DAQFL: Dynamic Aggregation Quantum Federated Learning Algorithm for Intelligent Diagnosis in Internet of Medical Things
Federated learning (FL) is a privacy-preserving alternative to centralized machine learning, where model training is performed on local devices and only global model updates are shared, effectively addressing challenges, such as data silos and privacy protection. Recently, quantum FL (QFL), an emerg...
Saved in:
| Published in | IEEE internet of things journal Vol. 12; no. 19; pp. 39313 - 39325 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.10.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2327-4662 2327-4662 |
| DOI | 10.1109/JIOT.2025.3537614 |
Cover
| Abstract | Federated learning (FL) is a privacy-preserving alternative to centralized machine learning, where model training is performed on local devices and only global model updates are shared, effectively addressing challenges, such as data silos and privacy protection. Recently, quantum FL (QFL), an emerging FL branch, has garnered significant attention in many industry applications. However, existing QFL algorithms predominantly employ average weighting for global model training, which shows poor performance on heterogeneous healthcare data. To address this challenge, this study proposes a dynamic aggregation QFL algorithm (DAQFL) for intelligent diagnosis. Specifically, it utilizes quantum neural networks (QNNs) as local training models and designs corresponding variational quantum circuits (VQC). To mitigate performance degradation caused by the heterogeneity of medical industrial data, a dynamic aggregation method based on accuracy is proposed to enhance global model performance effectively. Extensive experiments with three distribution settings, including independent and identically distributed (IID), non-independent and identically distributed (Non-IID), and long-tail datasets, show that DAQFL outperforms baseline algorithms in accuracy and training speed. It also performs well in privacy protection and robustness of anti-noise, improving its suitability for real-world medical applications. |
|---|---|
| AbstractList | Federated learning (FL) is a privacy-preserving alternative to centralized machine learning, where model training is performed on local devices and only global model updates are shared, effectively addressing challenges, such as data silos and privacy protection. Recently, quantum FL (QFL), an emerging FL branch, has garnered significant attention in many industry applications. However, existing QFL algorithms predominantly employ average weighting for global model training, which shows poor performance on heterogeneous healthcare data. To address this challenge, this study proposes a dynamic aggregation QFL algorithm (DAQFL) for intelligent diagnosis. Specifically, it utilizes quantum neural networks (QNNs) as local training models and designs corresponding variational quantum circuits (VQC). To mitigate performance degradation caused by the heterogeneity of medical industrial data, a dynamic aggregation method based on accuracy is proposed to enhance global model performance effectively. Extensive experiments with three distribution settings, including independent and identically distributed (IID), non-independent and identically distributed (Non-IID), and long-tail datasets, show that DAQFL outperforms baseline algorithms in accuracy and training speed. It also performs well in privacy protection and robustness of anti-noise, improving its suitability for real-world medical applications. |
| Author | Muhammad, Ghulam Zhao, Xuemeng Qu, Zhiguo Sun, Le |
| Author_xml | – sequence: 1 givenname: Zhiguo orcidid: 0000-0002-5783-313X surname: Qu fullname: Qu, Zhiguo email: 002359@nuist.edu.cn organization: School of Computer Science, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 2 givenname: Xuemeng surname: Zhao fullname: Zhao, Xuemeng email: 202212490759@nuist.edu.cn organization: School of Computer Science, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 3 givenname: Le orcidid: 0000-0002-4221-0327 surname: Sun fullname: Sun, Le email: 002813@nuist.edu.cn organization: School of Computer Science, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 4 givenname: Ghulam orcidid: 0000-0002-9781-3969 surname: Muhammad fullname: Muhammad, Ghulam email: ghulam@ksu.edu.sa organization: Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia |
| BookMark | eNpNkE1LAzEQhoMoWGt_gOAh4Lk1H5t0461Yq5VKKdTzks3OrpFtUpMU6b93a3voaQbmed-B5wZdOu8AoTtKRpQS9fg-X65HjDAx4oKPJc0uUI9xNh5mUrLLs_0aDWL8JoR0MUGV7KHf6WQ1Wzzh6d7pjTV40jQBGp2sd3i10y7tNngGFQSdoMIL0MFZ1-BJ2_hg09cG1z7guUvQtrYBl_DU6sb5aCO27v8QHCTsa_wBlTW6xeuvriDeoqtatxEGp9lHn7OX9fPbcLF8nT9PFkPDMpmGkGnCiCiZqkStxoQqpYAYkQnISmOEMZJQbSrBKy5zzkBBSUmZj2lJDIWK99HDsXcb_M8OYiq-_S647mXBmeC5kioTHUWPlAk-xgB1sQ12o8O-oKQ4KC4OiouD4uKkuMvcHzMWAM74XCqeM_4Hk_h5wg |
| CODEN | IITJAU |
| Cites_doi | 10.1103/physreva.54.1844 10.1109/TETC.2023.3268186 10.1109/TITS.2021.3130906 10.1561/2200000083 10.1109/TNNLS.2019.2944481 10.1109/jbhi.2023.3303401 10.3390/e23040460 10.3233/IDA-216050 10.1016/j.inffus.2023.101913 10.1109/JSTQE.2022.3170150 10.1038/nature23474 10.1109/JBHI.2023.3279096 10.1016/j.ipm.2009.03.002 10.3390/app122312080 10.3390/s23177474 10.1016/j.inffus.2023.102172 10.1109/TMI.2017.2655486 10.1145/3501296 10.1016/j.inffus.2023.102085 10.1201/9780203713419-11 10.3934/mbe.2022467 10.1038/s41567-019-0648-8 10.1109/TCE.2023.3242375 10.1002/qute.201900070 10.3390/s20247182 10.1109/jbhi.2023.3288199 10.1109/icsa-c52384.2021.00025 10.1109/tiv.2024.3370398 10.1145/3298981 10.1038/s41746-021-00431-6 10.1007/s10916-015-0294-3 10.1109/MIS.2020.2988525 10.1145/3464420 10.1103/physrevlett.122.040504 10.1007/s11433-021-1753-3 10.1109/TII.2021.3075706 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2025.3537614 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 39325 |
| ExternalDocumentID | 10_1109_JIOT_2025_3537614 10869382 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ongoing Research Funding Program, King Saud University, Riyadh, Saudi Arabia grantid: ORF-2025-34 – fundername: National Natural Science Foundation of China grantid: 61373131 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D M43 |
| ID | FETCH-LOGICAL-c246t-e4a0205b29d5f9701999e0c545e4bcc5cc601acd53d36832e9eb10b871b0c1ed3 |
| IEDL.DBID | RIE |
| ISSN | 2327-4662 |
| IngestDate | Sun Oct 26 21:50:02 EDT 2025 Thu Oct 02 04:26:19 EDT 2025 Wed Oct 01 07:05:11 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-e4a0205b29d5f9701999e0c545e4bcc5cc601acd53d36832e9eb10b871b0c1ed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9781-3969 0000-0002-4221-0327 0000-0002-5783-313X |
| PQID | 3253896945 |
| PQPubID | 2040421 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_JIOT_2025_3537614 ieee_primary_10869382 proquest_journals_3253896945 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref39 ref16 Dua (ref33) ref38 ref19 ref18 Yi (ref4) 2020; 17 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref27 Alexander (ref29) 2024 McMahan (ref34) ref8 ref7 ref9 ref3 ref6 ref5 ref40 Crooks (ref28) 2019 |
| References_xml | – ident: ref38 doi: 10.1103/physreva.54.1844 – ident: ref22 doi: 10.1109/TETC.2023.3268186 – ident: ref27 doi: 10.1109/TITS.2021.3130906 – ident: ref18 doi: 10.1561/2200000083 – ident: ref20 doi: 10.1109/TNNLS.2019.2944481 – ident: ref25 doi: 10.1109/jbhi.2023.3303401 – ident: ref3 doi: 10.3390/e23040460 – ident: ref8 doi: 10.3233/IDA-216050 – ident: ref12 doi: 10.1016/j.inffus.2023.101913 – volume: 17 start-page: 3 issue: 4 year: 2020 ident: ref4 article-title: Research progress of artificial intelligence aided diagnosis system publication-title: J. Pract. Hosp. Clin. – ident: ref24 doi: 10.1109/JSTQE.2022.3170150 – ident: ref2 doi: 10.1038/nature23474 – ident: ref15 doi: 10.1109/JBHI.2023.3279096 – ident: ref36 doi: 10.1016/j.ipm.2009.03.002 – ident: ref14 doi: 10.3390/app122312080 – ident: ref10 doi: 10.3390/s23177474 – ident: ref39 doi: 10.1016/j.inffus.2023.102172 – ident: ref7 doi: 10.1109/TMI.2017.2655486 – ident: ref21 doi: 10.1145/3501296 – ident: ref40 doi: 10.1016/j.inffus.2023.102085 – ident: ref33 article-title: UCI machine learning repository – ident: ref5 doi: 10.1201/9780203713419-11 – ident: ref9 doi: 10.3934/mbe.2022467 – year: 2024 ident: ref29 article-title: Bayesian parameterized quantum circuit optimization (BPQCO): A task and hardware-dependent approach publication-title: arXiv:2404.11253v1 – ident: ref35 doi: 10.1038/s41567-019-0648-8 – year: 2019 ident: ref28 article-title: Gradients of parameterized quantum gates using the parameter-shift rule and gate decomposition publication-title: arXiv:1905.13311 – ident: ref1 doi: 10.1109/TCE.2023.3242375 – ident: ref32 doi: 10.1002/qute.201900070 – ident: ref37 doi: 10.3390/s20247182 – ident: ref11 doi: 10.1109/jbhi.2023.3288199 – ident: ref31 doi: 10.1109/icsa-c52384.2021.00025 – ident: ref26 doi: 10.1109/tiv.2024.3370398 – ident: ref16 doi: 10.1145/3298981 – ident: ref13 doi: 10.1038/s41746-021-00431-6 – ident: ref6 doi: 10.1007/s10916-015-0294-3 – ident: ref19 doi: 10.1109/MIS.2020.2988525 – ident: ref41 doi: 10.1145/3464420 – ident: ref30 doi: 10.1103/physrevlett.122.040504 – ident: ref23 doi: 10.1007/s11433-021-1753-3 – start-page: 1273 volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist. ident: ref34 article-title: Communication-efficient learning of deep networks from decentralized data – ident: ref17 doi: 10.1109/TII.2021.3075706 |
| SSID | ssj0001105196 |
| Score | 2.3802986 |
| Snippet | Federated learning (FL) is a privacy-preserving alternative to centralized machine learning, where model training is performed on local devices and only global... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 39313 |
| SubjectTerms | Accuracy Algorithms Computational modeling Diagnosis Federated learning Heterogeneity Heuristic algorithms Industrial applications Intelligent diagnosis Internet of medical things Internet of Medical Things (IoMT) Machine learning Machine learning algorithms Medical diagnostic imaging Medical services Neural networks Optimization Performance degradation Prediction algorithms Privacy quantum federated learning (QFL) quantum neural networks (QNNs) Training variational quantum circuits (VQC) |
| Title | DAQFL: Dynamic Aggregation Quantum Federated Learning Algorithm for Intelligent Diagnosis in Internet of Medical Things |
| URI | https://ieeexplore.ieee.org/document/10869382 https://www.proquest.com/docview/3253896945 |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoJy6FFqpuS6s59ISUJYnt7Lq3VbcrQAWEBBK3yB6PtyvKbgWJkPrr69f2KSRuOSSRNWOPv3l9w9iHmlBzbk3gqcRCkLOFRiEKJ0e61Fw2LlIpnZ41R1fi5Fpe52b12AtDRLH4jIbhMeby7Qr7ECo7DFOBFB97i_tsNG5Ss9bvgEoV0EiTM5dVqQ5Pjs8vvQdYyyEPpCWV-OvuicNU_rPA8VqZbbOz9YJSNcnNsO_MEH_8w9X45BXvsOcZYMIk7YgXbIOWL9n2engD5LO8yx6mk4vZl48wTSPpYTL3nvc86gkuei_v_hZmgWnCg1ELmYZ1DpNv89Xdovt6Cx7twvEvQs8Opqlob3EPiyWkQCN1sHKQc0GQRoTusavZ58tPR0WewlBgLZquIKE9pJSmVlY6FdjblaISPfIiYRAlovfpNFrJLW-8fSDlzX9pvCNmSqzI8ldsc7la0msGSFphNXINN06MrRhrQdo4kiN0KEkN2MFaP-33RLbRRielVG1QZhuU2WZlDthekPcfLyZRD9j-WqVtPo_3La-9YVeNEvLNI5-9ZVvh76lOb59tdnc9vfN4ozPv4z77CRcq1ZQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZQe4ALfVBESqE-cELadHdtb-LeIkKUlDSoUir1trLH4xDRJqjdFRK_vn6lUCokbnvY1Voz9sw345lvCPlQIijGjPY8lZBxtCZTwHlmRU_lionKBiql81k1vuRnV-IqNauHXhhEDMVn2PWP4S7frKH1qbITPxVIsr6zuNuCcy5iu9bvlErh8UiV7i6LXJ6cTb7OXQxYii7ztCUFf-R9wjiVJzY4OJbRDpltlhTrSb5320Z34ddfbI3_veZd8jJBTDqIe2KPPMPVPtnZjG-g6TS_Ij-Hg4vR9JQO41B6Oli42HsRNEUvWifx9oaOPNeEg6OGJiLWBR1cL9a3y-bbDXV4l04eKD0bOoxle8s7ulzRmGrEhq4tTbdBNA4JPSCXo8_zT-MszWHIoORVkyFXDlQKXUojrPT87VJiDg57IdcAAsBFdQqMYIZVzkKgdA4g1y4U0zkUaNhrsrVar_ANoYBKQtGzFdOW9w3vK45KWxQ9sCBQdsjHjX7qH5Fuow5hSi5rr8zaK7NOyuyQAy_vP16Mou6Qo41K63Qi72pWOtMuK8nF4T8-OybPx_PzaT2dzL68JS_8n2LV3hHZam5bfOfQR6Pfhz13D2w-2OE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DAQFL%3A+Dynamic+Aggregation+Quantum+Federated+Learning+Algorithm+for+Intelligent+Diagnosis+in+Internet+of+Medical+Things&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Qu%2C+Zhiguo&rft.au=Zhao%2C+Xuemeng&rft.au=Sun%2C+Le&rft.au=Muhammad%2C+Ghulam&rft.date=2025-10-01&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=12&rft.issue=19&rft.spage=39313&rft.epage=39325&rft_id=info:doi/10.1109%2FJIOT.2025.3537614&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2025_3537614 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |