Piezoelectric Touch Sensing and Random-Forest-Based Technique for Emotion Recognition

Emotion recognition, a process of automatic cognition of human emotions, has great potential to improve the degree of social intelligence. Among various recognition methods, emotion recognition based on touch event's temporal and force information receives global interests. Although previous st...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on computational social systems Vol. 11; no. 5; pp. 6296 - 6307
Main Authors Qi, Yuqing, Jia, Weichen, Feng, Lulei, Dai, Yanning, Tang, Chenyu, Zhou, Fuqiang, Gao, Shuo
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2329-924X
2373-7476
DOI10.1109/TCSS.2024.3392569

Cover

Abstract Emotion recognition, a process of automatic cognition of human emotions, has great potential to improve the degree of social intelligence. Among various recognition methods, emotion recognition based on touch event's temporal and force information receives global interests. Although previous studies have shown promise in the field of keystroke-based emotion recognition, they are limited by the need for long-term text input and the lack of high-precision force sensing technology, hindering their real-time performance and wider applicability. To address this issue, in this article, a piezoelectric-based keystroke dynamic technique is presented for quick emotion detection. The nature of piezoelectric materials enables high-resolution force detection. Meanwhile, the data collecting procedure is highly simplified because only the password entry is needed. International Affective Digitized Sounds (IADS) are applied to elicit users' emotions, and a pleasure-arousal-dominance (PAD) emotion scale is used to evaluate and label the degree of emotion induction. A random forest (RF)-based algorithm is used in order to reduce the training dataset and improve algorithm portability. Finally, an average recognition accuracy of 79.33% of four emotions (happiness, sadness, fear, and disgust) is experimentally achieved. The proposed technique improves the reliability and practicability of emotion recognition in realistic social systems.
AbstractList Emotion recognition, a process of automatic cognition of human emotions, has great potential to improve the degree of social intelligence. Among various recognition methods, emotion recognition based on touch event's temporal and force information receives global interests. Although previous studies have shown promise in the field of keystroke-based emotion recognition, they are limited by the need for long-term text input and the lack of high-precision force sensing technology, hindering their real-time performance and wider applicability. To address this issue, in this article, a piezoelectric-based keystroke dynamic technique is presented for quick emotion detection. The nature of piezoelectric materials enables high-resolution force detection. Meanwhile, the data collecting procedure is highly simplified because only the password entry is needed. International Affective Digitized Sounds (IADS) are applied to elicit users’ emotions, and a pleasure-arousal-dominance (PAD) emotion scale is used to evaluate and label the degree of emotion induction. A random forest (RF)-based algorithm is used in order to reduce the training dataset and improve algorithm portability. Finally, an average recognition accuracy of 79.33% of four emotions (happiness, sadness, fear, and disgust) is experimentally achieved. The proposed technique improves the reliability and practicability of emotion recognition in realistic social systems.
Author Jia, Weichen
Tang, Chenyu
Qi, Yuqing
Gao, Shuo
Dai, Yanning
Zhou, Fuqiang
Feng, Lulei
Author_xml – sequence: 1
  givenname: Yuqing
  orcidid: 0009-0002-4862-0404
  surname: Qi
  fullname: Qi, Yuqing
  email: qiyuqing123@qq.com
  organization: School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Weichen
  orcidid: 0009-0006-6567-7233
  surname: Jia
  fullname: Jia, Weichen
  email: jwc22@mails.tsinghua.edu.cn
  organization: Department of Precision Instrument, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Lulei
  orcidid: 0009-0001-7860-9882
  surname: Feng
  fullname: Feng, Lulei
  email: 15563081991@163.com
  organization: Peking University Shenzhen Graduated School, Shenzhen, China
– sequence: 4
  givenname: Yanning
  orcidid: 0000-0002-0463-1921
  surname: Dai
  fullname: Dai, Yanning
  email: yanningdai@buaa.edu.cn
  organization: School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
– sequence: 5
  givenname: Chenyu
  orcidid: 0000-0002-6368-5639
  surname: Tang
  fullname: Tang, Chenyu
  email: ct631@cam.ac.uk
  organization: University of Cambridge, Cambridge, U.K
– sequence: 6
  givenname: Fuqiang
  orcidid: 0000-0001-9341-9342
  surname: Zhou
  fullname: Zhou, Fuqiang
  email: zfq@buaa.edu.cn
  organization: School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
– sequence: 7
  givenname: Shuo
  orcidid: 0000-0003-3096-4700
  surname: Gao
  fullname: Gao, Shuo
  email: shuo_gao@buaa.edu.cn
  organization: School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
BookMark eNpNkE9PAjEQxRuDiYh8ABMPTTwvdvpnlx6VgJqQaGBJvDW7ZRaWQIvtctBP727g4GXmHd6befndkp7zDgm5BzYCYPopnyyXI864HAmhuUr1FelzkYkkk1na6zTXieby64YMY9wxxoArlXHWJ6vPGn897tE2obY09ye7pUt0sXYbWrg1XbTDH5KZDxib5KWIuKY52q2rv09IKx_o9OCb2ju6QOs3ru70Hbmuin3E4WUPyGo2zSdvyfzj9X3yPE8sl2mTWGSqqGRZWF7xqkSVYsmtLEtQGSiuMAU2ZpgVY27XzKIAKUoFotIIZcZSMSCP57vH4Ns6sTE7fwqufWkEAOegQXYuOLts8DEGrMwx1Ici_BhgpgNoOoCmA2guANvMwzlTI-I_vxK6xSf-AC_KbnU
CODEN ITCSGL
Cites_doi 10.1016/j.sna.2018.04.014
10.1109/TII.2019.2955447
10.1109/EIRCON51178.2020.9253751
10.2307/1939922
10.1109/TCSS.2022.3153660
10.1109/INFOCOMWKSHPS51825.2021.9484550
10.1016/j.conb.2010.03.003
10.3813/AAA.918811
10.1109/i-smac.2017.8058304
10.1109/ACCESS.2021.3132233
10.23919/ICACT.2019.8701930
10.1109/FLEPS49123.2020.9239559
10.1109/tcss.2022.3228649
10.1145/3123818.3123852
10.1109/TAFFC.2018.2858255
10.1109/JEDS.2019.2939912
10.1109/ITAIC49862.2020.9338847
10.1109/JEDS.2018.2848917
10.1080/02699930903274322
10.1146/annurev.psych.58.110405.085709
10.1111/j.1467-9280.2007.02024.x
10.1109/JSEN.2020.3028075
10.2196/10104
10.1109/FSKD.2016.7603434
10.1145/2395131.2395138
10.1109/TCSS.2021.3130401
10.1016/j.ijhcs.2019.04.005
10.1109/ACCESS.2019.2891579
10.1145/1978942.1979046
10.1109/TITB.2009.2034649
10.1109/JSEN.2018.2870396
10.1007/BF02686918
10.1016/0092-6566(77)90037-X
10.3758/s13428-012-0310-1
10.1109/CCNC.2012.6181098
10.1109/TASLP.2017.2759338
10.1177/1550147718767794
10.1177/1754073911410740
10.1037/0033-295X.110.1.145
10.3758/s13428-018-1027-6
10.1109/JSEN.2021.3136902
10.1109/JSEN.2020.2982532
10.1109/tcss.2022.3221128
10.1109/T-AFFC.2010.16
10.1109/ICNSC.2012.6204931
10.1109/ACII.2015.7344693
10.1109/CW.2010.65
10.1177/154405910408300516
10.1109/TCSS.2014.2384216
10.1109/TCSS.2021.3127935
10.3758/BRM.40.1.315
10.1109/SeGAH.2019.8882461
10.1038/s41598-017-08721-4
10.1021/acsami.7b03437
10.1109/TIP.2015.2416634
10.1109/TPAMI.2008.26
10.1109/TAFFC.2018.2880201
10.1037/h0077714
10.1007/11573548_66
10.1109/CCNC.2009.4784783
10.1109/ACCESS.2016.2628407
10.1109/ACIIAsia.2018.8470311
10.2174/1573400515666190822110933
10.1109/PerComW.2012.6197525
10.1109/TASLP.2015.2438535
10.1109/TCDS.2020.2999337
10.1109/JSEN.2020.3001382
10.1109/TCDS.2020.2976112
10.1017/9781108686532
10.1109/tcss.2022.3200060
10.1109/JSEN.2019.2962874
10.1109/ACCESS.2016.2591535
10.1080/02699939208411068
10.1109/ACCESS.2018.2885073
10.1109/ICECCT.2017.8117872
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSS.2024.3392569
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Social Sciences (General)
EISSN 2373-7476
EndPage 6307
ExternalDocumentID 10_1109_TCSS_2024_3392569
10539000
Genre orig-research
GrantInformation_xml – fundername: Beihang University
  grantid: KG12090401; ZG216S19C8
  funderid: 10.13039/501100002358
– fundername: National Natural Science Foundation
  grantid: 62171014; 61803017
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c246t-ce05af4bac2f2fbe56eb2c4bb1571525e61080e7a82cd0ce3143b513f9e1b7063
IEDL.DBID RIE
ISSN 2329-924X
IngestDate Mon Jun 30 15:32:26 EDT 2025
Tue Oct 07 10:03:10 EDT 2025
Wed Aug 27 03:00:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-ce05af4bac2f2fbe56eb2c4bb1571525e61080e7a82cd0ce3143b513f9e1b7063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-7860-9882
0000-0003-3096-4700
0000-0002-0463-1921
0000-0001-9341-9342
0009-0002-4862-0404
0009-0006-6567-7233
0000-0002-6368-5639
PQID 3112219146
PQPubID 2040411
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCSS_2024_3392569
proquest_journals_3112219146
ieee_primary_10539000
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on computational social systems
PublicationTitleAbbrev TCSS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref53
Detwiler (ref51) 2021
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Mehrabian (ref58) 1995; 121
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Lang (ref60) 1997; 1
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
Jaya (ref76) 2021
ref28
ref27
ref29
ref62
ref61
References_xml – ident: ref43
  doi: 10.1016/j.sna.2018.04.014
– ident: ref13
  doi: 10.1109/TII.2019.2955447
– ident: ref73
  doi: 10.1109/EIRCON51178.2020.9253751
– ident: ref75
  doi: 10.2307/1939922
– ident: ref8
  doi: 10.1109/TCSS.2022.3153660
– ident: ref29
  doi: 10.1109/INFOCOMWKSHPS51825.2021.9484550
– ident: ref32
  doi: 10.1016/j.conb.2010.03.003
– ident: ref64
  doi: 10.3813/AAA.918811
– ident: ref72
  doi: 10.1109/i-smac.2017.8058304
– ident: ref31
  doi: 10.1109/ACCESS.2021.3132233
– ident: ref41
  doi: 10.23919/ICACT.2019.8701930
– ident: ref78
  doi: 10.1109/FLEPS49123.2020.9239559
– ident: ref4
  doi: 10.1109/tcss.2022.3228649
– ident: ref1
  doi: 10.1145/3123818.3123852
– ident: ref26
  doi: 10.1109/TAFFC.2018.2858255
– ident: ref49
  doi: 10.1109/JEDS.2019.2939912
– ident: ref30
  doi: 10.1109/ITAIC49862.2020.9338847
– ident: ref48
  doi: 10.1109/JEDS.2018.2848917
– ident: ref62
  doi: 10.1080/02699930903274322
– ident: ref57
  doi: 10.1146/annurev.psych.58.110405.085709
– ident: ref56
  doi: 10.1111/j.1467-9280.2007.02024.x
– ident: ref20
  doi: 10.1109/JSEN.2020.3028075
– ident: ref39
  doi: 10.2196/10104
– ident: ref37
  doi: 10.1109/FSKD.2016.7603434
– ident: ref35
  doi: 10.1145/2395131.2395138
– ident: ref2
  doi: 10.1109/TCSS.2021.3130401
– ident: ref40
  doi: 10.1016/j.ijhcs.2019.04.005
– ident: ref12
  doi: 10.1109/ACCESS.2019.2891579
– ident: ref50
  doi: 10.1145/1978942.1979046
– ident: ref10
  doi: 10.1109/TITB.2009.2034649
– ident: ref44
  doi: 10.1109/JSEN.2018.2870396
– year: 2021
  ident: ref51
  article-title: iPhone 6S teardown reveals upgrades galore similar hardware layout
– ident: ref67
  doi: 10.1007/BF02686918
– ident: ref59
  doi: 10.1016/0092-6566(77)90037-X
– ident: ref63
  doi: 10.3758/s13428-012-0310-1
– ident: ref34
  doi: 10.1109/CCNC.2012.6181098
– ident: ref23
  doi: 10.1109/TASLP.2017.2759338
– ident: ref42
  doi: 10.1177/1550147718767794
– ident: ref53
  doi: 10.1177/1754073911410740
– ident: ref55
  doi: 10.1037/0033-295X.110.1.145
– ident: ref65
  doi: 10.3758/s13428-018-1027-6
– ident: ref79
  doi: 10.1109/JSEN.2021.3136902
– ident: ref47
  doi: 10.1109/JSEN.2020.2982532
– volume: 121
  start-page: 339
  issue: 3
  year: 1995
  ident: ref58
  article-title: Framework for a comprehensive description and measurement of emotional states
  publication-title: Genet. Soc. Gen. Psychol. Monogr.
– ident: ref7
  doi: 10.1109/tcss.2022.3221128
– ident: ref21
  doi: 10.1109/T-AFFC.2010.16
– ident: ref11
  doi: 10.1109/ICNSC.2012.6204931
– ident: ref36
  doi: 10.1109/ACII.2015.7344693
– ident: ref16
  doi: 10.1109/CW.2010.65
– ident: ref77
  doi: 10.1177/154405910408300516
– start-page: 35
  volume-title: Appl. Artif. Intel. Smart Tech.
  year: 2021
  ident: ref76
  article-title: An analysis of pattern recognition and machine learning approaches on medical images
– ident: ref5
  doi: 10.1109/TCSS.2014.2384216
– ident: ref6
  doi: 10.1109/TCSS.2021.3127935
– ident: ref61
  doi: 10.3758/BRM.40.1.315
– volume: 1
  volume-title: NIMH Center Study Emotion Attention
  year: 1997
  ident: ref60
  article-title: International Affective Picture System (IAPS): Technical manual and affective ratings
– ident: ref25
  doi: 10.1109/SeGAH.2019.8882461
– ident: ref33
  doi: 10.1038/s41598-017-08721-4
– ident: ref69
  doi: 10.1021/acsami.7b03437
– ident: ref17
  doi: 10.1109/TIP.2015.2416634
– ident: ref9
  doi: 10.1109/TPAMI.2008.26
– ident: ref19
  doi: 10.1109/TAFFC.2018.2880201
– ident: ref54
  doi: 10.1037/h0077714
– ident: ref68
  doi: 10.1007/11573548_66
– ident: ref71
  doi: 10.1109/CCNC.2009.4784783
– ident: ref18
  doi: 10.1109/ACCESS.2016.2628407
– ident: ref24
  doi: 10.1109/ACIIAsia.2018.8470311
– ident: ref66
  doi: 10.2174/1573400515666190822110933
– ident: ref70
  doi: 10.1109/PerComW.2012.6197525
– ident: ref22
  doi: 10.1109/TASLP.2015.2438535
– ident: ref14
  doi: 10.1109/TCDS.2020.2999337
– ident: ref45
  doi: 10.1109/JSEN.2020.3001382
– ident: ref15
  doi: 10.1109/TCDS.2020.2976112
– ident: ref74
  doi: 10.1017/9781108686532
– ident: ref3
  doi: 10.1109/tcss.2022.3200060
– ident: ref27
  doi: 10.1109/JSEN.2019.2962874
– ident: ref46
  doi: 10.1109/ACCESS.2016.2591535
– ident: ref52
  doi: 10.1080/02699939208411068
– ident: ref28
  doi: 10.1109/ACCESS.2018.2885073
– ident: ref38
  doi: 10.1109/ICECCT.2017.8117872
SSID ssj0001255720
Score 2.3045082
Snippet Emotion recognition, a process of automatic cognition of human emotions, has great potential to improve the degree of social intelligence. Among various...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 6296
SubjectTerms Algorithms
Arousal
Cognition
Electrodes
Emotion recognition
Emotions
Feature extraction
Force
Games
Keystroke dynamics
Machine learning
Piezoelectric devices
piezoelectric touch panel
Piezoelectricity
Real time
Sensors
Smart phones
System reliability
Title Piezoelectric Touch Sensing and Random-Forest-Based Technique for Emotion Recognition
URI https://ieeexplore.ieee.org/document/10539000
https://www.proquest.com/docview/3112219146
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2373-7476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001255720
  issn: 2329-924X
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJy_-nFidkoMHFVr7K0l71LExBIdsHexWkvRVh9CKay_7602aFoYieCk9tCHkvSTvJd_7PoRu_FBQpnzD9ggXdghuboucZDZ4jAVcc6BRXTv8MqPTZfi8Iqu2WL2phQGABnwGjn5t7vKzUtb6qEzNcBJokcse6rGImmKtnQMVQpjf3Vx6bvyQjBYLlQH6oROoKIBoTPPO3tOIqfxagZttZXKIZl2HDJrkw6kr4cjtD67Gf_f4CB20ASZ-NB5xjPagOEGWqcLF7Uze4NuWbvruFC1f17AtjRzOWuKkrOU7Xmhce_GGeZHhuXqolVSLeG4q-0ltexlOOupXrIJePDZaQHjeoZHKYoCWk3Eymtqt2IIt_ZBWtgSX8DwUXPq5nwsgVOXcMhTCI0xrJAHVaERgPPJl5koIVKAliBfkMXiCqUDnDPWLsoBzhCGSQKnLeMxV8gc55xEF1ZKmxhHAXAvdd2ZIPw2nRtrkIm6capul2mZpazMLDfSw7nxoRtRCw85yaTvtNmmgokdfM9bRiz9-u0T7unUDxxuifvVVw5UKKypx3bjTN_kbywI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHODCjiirDxwAKSWLl_YIiKpsFaKpxC2ynQlUSAmi6aVfjx0nUgVC4hLlkMXyjO039pt5AKchVVwY3_ACJpVH0c88lbHUw0CISNoaaNzmDj8NeH9E71_Za52sXuXCIGJFPsO2va3O8tNCT-1WmRnhLLIil4uwzCilzKVrzW2pMCbC5uwy8LuX8c1waGLAkLYjgwOYZTXPrT6VnMqvObhaWHrrMGia5PgkH-1pqdp69qNa47_bvAFrNcQkV84nNmEB8y1ouTxcUo_lCTmrC06fb8PoeYyzwgnijDWJi6l-J0PLbM_fiMxT8mIuZi61Mp6T0rs2C19K4qb4KzGwl9w6NSDy0vCRinwHRr3b-Kbv1XILng4pLz2NPpMZVVKHWZgpZNxE3ZoqFTBhVZKQWz4iCtkJdeprjAzUUiyIsi4GShioswtLeZHjHhDsaOTcF7IrTfiHmZQdjuZLtjiOQuG34KIxQ_LpqmokVTTidxNrs8TaLKlt1oId261zD7oebcFhY7mkHniTJDL4MbQ16_j-H6-dwEo_fnpMHu8GDwewav_kyHmHsFR-TfHIgIxSHVeu9Q3ECM5P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezoelectric+Touch+Sensing+and+Random-Forest-Based+Technique+for+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+computational+social+systems&rft.au=Qi%2C+Yuqing&rft.au=Jia%2C+Weichen&rft.au=Feng%2C+Lulei&rft.au=Dai%2C+Yanning&rft.date=2024-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2373-7476&rft.volume=11&rft.issue=5&rft.spage=6296&rft_id=info:doi/10.1109%2FTCSS.2024.3392569&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-924X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-924X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-924X&client=summon