A Novel Belief Rule-Based Fault Diagnosis Method with Interpretability

Fault diagnosis plays an irreplaceable role in the normal operation of equipment. A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model. Due to the understandable knowledge expression and transparent reasoning process, the belief rule bas...

Full description

Saved in:
Bibliographic Details
Published inComputer modeling in engineering & sciences Vol. 136; no. 2; pp. 1165 - 1185
Main Authors Zhou, Zhijie, Ming, Zhichao, Wang, Jie, Tang, Shuaiwen, Cao, You, Han, Xiaoxia, Xiang, Gang
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 2023
Subjects
Online AccessGet full text
ISSN1526-1506
1526-1492
1526-1506
DOI10.32604/cmes.2023.025399

Cover

Abstract Fault diagnosis plays an irreplaceable role in the normal operation of equipment. A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model. Due to the understandable knowledge expression and transparent reasoning process, the belief rule base (BRB) has extensive applications as an interpretable expert system in fault diagnosis. Optimization is an effective means to weaken the subjectivity of experts in BRB, where the interpretability of BRB may be weakened. Hence, to obtain a credible result, the weakening factors of interpretability in the BRB-based fault diagnosis model are firstly analyzed, which are manifested in deviation from the initial judgement of experts and over-optimization of parameters. For these two factors, three indexes are proposed, namely the consistency index of rules, consistency index of the rule base and over-optimization index, to measure the interpretability of the optimized model. Considering both the accuracy and interpretability of a model, an improved coordinate ascent (I-CA) algorithm is proposed to fine-tune the parameters of the fault diagnosis model based on BRB. In I-CA, the algorithm combined with the advance and retreat method and the golden section method is employed to be one-dimensional search algorithm. Furthermore, the random optimization sequence and adaptive step size are proposed to improve the accuracy of the model. Finally, a case study of fault diagnosis in aerospace relays based on BRB is carried out to verify the effectiveness of the proposed method.
AbstractList Fault diagnosis plays an irreplaceable role in the normal operation of equipment. A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model. Due to the understandable knowledge expression and transparent reasoning process, the belief rule base (BRB) has extensive applications as an interpretable expert system in fault diagnosis. Optimization is an effective means to weaken the subjectivity of experts in BRB, where the interpretability of BRB may be weakened. Hence, to obtain a credible result, the weakening factors of interpretability in the BRB-based fault diagnosis model are firstly analyzed, which are manifested in deviation from the initial judgement of experts and over-optimization of parameters. For these two factors, three indexes are proposed, namely the consistency index of rules, consistency index of the rule base and over-optimization index, to measure the interpretability of the optimized model. Considering both the accuracy and interpretability of a model, an improved coordinate ascent (I-CA) algorithm is proposed to fine-tune the parameters of the fault diagnosis model based on BRB. In I-CA, the algorithm combined with the advance and retreat method and the golden section method is employed to be one-dimensional search algorithm. Furthermore, the random optimization sequence and adaptive step size are proposed to improve the accuracy of the model. Finally, a case study of fault diagnosis in aerospace relays based on BRB is carried out to verify the effectiveness of the proposed method.
Author Zhou, Zhijie
Xiang, Gang
Tang, Shuaiwen
Han, Xiaoxia
Ming, Zhichao
Cao, You
Wang, Jie
Author_xml – sequence: 1
  givenname: Zhijie
  surname: Zhou
  fullname: Zhou, Zhijie
– sequence: 2
  givenname: Zhichao
  surname: Ming
  fullname: Ming, Zhichao
– sequence: 3
  givenname: Jie
  surname: Wang
  fullname: Wang, Jie
– sequence: 4
  givenname: Shuaiwen
  surname: Tang
  fullname: Tang, Shuaiwen
– sequence: 5
  givenname: You
  surname: Cao
  fullname: Cao, You
– sequence: 6
  givenname: Xiaoxia
  surname: Han
  fullname: Han, Xiaoxia
– sequence: 7
  givenname: Gang
  surname: Xiang
  fullname: Xiang, Gang
BookMark eNqFkD1PwzAURS1UJNrCD2CLxJzij8aJx7ZQqFRAQjBHL45NXblJsB2q_ntSwoAYYHpvuOfq6ozQoKorhdAlwRNGOZ5ey53yE4opm2CaMCFO0JAklMckwXzw4z9DI--3GDPOMjFEy1n0WH8oG82VNUpHz61V8Ry8KqMltDZENwbeqtobHz2osKnLaG_CJlpVQbnGqQCFsSYcztGpBuvVxfcdo9fl7cviPl4_3a0Ws3Us6ZSHuASeqQw4yIIJDUILyQlhWsqMCJKyKQiOKU2FKHShs5TTrMhKpbEgVEICbIxo39tWDRz2YG3eOLMDd8gJzr9M5EcT-dFE3pvooKsealz93iof8m3duqrb2REYE8oSwbtU2qekq713SufSBAimroIDY__sJ7_I_zd9An99gdY
CitedBy_id crossref_primary_10_1002_acs_3862
crossref_primary_10_1038_s41598_024_68886_7
crossref_primary_10_32604_cmes_2023_031360
crossref_primary_10_1109_ACCESS_2023_3309409
Cites_doi 10.1109/JSYST.2020.2991161
10.1016/j.knosys.2021.107142
10.1016/j.compbiomed.2021.105104
10.16208/.jissn1000-7024.2017.02.023
10.16383/j.aas.c200402
10.1016/j.knosys.2021.107491
10.1109/TFUZZ.2020.3024024
10.1109/TIM.2022.3173638
10.3778/j.issn.1673-9418.1403061
10.1038/s42256-019-0048-x
10.1016/j.ress.2020.107055
10.11936/bjutxb2019100015
10.1016/j.asoc.2016.05.046
10.1007/s11432-020-3001-7
10.1007/s12652-017-0667-1
10.1016/j.knosys.2017.11.039
10.1109/TCYB.2021.3051676
10.4218/etrij.17.0116.0305
10.1109/TSMCA.2005.851270
10.1016/j.engfailanal.2022.106096
10.1109/TSMC.2017.2759026
10.1016/j.enconman.2020.113456
10.1016/j.isatra.2019.09.020
10.1016/j.cja.2021.08.037
10.1016/j.ijar.2020.12.009
10.1007/978-3-319-11191-9_20
ContentType Journal Article
Copyright 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.32604/cmes.2023.025399
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (ProQuest)
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1526-1506
EndPage 1185
ExternalDocumentID 10.32604/cmes.2023.025399
10_32604_cmes_2023_025399
GroupedDBID -~X
AAFWJ
AAYXX
ABJCF
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
CCPQU
CITATION
EBS
EJD
F5P
IPNFZ
J9A
K7-
M7S
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
PUEGO
RIG
RTS
7SC
7TB
8FD
8FE
8FG
ABUWG
ARAPS
AZQEC
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
KR7
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c246t-da68e8a6acb39fa9f9c6113fcc8191734a96022799bfbf87628b8def0912ca5a3
IEDL.DBID UNPAY
ISSN 1526-1506
1526-1492
IngestDate Wed Oct 01 15:31:55 EDT 2025
Sat Sep 06 07:32:22 EDT 2025
Thu Apr 24 22:54:32 EDT 2025
Wed Oct 01 04:21:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-da68e8a6acb39fa9f9c6113fcc8191734a96022799bfbf87628b8def0912ca5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://file.techscience.com/files/CMES/2023/TSP_CMES-136-2/TSP_CMES_25399/TSP_CMES_25399.pdf
PQID 3200123596
PQPubID 2048798
PageCount 21
ParticipantIDs unpaywall_primary_10_32604_cmes_2023_025399
proquest_journals_3200123596
crossref_citationtrail_10_32604_cmes_2023_025399
crossref_primary_10_32604_cmes_2023_025399
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computer modeling in engineering & sciences
PublicationYear 2023
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Xu (ref12) 2020; 50
Zhang (ref8) 2022; 71
Wu (ref9) 2022; 140
Zhou (ref1) 2021; 47
Hu (ref7) 2016; 48
Chang (ref11) 2020; 15
Rudin (ref2) 2019; 1
Wang (ref25) 2022; 52
Cao (ref6) 2020; 29
You (ref5) 2022; 236
Wu (ref19) 2014; 8
Yang (ref16) 2017; 38
Yan X (ref18) 2021; 226
Yan (ref17) 2020; 225
Ren (ref24) 2022; 135
Qian (ref21) 2019; 10
Feng (ref20) 2020; 203
Zhang (ref15) 2017; 39
Yang (ref4) 2014
Yang (ref3) 2006; 36
Yang (ref14) 2018; 142
Wu (ref26) 2020; 99
Zhou (ref13) 2021; 64
Hu (ref23) 2021; 47
Chen (ref22) 2022; 35
Chang (ref10) 2020; 130
References_xml – volume: 15
  start-page: 1179
  year: 2020
  ident: ref11
  article-title: BRB prediction with customized attributes weights and tradeoff analysis for concurrent fault diagnosis
  publication-title: IEEE Systems Journal
  doi: 10.1109/JSYST.2020.2991161
– volume: 226
  start-page: 107142
  year: 2021
  ident: ref18
  article-title: Deep regularized variational autoencoder for intelligent fault diagnosis of rotor-bearing system within entire life-cycle process
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107142
– volume: 140
  start-page: 105104
  year: 2022
  ident: ref9
  article-title: AutoBRB: An automated belief rule base model for pathologic complete response prediction in gastric cancer
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2021.105104
– volume: 38
  start-page: 400
  year: 2017
  ident: ref16
  article-title: Belief rule base parameter training approach based on improved particle swarm optimization
  publication-title: Computer Engineering and Design
  doi: 10.16208/.jissn1000-7024.2017.02.023
– volume: 47
  start-page: 1201
  year: 2021
  ident: ref1
  article-title: The interpretability of rule-based modeling approach and its development
  publication-title: Acta Automatica Sinica
  doi: 10.16383/j.aas.c200402
– volume: 236
  start-page: 107491
  year: 2022
  ident: ref5
  article-title: Interpretability and accuracy trade-off in the modeling of belief rule-based systems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107491
– volume: 29
  start-page: 3489
  year: 2020
  ident: ref6
  article-title: On the interpretability of belief rule based expert systems
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2020.3024024
– volume: 71
  start-page: 3513212
  year: 2022
  ident: ref8
  article-title: BR-FRL: A belief rule-based fault recognition and location model for bus network systems
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2022.3173638
– volume: 8
  start-page: 989
  year: 2014
  ident: ref19
  article-title: Parameter training approach for belief rule base using the accelerating of gradient algorithm
  publication-title: Journal of Frontiers of Computer Science and Technology
  doi: 10.3778/j.issn.1673-9418.1403061
– volume: 1
  start-page: 206
  year: 2019
  ident: ref2
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nature Machine Intelligence
  doi: 10.1038/s42256-019-0048-x
– volume: 203
  start-page: 107055
  year: 2020
  ident: ref20
  article-title: A safety assessment model based on belief rule base with new optimization method
  publication-title: Reliability Engineering System Safety
  doi: 10.1016/j.ress.2020.107055
– volume: 47
  start-page: 1000
  year: 2021
  ident: ref23
  article-title: Fault diagnosis of oil-immersed transformer based on belief rule base
  publication-title: Journal of Beijing University of Technology
  doi: 10.11936/bjutxb2019100015
– volume: 48
  start-page: 404
  year: 2016
  ident: ref7
  article-title: A method for predicting the network security situation based on hidden BRB model and revised CMA-ES algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.05.046
– volume: 64
  start-page: 209
  year: 2021
  ident: ref13
  article-title: New health-state assessment model based on belief rule base with interpretability
  publication-title: Science China (Information Sciences)
  doi: 10.1007/s11432-020-3001-7
– volume: 10
  start-page: 841
  year: 2019
  ident: ref21
  article-title: An effective soft computing technology based on belief-rule-base and particle swarm optimization for tipping paper permeability measurement
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-017-0667-1
– volume: 142
  start-page: 220
  year: 2018
  ident: ref14
  article-title: A joint optimization method on parameter and structure for belief-rule-based systems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.11.039
– volume: 52
  start-page: 8088
  year: 2022
  ident: ref25
  article-title: A new evidential reasoning rule with continuous probability distribution of reliability
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2021.3051676
– volume: 39
  start-page: 592
  year: 2017
  ident: ref15
  article-title: Network intrusion detection based on directed acyclic graph and belief rule base
  publication-title: ETRI Journal
  doi: 10.4218/etrij.17.0116.0305
– volume: 36
  start-page: 266
  year: 2006
  ident: ref3
  article-title: Belief rule-base inference methodology using the evidential reasoning approach–RIMER
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMCA.2005.851270
– volume: 135
  start-page: 106096
  year: 2022
  ident: ref24
  article-title: Experimental investigation of the instantaneous contact welding failure phenomena and mechanisms for general-purpose relays
  publication-title: Engineering Failure Analysis
  doi: 10.1016/j.engfailanal.2022.106096
– volume: 50
  start-page: 656
  year: 2020
  ident: ref12
  article-title: A belief rule-based expert system for fault diagnosis of marine diesel engines
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2017.2759026
– volume: 225
  start-page: 113456
  year: 2020
  ident: ref17
  article-title: Multistep forecasting for diurnal wind speed based on hybrid deep learning model with improved singular spectrum decomposition
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2020.113456
– volume: 99
  start-page: 488
  year: 2020
  ident: ref26
  article-title: Incipient winding fault detection and diagnosis for squirrel-cage induction motors equipped on CRH trains
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2019.09.020
– volume: 35
  start-page: 158
  year: 2022
  ident: ref22
  article-title: A novel combination belief rule base model for mechanical equipment fault diagnosis
  publication-title: Chinese Journal of Aeronautics
  doi: 10.1016/j.cja.2021.08.037
– volume: 130
  start-page: 273
  year: 2020
  ident: ref10
  article-title: Belief rule mining using the evidential reasoning rule for medical diagnosis
  publication-title: International Journal of Approximate Reasoning
  doi: 10.1016/j.ijar.2020.12.009
– year: 2014
  ident: ref4
  publication-title: A study on generalising Bayesian inference to evidential reasoning
  doi: 10.1007/978-3-319-11191-9_20
SSID ssj0036389
Score 2.3645852
Snippet Fault diagnosis plays an irreplaceable role in the normal operation of equipment. A fault diagnosis model is often required to be interpretable for increasing...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1165
SubjectTerms Algorithms
Effectiveness
Expert systems
Fault diagnosis
Optimization
Parameters
Search algorithms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NTwIxEJ0gHPTitxFF04MnTQXaUujBGFAIMYEYIgm3TdttE5MVUFgN_952P4CT3tsepu3Mm-n0PYAbLRuWC2GxfyvETNUEVi4K4KbgoTJCG2J8aWAw5P0xe5k0JgUY5n9hfFtl7hMTRx3OtK-RVylJ_3UK_jj_xF41yr-u5hIaMpNWCB8SirEdKBHPjFWEUqc7fB3lvpn6-JwwqBKOXW5A0ndOB2FqrKo_jOfvJvTe4QCakMFuRaoN_NyNp3O5-pFRtBWJeoewn0FI1E73_AgKZnoMB7k8A8pu6wn02mg4-zYR6hgHNC0axZHBHRe1QtSTcbREz2mb3fsCDRIdaeSLsmjThpj0za5OYdzrvj31cSabgDVhfIlDyVumJbnUigorhRWa1-vUap0kZ5RJl7V44kChrLLeG7ZUKzTWIQfitk7SMyhOZ1NzDogZYx1gkExryprKwTWH75gwVBGuRdgsQy03UaAzTnEvbREFLrdIrBp4qwbeqkFq1TLcrqfMU0KNvwZXcrsH2d1aBJuTUIa79V78v9jF34tdwp4fnJZXKlBcfsXmygGOpbrOTtEvOmTSFA
  priority: 102
  providerName: ProQuest
Title A Novel Belief Rule-Based Fault Diagnosis Method with Interpretability
URI https://www.proquest.com/docview/3200123596
https://file.techscience.com/files/CMES/2023/TSP_CMES-136-2/TSP_CMES_25399/TSP_CMES_25399.pdf
UnpaywallVersion publishedVersion
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1526-1506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036389
  issn: 1526-1506
  databaseCode: ADMLS
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1526-1506
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0036389
  issn: 1526-1506
  databaseCode: BENPR
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFH-C9rDT-NimFbHKh51ATlPbdeNjC83QpFYVUIkdpsh2bGlaKBVNQHDY346dj8I4bNphtzh6sWS_F7_fs59_D-CzlgPLhbDYnxVipkKBlfMCeCh4qozQhhi_NTCd8bMF-3o1uNqC781dGM9GFHj60toBlIu1f7nunUwnFz5Wp73Li3niW7hPOSabZkI8zeqrZrBK7Ta0-cBB9Ra0F7P56FvJoUo4dtEB2TwPQl6dejpAE7KevjaezZvQICz7-d1vPYPRN8VyJR_uZZa98EvxDvxqRlSlo_wMilwF-vEV2eN_G_IuvK0RLRpVJrgHW2a5DztNtQhULx7vIB6h2c2dydDYONxr0XmRGTx2TjRFsSyyHJ1WWX8_1mhalrVGfo8YPWdFlmm8D-9hEU8uT85wXcUBa8J4jlPJIxNJLrWiwkphheb9PrVal7EiZdJpxvMYCmWV9YtzpKLUWAdkiLMkST9Aa3mzNB8BMWOswy-SaU3ZUDn06OAmE4YqwrVIhx0IGx0luqY495U2ssSFOqVaE6_WxM9oUqm1A0ebT1YVv8efhA8bxSf1r752otWFY8E7cLwxhr93dvBP0ofQym8L88khoFx1YTuKv3ShPZ7M5ufd2qqfAIm0APo
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TgMxEB1xFNBwI8LpAhqQIdjGiQuECBCFIxFCINEttteWkJYkkASUn-PbGO9BqKCiX1va2dmZN-PxewDbVh95qZSn4ayQClNW1GAWoBUlY-OUdcyF1kCzJRsP4urx6HEMPou7MGGssoiJaaCOOzb0yA84y-51KnnSfaVBNSqcrhYSGjqXVoiPU4qx_GLHtRt-YAnXO748x--9w1j94v6sQXOVAWqZkH0aa1l1VS21NVx5rbyy8vCQe2vTWoYLjSA_8Owp440PwaNqqrHzmGgZvqnmuO84TAouFBZ_k7WL1u1dkQt4wAMpYyuTFGsRlp2rImQqiwP74gJfOOP7iDt4Sj77IzOO4O7UoN3Vww-dJD8yX30OZnLISk4zH5uHMddegNlCDoLk0WER6qek1Xl3Cak5BLae3A0SR2uYJWNS14OkT86zsb7nHmmmutUkNIHJaOwxndMdLsHDvxhwGSbanbZbASKc8whQtLCWi4pBeIh4UijHDZNWxZUSlAsTRTbnMA9SGkmEtUxq1ShYNQpWjTKrlmD3e0k3I_D47eH1wu5R_i_3opHnlWDv-1v8vdnq75ttwVTjvnkT3Vy2rtdgOizMWjvrMNF_G7gNBDt9s5l7FIGn_3biL_JYD9M
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB60Hjz5FisqOXhSst0madoc66OI0CJqQQ-yJNkExLUWu6vowd9uso_6OCgevG2W2UAys5lvksk3ALtatiwXwmJ_VoiZCgVWzgvgtuCxMkIbYvzWQH_AT4bs9Kp1NQM31V0Yz0YUePrS0gHki7V_OWkc9o8vfKxOG5cXZ5Fv4SblmEybEfE0q9-awTi2szDHWw6q12BuODjrXuccqoRjFx2Q6XMr5MWppwM0IWvoe-PZvAkNwryfr37rA4zOZ6OxfHmWSfLJL_UW4a0aUZGOchdkqQr06zeyx38b8hIslIgWdQsTXIYZM1qBxapaBCoXj1XoddHg4ckk6MA43GvReZYYfOCcaIx6MktSdFRk_d1OUD8va438HjH6yIrM03hf1mDYO748PMFlFQesCeMpjiXvmI7kUisqrBRWaN5sUqt1HitSJp1mPI-hUFZZvzh3VCc21gEZ4ixJ0nWojR5GZgMQM8Y6_CKZ1pS1lUOPDm4yYagiXIu4XYew0lGkS4pzX2kjiVyok6s18mqN_IxGhVrrsDf9ZFzwe_wkvFUpPip_9YkTLS4cC16H_akx_N7Z5p-kt6CWPmZm2yGgVO2UdvwOk_X-aw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Belief+Rule-Based+Fault+Diagnosis+Method+with+Interpretability&rft.jtitle=Computer+modeling+in+engineering+%26+sciences&rft.au=Zhou%2C+Zhijie&rft.au=Ming%2C+Zhichao&rft.au=Wang%2C+Jie&rft.au=Tang%2C+Shuaiwen&rft.date=2023&rft.issn=1526-1506&rft.volume=136&rft.issue=2&rft.spage=1165&rft.epage=1185&rft_id=info:doi/10.32604%2Fcmes.2023.025399&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmes_2023_025399
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-1506&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-1506&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-1506&client=summon