DAQFL: Dynamic Aggregation Quantum Federated Learning Algorithm for Intelligent Diagnosis in Internet of Medical Things

Federated learning (FL) is a privacy-preserving alternative to centralized machine learning, where model training is performed on local devices and only global model updates are shared, effectively addressing challenges, such as data silos and privacy protection. Recently, quantum FL (QFL), an emerg...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 12; no. 19; pp. 39313 - 39325
Main Authors Qu, Zhiguo, Zhao, Xuemeng, Sun, Le, Muhammad, Ghulam
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4662
2327-4662
DOI10.1109/JIOT.2025.3537614

Cover

Abstract Federated learning (FL) is a privacy-preserving alternative to centralized machine learning, where model training is performed on local devices and only global model updates are shared, effectively addressing challenges, such as data silos and privacy protection. Recently, quantum FL (QFL), an emerging FL branch, has garnered significant attention in many industry applications. However, existing QFL algorithms predominantly employ average weighting for global model training, which shows poor performance on heterogeneous healthcare data. To address this challenge, this study proposes a dynamic aggregation QFL algorithm (DAQFL) for intelligent diagnosis. Specifically, it utilizes quantum neural networks (QNNs) as local training models and designs corresponding variational quantum circuits (VQC). To mitigate performance degradation caused by the heterogeneity of medical industrial data, a dynamic aggregation method based on accuracy is proposed to enhance global model performance effectively. Extensive experiments with three distribution settings, including independent and identically distributed (IID), non-independent and identically distributed (Non-IID), and long-tail datasets, show that DAQFL outperforms baseline algorithms in accuracy and training speed. It also performs well in privacy protection and robustness of anti-noise, improving its suitability for real-world medical applications.
AbstractList Federated learning (FL) is a privacy-preserving alternative to centralized machine learning, where model training is performed on local devices and only global model updates are shared, effectively addressing challenges, such as data silos and privacy protection. Recently, quantum FL (QFL), an emerging FL branch, has garnered significant attention in many industry applications. However, existing QFL algorithms predominantly employ average weighting for global model training, which shows poor performance on heterogeneous healthcare data. To address this challenge, this study proposes a dynamic aggregation QFL algorithm (DAQFL) for intelligent diagnosis. Specifically, it utilizes quantum neural networks (QNNs) as local training models and designs corresponding variational quantum circuits (VQC). To mitigate performance degradation caused by the heterogeneity of medical industrial data, a dynamic aggregation method based on accuracy is proposed to enhance global model performance effectively. Extensive experiments with three distribution settings, including independent and identically distributed (IID), non-independent and identically distributed (Non-IID), and long-tail datasets, show that DAQFL outperforms baseline algorithms in accuracy and training speed. It also performs well in privacy protection and robustness of anti-noise, improving its suitability for real-world medical applications.
Author Muhammad, Ghulam
Zhao, Xuemeng
Qu, Zhiguo
Sun, Le
Author_xml – sequence: 1
  givenname: Zhiguo
  orcidid: 0000-0002-5783-313X
  surname: Qu
  fullname: Qu, Zhiguo
  email: 002359@nuist.edu.cn
  organization: School of Computer Science, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 2
  givenname: Xuemeng
  surname: Zhao
  fullname: Zhao, Xuemeng
  email: 202212490759@nuist.edu.cn
  organization: School of Computer Science, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 3
  givenname: Le
  orcidid: 0000-0002-4221-0327
  surname: Sun
  fullname: Sun, Le
  email: 002813@nuist.edu.cn
  organization: School of Computer Science, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 4
  givenname: Ghulam
  orcidid: 0000-0002-9781-3969
  surname: Muhammad
  fullname: Muhammad, Ghulam
  email: ghulam@ksu.edu.sa
  organization: Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
BookMark eNpNkE1LAzEQhoMoWGt_gOAh4Lk1H5t0461Yq5VKKdTzks3OrpFtUpMU6b93a3voaQbmed-B5wZdOu8AoTtKRpQS9fg-X65HjDAx4oKPJc0uUI9xNh5mUrLLs_0aDWL8JoR0MUGV7KHf6WQ1Wzzh6d7pjTV40jQBGp2sd3i10y7tNngGFQSdoMIL0MFZ1-BJ2_hg09cG1z7guUvQtrYBl_DU6sb5aCO27v8QHCTsa_wBlTW6xeuvriDeoqtatxEGp9lHn7OX9fPbcLF8nT9PFkPDMpmGkGnCiCiZqkStxoQqpYAYkQnISmOEMZJQbSrBKy5zzkBBSUmZj2lJDIWK99HDsXcb_M8OYiq-_S647mXBmeC5kioTHUWPlAk-xgB1sQ12o8O-oKQ4KC4OiouD4uKkuMvcHzMWAM74XCqeM_4Hk_h5wg
CODEN IITJAU
Cites_doi 10.1103/physreva.54.1844
10.1109/TETC.2023.3268186
10.1109/TITS.2021.3130906
10.1561/2200000083
10.1109/TNNLS.2019.2944481
10.1109/jbhi.2023.3303401
10.3390/e23040460
10.3233/IDA-216050
10.1016/j.inffus.2023.101913
10.1109/JSTQE.2022.3170150
10.1038/nature23474
10.1109/JBHI.2023.3279096
10.1016/j.ipm.2009.03.002
10.3390/app122312080
10.3390/s23177474
10.1016/j.inffus.2023.102172
10.1109/TMI.2017.2655486
10.1145/3501296
10.1016/j.inffus.2023.102085
10.1201/9780203713419-11
10.3934/mbe.2022467
10.1038/s41567-019-0648-8
10.1109/TCE.2023.3242375
10.1002/qute.201900070
10.3390/s20247182
10.1109/jbhi.2023.3288199
10.1109/icsa-c52384.2021.00025
10.1109/tiv.2024.3370398
10.1145/3298981
10.1038/s41746-021-00431-6
10.1007/s10916-015-0294-3
10.1109/MIS.2020.2988525
10.1145/3464420
10.1103/physrevlett.122.040504
10.1007/s11433-021-1753-3
10.1109/TII.2021.3075706
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2025.3537614
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 39325
ExternalDocumentID 10_1109_JIOT_2025_3537614
10869382
Genre orig-research
GrantInformation_xml – fundername: Ongoing Research Funding Program, King Saud University, Riyadh, Saudi Arabia
  grantid: ORF-2025-34
– fundername: National Natural Science Foundation of China
  grantid: 61373131
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
M43
ID FETCH-LOGICAL-c246t-e4a0205b29d5f9701999e0c545e4bcc5cc601acd53d36832e9eb10b871b0c1ed3
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Sun Oct 26 21:50:02 EDT 2025
Thu Oct 02 04:26:19 EDT 2025
Wed Oct 01 07:05:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 19
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-e4a0205b29d5f9701999e0c545e4bcc5cc601acd53d36832e9eb10b871b0c1ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9781-3969
0000-0002-4221-0327
0000-0002-5783-313X
PQID 3253896945
PQPubID 2040421
PageCount 13
ParticipantIDs crossref_primary_10_1109_JIOT_2025_3537614
ieee_primary_10869382
proquest_journals_3253896945
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref39
ref16
Dua (ref33)
ref38
ref19
ref18
Yi (ref4) 2020; 17
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref27
Alexander (ref29) 2024
McMahan (ref34)
ref8
ref7
ref9
ref3
ref6
ref5
ref40
Crooks (ref28) 2019
References_xml – ident: ref38
  doi: 10.1103/physreva.54.1844
– ident: ref22
  doi: 10.1109/TETC.2023.3268186
– ident: ref27
  doi: 10.1109/TITS.2021.3130906
– ident: ref18
  doi: 10.1561/2200000083
– ident: ref20
  doi: 10.1109/TNNLS.2019.2944481
– ident: ref25
  doi: 10.1109/jbhi.2023.3303401
– ident: ref3
  doi: 10.3390/e23040460
– ident: ref8
  doi: 10.3233/IDA-216050
– ident: ref12
  doi: 10.1016/j.inffus.2023.101913
– volume: 17
  start-page: 3
  issue: 4
  year: 2020
  ident: ref4
  article-title: Research progress of artificial intelligence aided diagnosis system
  publication-title: J. Pract. Hosp. Clin.
– ident: ref24
  doi: 10.1109/JSTQE.2022.3170150
– ident: ref2
  doi: 10.1038/nature23474
– ident: ref15
  doi: 10.1109/JBHI.2023.3279096
– ident: ref36
  doi: 10.1016/j.ipm.2009.03.002
– ident: ref14
  doi: 10.3390/app122312080
– ident: ref10
  doi: 10.3390/s23177474
– ident: ref39
  doi: 10.1016/j.inffus.2023.102172
– ident: ref7
  doi: 10.1109/TMI.2017.2655486
– ident: ref21
  doi: 10.1145/3501296
– ident: ref40
  doi: 10.1016/j.inffus.2023.102085
– ident: ref33
  article-title: UCI machine learning repository
– ident: ref5
  doi: 10.1201/9780203713419-11
– ident: ref9
  doi: 10.3934/mbe.2022467
– year: 2024
  ident: ref29
  article-title: Bayesian parameterized quantum circuit optimization (BPQCO): A task and hardware-dependent approach
  publication-title: arXiv:2404.11253v1
– ident: ref35
  doi: 10.1038/s41567-019-0648-8
– year: 2019
  ident: ref28
  article-title: Gradients of parameterized quantum gates using the parameter-shift rule and gate decomposition
  publication-title: arXiv:1905.13311
– ident: ref1
  doi: 10.1109/TCE.2023.3242375
– ident: ref32
  doi: 10.1002/qute.201900070
– ident: ref37
  doi: 10.3390/s20247182
– ident: ref11
  doi: 10.1109/jbhi.2023.3288199
– ident: ref31
  doi: 10.1109/icsa-c52384.2021.00025
– ident: ref26
  doi: 10.1109/tiv.2024.3370398
– ident: ref16
  doi: 10.1145/3298981
– ident: ref13
  doi: 10.1038/s41746-021-00431-6
– ident: ref6
  doi: 10.1007/s10916-015-0294-3
– ident: ref19
  doi: 10.1109/MIS.2020.2988525
– ident: ref41
  doi: 10.1145/3464420
– ident: ref30
  doi: 10.1103/physrevlett.122.040504
– ident: ref23
  doi: 10.1007/s11433-021-1753-3
– start-page: 1273
  volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist.
  ident: ref34
  article-title: Communication-efficient learning of deep networks from decentralized data
– ident: ref17
  doi: 10.1109/TII.2021.3075706
SSID ssj0001105196
Score 2.3802986
Snippet Federated learning (FL) is a privacy-preserving alternative to centralized machine learning, where model training is performed on local devices and only global...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 39313
SubjectTerms Accuracy
Algorithms
Computational modeling
Diagnosis
Federated learning
Heterogeneity
Heuristic algorithms
Industrial applications
Intelligent diagnosis
Internet of medical things
Internet of Medical Things (IoMT)
Machine learning
Machine learning algorithms
Medical diagnostic imaging
Medical services
Neural networks
Optimization
Performance degradation
Prediction algorithms
Privacy
quantum federated learning (QFL)
quantum neural networks (QNNs)
Training
variational quantum circuits (VQC)
Title DAQFL: Dynamic Aggregation Quantum Federated Learning Algorithm for Intelligent Diagnosis in Internet of Medical Things
URI https://ieeexplore.ieee.org/document/10869382
https://www.proquest.com/docview/3253896945
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoJy6FFqpuS6s59ISUJYnt7Lq3VbcrQAWEBBK3yB6PtyvKbgWJkPrr69f2KSRuOSSRNWOPv3l9w9iHmlBzbk3gqcRCkLOFRiEKJ0e61Fw2LlIpnZ41R1fi5Fpe52b12AtDRLH4jIbhMeby7Qr7ECo7DFOBFB97i_tsNG5Ss9bvgEoV0EiTM5dVqQ5Pjs8vvQdYyyEPpCWV-OvuicNU_rPA8VqZbbOz9YJSNcnNsO_MEH_8w9X45BXvsOcZYMIk7YgXbIOWL9n2engD5LO8yx6mk4vZl48wTSPpYTL3nvc86gkuei_v_hZmgWnCg1ELmYZ1DpNv89Xdovt6Cx7twvEvQs8Opqlob3EPiyWkQCN1sHKQc0GQRoTusavZ58tPR0WewlBgLZquIKE9pJSmVlY6FdjblaISPfIiYRAlovfpNFrJLW-8fSDlzX9pvCNmSqzI8ldsc7la0msGSFphNXINN06MrRhrQdo4kiN0KEkN2MFaP-33RLbRRielVG1QZhuU2WZlDthekPcfLyZRD9j-WqVtPo_3La-9YVeNEvLNI5-9ZVvh76lOb59tdnc9vfN4ozPv4z77CRcq1ZQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZQe4ALfVBESqE-cELadHdtb-LeIkKUlDSoUir1trLH4xDRJqjdFRK_vn6lUCokbnvY1Voz9sw345lvCPlQIijGjPY8lZBxtCZTwHlmRU_lionKBiql81k1vuRnV-IqNauHXhhEDMVn2PWP4S7frKH1qbITPxVIsr6zuNuCcy5iu9bvlErh8UiV7i6LXJ6cTb7OXQxYii7ztCUFf-R9wjiVJzY4OJbRDpltlhTrSb5320Z34ddfbI3_veZd8jJBTDqIe2KPPMPVPtnZjG-g6TS_Ij-Hg4vR9JQO41B6Oli42HsRNEUvWifx9oaOPNeEg6OGJiLWBR1cL9a3y-bbDXV4l04eKD0bOoxle8s7ulzRmGrEhq4tTbdBNA4JPSCXo8_zT-MszWHIoORVkyFXDlQKXUojrPT87VJiDg57IdcAAsBFdQqMYIZVzkKgdA4g1y4U0zkUaNhrsrVar_ANoYBKQtGzFdOW9w3vK45KWxQ9sCBQdsjHjX7qH5Fuow5hSi5rr8zaK7NOyuyQAy_vP16Mou6Qo41K63Qi72pWOtMuK8nF4T8-OybPx_PzaT2dzL68JS_8n2LV3hHZam5bfOfQR6Pfhz13D2w-2OE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DAQFL%3A+Dynamic+Aggregation+Quantum+Federated+Learning+Algorithm+for+Intelligent+Diagnosis+in+Internet+of+Medical+Things&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Qu%2C+Zhiguo&rft.au=Zhao%2C+Xuemeng&rft.au=Sun%2C+Le&rft.au=Muhammad%2C+Ghulam&rft.date=2025-10-01&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=12&rft.issue=19&rft.spage=39313&rft.epage=39325&rft_id=info:doi/10.1109%2FJIOT.2025.3537614&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2025_3537614
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon