase demodulation noise and bandwidth, we proposed a novel phase demodulation structure featuring an enhanced phase acquisition method and an enhanced feedback control algorithm. The enhanced phase acquisition method combines high-precision analog-to-digital converter (ADC) sampling data with high-frequency comparator data, enhancing the capability to capture dynamic phase variations. The enhanced feedback control algorithm incorporates a predictive control method using high-order signal models and Kalman filter (KF) iteration to optimize the phase tracking performance. With the proposed demodulation structure, phase variation in the residual signal is reduced and the residual signal bandwidth is compressed before sampling. This combined approach effectively balances noise and bandwidth. The performance of the proposed structure is validated through simulations and experiments, achieving a DR of 170.1 dB at 1 kHz with a phase resolution of <inline-formula> <tex-math notation="LaTeX">4 \times 10^{-{6}} </tex-math></inline-formula> rad/<inline-formula> <tex-math notation="LaTeX"> \sqrt {\text {Hz}} </tex-math></inline-formula> in practical tests. Based on our estimation, the optimal DR is approximately 211.5 dB at 1 kHz.
AbstractList Large dynamic range (DR) is one of the primary requirements in fiber-optic acoustic sensing systems, wherein acoustic signals are converted into phase-modulated (PM) signals for detection. In the signal transduction stage, research has been conducted to increase the phase sensitivity. This allows for the conversion of acoustic signals into PM signals with higher phase modulation indices (PMIs), therefore improving the detection of weak acoustic signals. However, higher PMIs induced by strong acoustic signals correspondingly broaden the signal bandwidth. A phase demodulation structure that provides both high-bandwidth capability and low-noise performance is needed to improve both the upper and lower limits of DR. To solve the contradiction between phase demodulation noise and bandwidth, we proposed a novel phase demodulation structure featuring an enhanced phase acquisition method and an enhanced feedback control algorithm. The enhanced phase acquisition method combines high-precision analog-to-digital converter (ADC) sampling data with high-frequency comparator data, enhancing the capability to capture dynamic phase variations. The enhanced feedback control algorithm incorporates a predictive control method using high-order signal models and Kalman filter (KF) iteration to optimize the phase tracking performance. With the proposed demodulation structure, phase variation in the residual signal is reduced and the residual signal bandwidth is compressed before sampling. This combined approach effectively balances noise and bandwidth. The performance of the proposed structure is validated through simulations and experiments, achieving a DR of 170.1 dB at 1 kHz with a phase resolution of <inline-formula> <tex-math notation="LaTeX">4 \times 10^{-{6}} </tex-math></inline-formula> rad/<inline-formula> <tex-math notation="LaTeX"> \sqrt {\text {Hz}} </tex-math></inline-formula> in practical tests. Based on our estimation, the optimal DR is approximately 211.5 dB at 1 kHz.
Large dynamic range (DR) is one of the primary requirements in fiber-optic acoustic sensing systems, wherein acoustic signals are converted into phase-modulated (PM) signals for detection. In the signal transduction stage, research has been conducted to increase the phase sensitivity. This allows for the conversion of acoustic signals into PM signals with higher phase modulation indices (PMIs), therefore improving the detection of weak acoustic signals. However, higher PMIs induced by strong acoustic signals correspondingly broaden the signal bandwidth. A phase demodulation structure that provides both high-bandwidth capability and low-noise performance is needed to improve both the upper and lower limits of DR. To solve the contradiction between phase demodulation noise and bandwidth, we proposed a novel phase demodulation structure featuring an enhanced phase acquisition method and an enhanced feedback control algorithm. The enhanced phase acquisition method combines high-precision analog-to-digital converter (ADC) sampling data with high-frequency comparator data, enhancing the capability to capture dynamic phase variations. The enhanced feedback control algorithm incorporates a predictive control method using high-order signal models and Kalman filter (KF) iteration to optimize the phase tracking performance. With the proposed demodulation structure, phase variation in the residual signal is reduced and the residual signal bandwidth is compressed before sampling. This combined approach effectively balances noise and bandwidth. The performance of the proposed structure is validated through simulations and experiments, achieving a DR of 170.1 dB at 1 kHz with a phase resolution of [Formula Omitted] rad/[Formula Omitted] in practical tests. Based on our estimation, the optimal DR is approximately 211.5 dB at 1 kHz.
Author Zhu, Zhijuan
Bao, Qidong
Sun, Xinglin
Song, Kaichen
Ye, Lingyun
Wang, Wenrui
Wu, Haojie
Author_xml – sequence: 1
  givenname: Haojie
  orcidid: 0000-0003-2470-9017
  surname: Wu
  fullname: Wu, Haojie
  email: whj666@zju.edu.cn
  organization: College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Zhijuan
  orcidid: 0000-0002-1161-6535
  surname: Zhu
  fullname: Zhu, Zhijuan
  email: zjzhu@zju.edu.cn
  organization: College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Qidong
  orcidid: 0009-0001-9970-1717
  surname: Bao
  fullname: Bao, Qidong
  email: 22215026@zju.edu.cn
  organization: College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
– sequence: 4
  givenname: Wenrui
  orcidid: 0009-0001-3991-397X
  surname: Wang
  fullname: Wang, Wenrui
  email: wangwenrui@zju.edu.cn
  organization: School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, China
– sequence: 5
  givenname: Lingyun
  orcidid: 0000-0002-3260-5157
  surname: Ye
  fullname: Ye, Lingyun
  email: lyye@zju.edu.cn
  organization: College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
– sequence: 6
  givenname: Kaichen
  orcidid: 0000-0003-4046-0004
  surname: Song
  fullname: Song, Kaichen
  email: kcsong@zju.edu.cn
  organization: School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, China
– sequence: 7
  givenname: Xinglin
  orcidid: 0000-0002-0019-850X
  surname: Sun
  fullname: Sun, Xinglin
  email: xlsun@zju.edu.cn
  organization: College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
BookMark eNpNUMtOwzAQtFCRKIUPQOJgiXOKHcdJfKz6gKKKIgKCm-Ukm9ZV4xQ7Qerf46g9cFjtaHdmVjvXaGAaAwjdUTKmlIjHl2z-Og5JGI1ZxJI4ii_QkHKeBjSJ0kGPGQn85vsKXTu3I4SKhCdDpJf1wTa_UOLZ0ahaF_hdmQ1gbfBC52CD9aH1w0nRdK4HGRinzQZnR9dC7fCXbrd4brbKFN7jbasc4BnUTdntVasbg7PWdkXbWbhBl5XaO7g99xH6XMw_ps_Bav20nE5WQRFGcRtUJMpDEKHKWaRUnJS0DBWkDHieirAKucppkXDmK60I4yBiVaaiyguacyESNkIPJ1__108HrpW7prPGn5SMxozHEaHUs-iJVdjGOQuVPFhdK3uUlMg-UdknKvtE5TlRr7k_aTQA_OOn3jam7A8lDnTq
CODEN ISJEAZ
Cites_doi 10.1109/LPT.2015.2444421
10.3390/s20226422
10.1166/sl.2012.2482
10.1088/0957-0233/22/5/052001
10.3389/fphy.2021.745487
10.1109/JLT.2022.3209018
10.1109/LPT.2016.2538318
10.1117/12.2190842
10.1109/JLT.2008.928926
10.1109/JLT.2017.2657640
10.1109/TIM.2023.3244835
10.1364/OE.402099
10.1109/MWSCAS.1991.252024
10.1109/JLT.2017.2768587
10.3390/s22207822
10.1109/LPT.2012.2220129
10.1016/j.ijleo.2021.166298
10.1088/0022-3727/37/18/R01
10.1109/JSEN.2021.3121489
10.1364/OL.480828
10.1016/j.adhoc.2005.01.004
10.1364/OE.27.024300
10.1109/JPHOT.2018.2827059
10.1364/OE.27.025031
10.1109/JSEN.2014.2388153
10.1109/JSEN.2022.3160730
10.1109/TPWRD.2010.2051820
10.1109/JSEN.2018.2792540
10.1109/JSEN.2021.3135909
10.1364/AO.56.000731
10.1109/JSEN.2024.3374811
10.1109/JSEN.2021.3076860
10.1364/OE.23.029268
10.1117/12.2285277
10.1007/s42417-022-00635-4
10.1007/s10291-014-0408-2
10.1016/j.measurement.2019.01.073
10.1109/LPT.2015.2487498
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2024.3437646
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 4554
ExternalDocumentID 10_1109_JSEN_2024_3437646
10816361
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c246t-f04b2e92ab34aa67d1d2ae83e5b892f25ab1c753c758f035e96ad89fbc1b59973
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Tue Jul 22 22:53:38 EDT 2025
Wed Oct 01 03:42:45 EDT 2025
Wed Aug 27 01:53:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-f04b2e92ab34aa67d1d2ae83e5b892f25ab1c753c758f035e96ad89fbc1b59973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2470-9017
0000-0003-4046-0004
0009-0001-3991-397X
0000-0002-3260-5157
0009-0001-9970-1717
0000-0002-0019-850X
0000-0002-1161-6535
PQID 3163564011
PQPubID 75733
PageCount 14
ParticipantIDs ieee_primary_10816361
proquest_journals_3163564011
crossref_primary_10_1109_JSEN_2024_3437646
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref19
  doi: 10.1109/LPT.2015.2444421
– ident: ref14
  doi: 10.3390/s20226422
– ident: ref7
  doi: 10.1166/sl.2012.2482
– ident: ref16
  doi: 10.1088/0957-0233/22/5/052001
– ident: ref3
  doi: 10.3389/fphy.2021.745487
– ident: ref33
  doi: 10.1109/JLT.2022.3209018
– ident: ref12
  doi: 10.1109/LPT.2016.2538318
– ident: ref23
  doi: 10.1117/12.2190842
– ident: ref20
  doi: 10.1109/JLT.2008.928926
– ident: ref30
  doi: 10.1109/JLT.2017.2657640
– ident: ref5
  doi: 10.1109/TIM.2023.3244835
– ident: ref13
  doi: 10.1364/OE.402099
– ident: ref4
  doi: 10.1109/MWSCAS.1991.252024
– ident: ref27
  doi: 10.1109/JLT.2017.2768587
– ident: ref34
  doi: 10.3390/s22207822
– ident: ref22
  doi: 10.1109/LPT.2012.2220129
– ident: ref32
  doi: 10.1016/j.ijleo.2021.166298
– ident: ref6
  doi: 10.1088/0022-3727/37/18/R01
– ident: ref18
  doi: 10.1109/JSEN.2021.3121489
– ident: ref29
  doi: 10.1364/OL.480828
– ident: ref1
  doi: 10.1016/j.adhoc.2005.01.004
– ident: ref10
  doi: 10.1364/OE.27.024300
– ident: ref36
  doi: 10.1109/JPHOT.2018.2827059
– ident: ref31
  doi: 10.1364/OE.27.025031
– ident: ref37
  doi: 10.1109/JSEN.2014.2388153
– ident: ref26
  doi: 10.1109/JSEN.2022.3160730
– ident: ref8
  doi: 10.1109/TPWRD.2010.2051820
– ident: ref25
  doi: 10.1109/JSEN.2018.2792540
– ident: ref15
  doi: 10.1109/JSEN.2021.3135909
– ident: ref24
  doi: 10.1364/AO.56.000731
– ident: ref35
  doi: 10.1109/JSEN.2024.3374811
– ident: ref2
  doi: 10.1109/JSEN.2021.3076860
– ident: ref9
  doi: 10.1364/OE.23.029268
– ident: ref28
  doi: 10.1117/12.2285277
– ident: ref21
  doi: 10.1007/s42417-022-00635-4
– ident: ref38
  doi: 10.1007/s10291-014-0408-2
– ident: ref17
  doi: 10.1016/j.measurement.2019.01.073
– ident: ref11
  doi: 10.1109/LPT.2015.2487498
SSID ssj0019757
Score 2.422577
Snippet Large dynamic range (DR) is one of the primary requirements in fiber-optic acoustic sensing systems, wherein acoustic signals are converted into...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 4541
SubjectTerms Acoustic sensors
Acoustics
Algorithms
Analog to digital converters
Bandwidth
Bandwidths
Closed-loop control algorithm
Control algorithms
Control methods
Control systems
Control theory
data fusion
Demodulation
Dynamic range
dynamic range (DR)
Feedback control
Feedback control systems
Fiber optics
fiber-optic acoustic sensing system
Kalman filter (KF)
Kalman filters
Noise
Noise control
Noise levels
Noise prediction
Optical fiber couplers
Optical fiber sensors
Optimization
Phase demodulation
phase demodulation structure
Phase modulation
Predictive control
Sampling
Sensitivity
Sensors
Signal transduction
Title Improved Dynamic Range in Fiber-Optic Acoustic Sensing Systems With Enhanced Phase Demodulation Structure
URI https://ieeexplore.ieee.org/document/10816361
https://www.proquest.com/docview/3163564011
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZpLmkPzWtLtnmgQ08Fb23JD-kYkl2WQDah25C9GT3G9VJqh8Z7SH99RrI2LA2FHAwGyyBmNJoZaeb7CPkiBFTSoqVxU8kIFwWaVGZ5xBVTWiquY-P6na9n-fQuvVpki9Cs7nthAMAXn8HIvfq7fNualTsqQwsXGD64ZOddIfK-WevlykAWHtYTLTiOUl4swhVmEstvV_PxDFNBlo44fsldsLvhhDyryqut2PuXyS6ZrWfWl5X8Gq06PTJ__wFtfPPU98jHEGnS835p7JMtaA7Ihw38wQOyEyjQ66dDsuyPF8DSy56knn53fQd02dCJqyqJbnBzMfTctJ7_i85d5XvzkwbIc3q_7Go6bmpfUUBva_SO9BJ-tzbwg9G5R6pd_YEBuZuMf1xMo8DDEBmW5l1UxalmIFF5PFUqL2ximQLBIdNCsoplSicG0x58RBXzDGSurJCVNonOpCz4J7LdtA0cEWptxRPmGvChSHNRSdCpxRQQpCgUMDMkX9eKKR96uI3SpymxLJ0WS6fFMmhxSAZO0BsDexkPyclal2WwyMeSJw6JD7PJ5PN_fjsm75kj9_Ul2SdkG6UCpxhxdPrMr7RnUHjS_Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-h7WHwwMcYojDADzwhpSS2k9iPE2tVxlYQ3UTfIn9caIVIEWsftr-es-OiCoTEQ6RIcSTrzue7s-9-P4DXSmGrPVmacK3OaFGQSZVeZMJwY7URNneh3_liWk2u5Nm8nKdm9dgLg4ix-AyH4TXe5fuV24SjMrJwReFDSHb2Syll2bdr_b400HUE9iQbzjMp6nm6xCxy_fZsNppSMsjlUNCXKoS7O24o8qr8tRlHDzN-ANPt3PrCkm_DzdoO3e0fsI3_PfmHcD_FmuykXxyP4A52h3BvB4HwEA4SCfri5jEs-wMG9Oy0p6lnn0PnAVt2bBzqSrKPtL04duJWkQGMzULte_eVJdBz9mW5XrBRt4g1BezTgvwjO8XvK58YwtgsYtVufuIRXI1Hl-8mWWJiyByX1Tprc2k5alKfkMZUtS88N6gEllZp3vLS2MJR4kOPanNRoq6MV7q1rrCl1rV4AnvdqsOnwLxvRcFDCz7WslKtRis9JYGoVW2QuwG82Sqm-dEDbjQxUcl1E7TYBC02SYsDOAqC3hnYy3gAx1tdNskmrxtRBCw-yieLZ__47RUcTC4vzpvz99MPz-EuD1S_sUD7GPZIQviC4o-1fRlX3S-GctZK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Dynamic+Range+in+Fiber-Optic+Acoustic+Sensing+Systems+With+Enhanced+Phase+Demodulation+Structure&rft.jtitle=IEEE+sensors+journal&rft.au=Wu%2C+Haojie&rft.au=Zhu%2C+Zhijuan&rft.au=Bao%2C+Qidong&rft.au=Wang%2C+Wenrui&rft.date=2025-02-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=25&rft.issue=3&rft.spage=4541&rft.epage=4554&rft_id=info:doi/10.1109%2FJSEN.2024.3437646&rft.externalDocID=10816361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon