A Novel Belief Rule-Based Fault Diagnosis Method with Interpretability
Fault diagnosis plays an irreplaceable role in the normal operation of equipment. A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model. Due to the understandable knowledge expression and transparent reasoning process, the belief rule bas...
Saved in:
| Published in | Computer modeling in engineering & sciences Vol. 136; no. 2; pp. 1165 - 1185 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Henderson
Tech Science Press
2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1526-1506 1526-1492 1526-1506 |
| DOI | 10.32604/cmes.2023.025399 |
Cover
| Abstract | Fault diagnosis plays an irreplaceable role in the normal operation of equipment. A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model. Due to the understandable knowledge expression and transparent reasoning process, the belief rule base (BRB) has extensive applications as an interpretable expert system in fault diagnosis. Optimization is an effective means to weaken the subjectivity of experts in BRB, where the interpretability of BRB may be weakened. Hence, to obtain a credible result, the weakening factors of interpretability in the BRB-based fault diagnosis model are firstly analyzed, which are manifested in deviation from the initial judgement of experts and over-optimization of parameters. For these two factors, three indexes are proposed, namely the consistency index of rules, consistency index of the rule base and over-optimization index, to measure the interpretability of the optimized model. Considering both the accuracy and interpretability of a model, an improved coordinate ascent (I-CA) algorithm is proposed to fine-tune the parameters of the fault diagnosis model based on BRB. In I-CA, the algorithm combined with the advance and retreat method and the golden section method is employed to be one-dimensional search algorithm. Furthermore, the random optimization sequence and adaptive step size are proposed to improve the accuracy of the model. Finally, a case study of fault diagnosis in aerospace relays based on BRB is carried out to verify the effectiveness of the proposed method. |
|---|---|
| AbstractList | Fault diagnosis plays an irreplaceable role in the normal operation of equipment. A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model. Due to the understandable knowledge expression and transparent reasoning process, the belief rule base (BRB) has extensive applications as an interpretable expert system in fault diagnosis. Optimization is an effective means to weaken the subjectivity of experts in BRB, where the interpretability of BRB may be weakened. Hence, to obtain a credible result, the weakening factors of interpretability in the BRB-based fault diagnosis model are firstly analyzed, which are manifested in deviation from the initial judgement of experts and over-optimization of parameters. For these two factors, three indexes are proposed, namely the consistency index of rules, consistency index of the rule base and over-optimization index, to measure the interpretability of the optimized model. Considering both the accuracy and interpretability of a model, an improved coordinate ascent (I-CA) algorithm is proposed to fine-tune the parameters of the fault diagnosis model based on BRB. In I-CA, the algorithm combined with the advance and retreat method and the golden section method is employed to be one-dimensional search algorithm. Furthermore, the random optimization sequence and adaptive step size are proposed to improve the accuracy of the model. Finally, a case study of fault diagnosis in aerospace relays based on BRB is carried out to verify the effectiveness of the proposed method. |
| Author | Zhou, Zhijie Xiang, Gang Tang, Shuaiwen Han, Xiaoxia Ming, Zhichao Cao, You Wang, Jie |
| Author_xml | – sequence: 1 givenname: Zhijie surname: Zhou fullname: Zhou, Zhijie – sequence: 2 givenname: Zhichao surname: Ming fullname: Ming, Zhichao – sequence: 3 givenname: Jie surname: Wang fullname: Wang, Jie – sequence: 4 givenname: Shuaiwen surname: Tang fullname: Tang, Shuaiwen – sequence: 5 givenname: You surname: Cao fullname: Cao, You – sequence: 6 givenname: Xiaoxia surname: Han fullname: Han, Xiaoxia – sequence: 7 givenname: Gang surname: Xiang fullname: Xiang, Gang |
| BookMark | eNqFkD1PwzAURS1UJNrCD2CLxJzij8aJx7ZQqFRAQjBHL45NXblJsB2q_ntSwoAYYHpvuOfq6ozQoKorhdAlwRNGOZ5ey53yE4opm2CaMCFO0JAklMckwXzw4z9DI--3GDPOMjFEy1n0WH8oG82VNUpHz61V8Ry8KqMltDZENwbeqtobHz2osKnLaG_CJlpVQbnGqQCFsSYcztGpBuvVxfcdo9fl7cviPl4_3a0Ws3Us6ZSHuASeqQw4yIIJDUILyQlhWsqMCJKyKQiOKU2FKHShs5TTrMhKpbEgVEICbIxo39tWDRz2YG3eOLMDd8gJzr9M5EcT-dFE3pvooKsealz93iof8m3duqrb2REYE8oSwbtU2qekq713SufSBAimroIDY__sJ7_I_zd9An99gdY |
| CitedBy_id | crossref_primary_10_1002_acs_3862 crossref_primary_10_1038_s41598_024_68886_7 crossref_primary_10_32604_cmes_2023_031360 crossref_primary_10_1109_ACCESS_2023_3309409 |
| Cites_doi | 10.1109/JSYST.2020.2991161 10.1016/j.knosys.2021.107142 10.1016/j.compbiomed.2021.105104 10.16208/.jissn1000-7024.2017.02.023 10.16383/j.aas.c200402 10.1016/j.knosys.2021.107491 10.1109/TFUZZ.2020.3024024 10.1109/TIM.2022.3173638 10.3778/j.issn.1673-9418.1403061 10.1038/s42256-019-0048-x 10.1016/j.ress.2020.107055 10.11936/bjutxb2019100015 10.1016/j.asoc.2016.05.046 10.1007/s11432-020-3001-7 10.1007/s12652-017-0667-1 10.1016/j.knosys.2017.11.039 10.1109/TCYB.2021.3051676 10.4218/etrij.17.0116.0305 10.1109/TSMCA.2005.851270 10.1016/j.engfailanal.2022.106096 10.1109/TSMC.2017.2759026 10.1016/j.enconman.2020.113456 10.1016/j.isatra.2019.09.020 10.1016/j.cja.2021.08.037 10.1016/j.ijar.2020.12.009 10.1007/978-3-319-11191-9_20 |
| ContentType | Journal Article |
| Copyright | 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY |
| DOI | 10.32604/cmes.2023.025399 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection (ProQuest) ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database (Proquest) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1526-1506 |
| EndPage | 1185 |
| ExternalDocumentID | 10.32604/cmes.2023.025399 10_32604_cmes_2023_025399 |
| GroupedDBID | -~X AAFWJ AAYXX ABJCF ACIWK ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ CCPQU CITATION EBS EJD F5P IPNFZ J9A K7- M7S OK1 PHGZM PHGZT PIMPY PQGLB PTHSS PUEGO RIG RTS 7SC 7TB 8FD 8FE 8FG ABUWG ARAPS AZQEC DWQXO FR3 GNUQQ HCIFZ JQ2 KR7 L6V L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c246t-da68e8a6acb39fa9f9c6113fcc8191734a96022799bfbf87628b8def0912ca5a3 |
| IEDL.DBID | UNPAY |
| ISSN | 1526-1506 1526-1492 |
| IngestDate | Wed Oct 01 15:31:55 EDT 2025 Sat Sep 06 07:32:22 EDT 2025 Thu Apr 24 22:54:32 EDT 2025 Wed Oct 01 04:21:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-da68e8a6acb39fa9f9c6113fcc8191734a96022799bfbf87628b8def0912ca5a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://file.techscience.com/files/CMES/2023/TSP_CMES-136-2/TSP_CMES_25399/TSP_CMES_25399.pdf |
| PQID | 3200123596 |
| PQPubID | 2048798 |
| PageCount | 21 |
| ParticipantIDs | unpaywall_primary_10_32604_cmes_2023_025399 proquest_journals_3200123596 crossref_citationtrail_10_32604_cmes_2023_025399 crossref_primary_10_32604_cmes_2023_025399 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-00-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Henderson |
| PublicationPlace_xml | – name: Henderson |
| PublicationTitle | Computer modeling in engineering & sciences |
| PublicationYear | 2023 |
| Publisher | Tech Science Press |
| Publisher_xml | – name: Tech Science Press |
| References | Xu (ref12) 2020; 50 Zhang (ref8) 2022; 71 Wu (ref9) 2022; 140 Zhou (ref1) 2021; 47 Hu (ref7) 2016; 48 Chang (ref11) 2020; 15 Rudin (ref2) 2019; 1 Wang (ref25) 2022; 52 Cao (ref6) 2020; 29 You (ref5) 2022; 236 Wu (ref19) 2014; 8 Yang (ref16) 2017; 38 Yan X (ref18) 2021; 226 Yan (ref17) 2020; 225 Ren (ref24) 2022; 135 Qian (ref21) 2019; 10 Feng (ref20) 2020; 203 Zhang (ref15) 2017; 39 Yang (ref4) 2014 Yang (ref3) 2006; 36 Yang (ref14) 2018; 142 Wu (ref26) 2020; 99 Zhou (ref13) 2021; 64 Hu (ref23) 2021; 47 Chen (ref22) 2022; 35 Chang (ref10) 2020; 130 |
| References_xml | – volume: 15 start-page: 1179 year: 2020 ident: ref11 article-title: BRB prediction with customized attributes weights and tradeoff analysis for concurrent fault diagnosis publication-title: IEEE Systems Journal doi: 10.1109/JSYST.2020.2991161 – volume: 226 start-page: 107142 year: 2021 ident: ref18 article-title: Deep regularized variational autoencoder for intelligent fault diagnosis of rotor-bearing system within entire life-cycle process publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107142 – volume: 140 start-page: 105104 year: 2022 ident: ref9 article-title: AutoBRB: An automated belief rule base model for pathologic complete response prediction in gastric cancer publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2021.105104 – volume: 38 start-page: 400 year: 2017 ident: ref16 article-title: Belief rule base parameter training approach based on improved particle swarm optimization publication-title: Computer Engineering and Design doi: 10.16208/.jissn1000-7024.2017.02.023 – volume: 47 start-page: 1201 year: 2021 ident: ref1 article-title: The interpretability of rule-based modeling approach and its development publication-title: Acta Automatica Sinica doi: 10.16383/j.aas.c200402 – volume: 236 start-page: 107491 year: 2022 ident: ref5 article-title: Interpretability and accuracy trade-off in the modeling of belief rule-based systems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107491 – volume: 29 start-page: 3489 year: 2020 ident: ref6 article-title: On the interpretability of belief rule based expert systems publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2020.3024024 – volume: 71 start-page: 3513212 year: 2022 ident: ref8 article-title: BR-FRL: A belief rule-based fault recognition and location model for bus network systems publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2022.3173638 – volume: 8 start-page: 989 year: 2014 ident: ref19 article-title: Parameter training approach for belief rule base using the accelerating of gradient algorithm publication-title: Journal of Frontiers of Computer Science and Technology doi: 10.3778/j.issn.1673-9418.1403061 – volume: 1 start-page: 206 year: 2019 ident: ref2 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nature Machine Intelligence doi: 10.1038/s42256-019-0048-x – volume: 203 start-page: 107055 year: 2020 ident: ref20 article-title: A safety assessment model based on belief rule base with new optimization method publication-title: Reliability Engineering System Safety doi: 10.1016/j.ress.2020.107055 – volume: 47 start-page: 1000 year: 2021 ident: ref23 article-title: Fault diagnosis of oil-immersed transformer based on belief rule base publication-title: Journal of Beijing University of Technology doi: 10.11936/bjutxb2019100015 – volume: 48 start-page: 404 year: 2016 ident: ref7 article-title: A method for predicting the network security situation based on hidden BRB model and revised CMA-ES algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.05.046 – volume: 64 start-page: 209 year: 2021 ident: ref13 article-title: New health-state assessment model based on belief rule base with interpretability publication-title: Science China (Information Sciences) doi: 10.1007/s11432-020-3001-7 – volume: 10 start-page: 841 year: 2019 ident: ref21 article-title: An effective soft computing technology based on belief-rule-base and particle swarm optimization for tipping paper permeability measurement publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-017-0667-1 – volume: 142 start-page: 220 year: 2018 ident: ref14 article-title: A joint optimization method on parameter and structure for belief-rule-based systems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.11.039 – volume: 52 start-page: 8088 year: 2022 ident: ref25 article-title: A new evidential reasoning rule with continuous probability distribution of reliability publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2021.3051676 – volume: 39 start-page: 592 year: 2017 ident: ref15 article-title: Network intrusion detection based on directed acyclic graph and belief rule base publication-title: ETRI Journal doi: 10.4218/etrij.17.0116.0305 – volume: 36 start-page: 266 year: 2006 ident: ref3 article-title: Belief rule-base inference methodology using the evidential reasoning approach–RIMER publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMCA.2005.851270 – volume: 135 start-page: 106096 year: 2022 ident: ref24 article-title: Experimental investigation of the instantaneous contact welding failure phenomena and mechanisms for general-purpose relays publication-title: Engineering Failure Analysis doi: 10.1016/j.engfailanal.2022.106096 – volume: 50 start-page: 656 year: 2020 ident: ref12 article-title: A belief rule-based expert system for fault diagnosis of marine diesel engines publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2017.2759026 – volume: 225 start-page: 113456 year: 2020 ident: ref17 article-title: Multistep forecasting for diurnal wind speed based on hybrid deep learning model with improved singular spectrum decomposition publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2020.113456 – volume: 99 start-page: 488 year: 2020 ident: ref26 article-title: Incipient winding fault detection and diagnosis for squirrel-cage induction motors equipped on CRH trains publication-title: ISA Transactions doi: 10.1016/j.isatra.2019.09.020 – volume: 35 start-page: 158 year: 2022 ident: ref22 article-title: A novel combination belief rule base model for mechanical equipment fault diagnosis publication-title: Chinese Journal of Aeronautics doi: 10.1016/j.cja.2021.08.037 – volume: 130 start-page: 273 year: 2020 ident: ref10 article-title: Belief rule mining using the evidential reasoning rule for medical diagnosis publication-title: International Journal of Approximate Reasoning doi: 10.1016/j.ijar.2020.12.009 – year: 2014 ident: ref4 publication-title: A study on generalising Bayesian inference to evidential reasoning doi: 10.1007/978-3-319-11191-9_20 |
| SSID | ssj0036389 |
| Score | 2.3645852 |
| Snippet | Fault diagnosis plays an irreplaceable role in the normal operation of equipment. A fault diagnosis model is often required to be interpretable for increasing... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1165 |
| SubjectTerms | Algorithms Effectiveness Expert systems Fault diagnosis Optimization Parameters Search algorithms |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NTwIxEJ0gHPTitxFF04MnTQXaUujBGFAIMYEYIgm3TdttE5MVUFgN_952P4CT3tsepu3Mm-n0PYAbLRuWC2GxfyvETNUEVi4K4KbgoTJCG2J8aWAw5P0xe5k0JgUY5n9hfFtl7hMTRx3OtK-RVylJ_3UK_jj_xF41yr-u5hIaMpNWCB8SirEdKBHPjFWEUqc7fB3lvpn6-JwwqBKOXW5A0ndOB2FqrKo_jOfvJvTe4QCakMFuRaoN_NyNp3O5-pFRtBWJeoewn0FI1E73_AgKZnoMB7k8A8pu6wn02mg4-zYR6hgHNC0axZHBHRe1QtSTcbREz2mb3fsCDRIdaeSLsmjThpj0za5OYdzrvj31cSabgDVhfIlDyVumJbnUigorhRWa1-vUap0kZ5RJl7V44kChrLLeG7ZUKzTWIQfitk7SMyhOZ1NzDogZYx1gkExryprKwTWH75gwVBGuRdgsQy03UaAzTnEvbREFLrdIrBp4qwbeqkFq1TLcrqfMU0KNvwZXcrsH2d1aBJuTUIa79V78v9jF34tdwp4fnJZXKlBcfsXmygGOpbrOTtEvOmTSFA priority: 102 providerName: ProQuest |
| Title | A Novel Belief Rule-Based Fault Diagnosis Method with Interpretability |
| URI | https://www.proquest.com/docview/3200123596 https://file.techscience.com/files/CMES/2023/TSP_CMES-136-2/TSP_CMES_25399/TSP_CMES_25399.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 136 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1506 databaseCode: ADMLS dateStart: 20180301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1526-1506 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036389 issn: 1526-1506 databaseCode: BENPR dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFH-C9rDT-NimFbHKh51ATlPbdeNjC83QpFYVUIkdpsh2bGlaKBVNQHDY346dj8I4bNphtzh6sWS_F7_fs59_D-CzlgPLhbDYnxVipkKBlfMCeCh4qozQhhi_NTCd8bMF-3o1uNqC781dGM9GFHj60toBlIu1f7nunUwnFz5Wp73Li3niW7hPOSabZkI8zeqrZrBK7Ta0-cBB9Ra0F7P56FvJoUo4dtEB2TwPQl6dejpAE7KevjaezZvQICz7-d1vPYPRN8VyJR_uZZa98EvxDvxqRlSlo_wMilwF-vEV2eN_G_IuvK0RLRpVJrgHW2a5DztNtQhULx7vIB6h2c2dydDYONxr0XmRGTx2TjRFsSyyHJ1WWX8_1mhalrVGfo8YPWdFlmm8D-9hEU8uT85wXcUBa8J4jlPJIxNJLrWiwkphheb9PrVal7EiZdJpxvMYCmWV9YtzpKLUWAdkiLMkST9Aa3mzNB8BMWOswy-SaU3ZUDn06OAmE4YqwrVIhx0IGx0luqY495U2ssSFOqVaE6_WxM9oUqm1A0ebT1YVv8efhA8bxSf1r752otWFY8E7cLwxhr93dvBP0ofQym8L88khoFx1YTuKv3ShPZ7M5ufd2qqfAIm0APo |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TgMxEB1xFNBwI8LpAhqQIdjGiQuECBCFIxFCINEttteWkJYkkASUn-PbGO9BqKCiX1va2dmZN-PxewDbVh95qZSn4ayQClNW1GAWoBUlY-OUdcyF1kCzJRsP4urx6HEMPou7MGGssoiJaaCOOzb0yA84y-51KnnSfaVBNSqcrhYSGjqXVoiPU4qx_GLHtRt-YAnXO748x--9w1j94v6sQXOVAWqZkH0aa1l1VS21NVx5rbyy8vCQe2vTWoYLjSA_8Owp440PwaNqqrHzmGgZvqnmuO84TAouFBZ_k7WL1u1dkQt4wAMpYyuTFGsRlp2rImQqiwP74gJfOOP7iDt4Sj77IzOO4O7UoN3Vww-dJD8yX30OZnLISk4zH5uHMddegNlCDoLk0WER6qek1Xl3Cak5BLae3A0SR2uYJWNS14OkT86zsb7nHmmmutUkNIHJaOwxndMdLsHDvxhwGSbanbZbASKc8whQtLCWi4pBeIh4UijHDZNWxZUSlAsTRTbnMA9SGkmEtUxq1ShYNQpWjTKrlmD3e0k3I_D47eH1wu5R_i_3opHnlWDv-1v8vdnq75ttwVTjvnkT3Vy2rtdgOizMWjvrMNF_G7gNBDt9s5l7FIGn_3biL_JYD9M |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB60Hjz5FisqOXhSst0madoc66OI0CJqQQ-yJNkExLUWu6vowd9uso_6OCgevG2W2UAys5lvksk3ALtatiwXwmJ_VoiZCgVWzgvgtuCxMkIbYvzWQH_AT4bs9Kp1NQM31V0Yz0YUePrS0gHki7V_OWkc9o8vfKxOG5cXZ5Fv4SblmEybEfE0q9-awTi2szDHWw6q12BuODjrXuccqoRjFx2Q6XMr5MWppwM0IWvoe-PZvAkNwryfr37rA4zOZ6OxfHmWSfLJL_UW4a0aUZGOchdkqQr06zeyx38b8hIslIgWdQsTXIYZM1qBxapaBCoXj1XoddHg4ckk6MA43GvReZYYfOCcaIx6MktSdFRk_d1OUD8va438HjH6yIrM03hf1mDYO748PMFlFQesCeMpjiXvmI7kUisqrBRWaN5sUqt1HitSJp1mPI-hUFZZvzh3VCc21gEZ4ixJ0nWojR5GZgMQM8Y6_CKZ1pS1lUOPDm4yYagiXIu4XYew0lGkS4pzX2kjiVyok6s18mqN_IxGhVrrsDf9ZFzwe_wkvFUpPip_9YkTLS4cC16H_akx_N7Z5p-kt6CWPmZm2yGgVO2UdvwOk_X-aw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Belief+Rule-Based+Fault+Diagnosis+Method+with+Interpretability&rft.jtitle=Computer+modeling+in+engineering+%26+sciences&rft.au=Zhou%2C+Zhijie&rft.au=Ming%2C+Zhichao&rft.au=Wang%2C+Jie&rft.au=Tang%2C+Shuaiwen&rft.date=2023&rft.issn=1526-1506&rft.volume=136&rft.issue=2&rft.spage=1165&rft.epage=1185&rft_id=info:doi/10.32604%2Fcmes.2023.025399&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmes_2023_025399 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-1506&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-1506&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-1506&client=summon |