Unifying Obstacle Avoidance and Tracking Control of Redundant Manipulators Subject to Joint Constraints: A New Data-Driven Scheme

In modern manufacturing, redundant manipulators have been widely deployed. Performing a task often requires the manipulator to follow specific trajectories while avoiding surrounding obstacles. Different from most existing obstacle-avoidance (OA) schemes that rely on the kinematic model of redundant...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive and developmental systems Vol. 16; no. 5; pp. 1861 - 1871
Main Authors Yu, Peng, Tan, Ning, Zhong, Zhaohui, Hu, Cong, Qiu, Binbin, Li, Changsheng
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2379-8920
2379-8939
DOI10.1109/TCDS.2024.3387575

Cover

Abstract In modern manufacturing, redundant manipulators have been widely deployed. Performing a task often requires the manipulator to follow specific trajectories while avoiding surrounding obstacles. Different from most existing obstacle-avoidance (OA) schemes that rely on the kinematic model of redundant manipulators, in this article, we propose a new data-driven obstacle-avoidance (DDOA) scheme for the collision-free tracking control of redundant manipulators. The OA task is formulated as a quadratic programming problem with inequality constraints. Then, the objectives of obstacle avoidance and tracking control are unitedly transformed into a computation problem of solving a system including three recurrent neural networks. With the Jacobian estimators designed based on zeroing neural networks, the manipulator Jacobian and critical-point Jacobian can be estimated in a data-driven way without knowing the kinematic model. Finally, the effectiveness of the proposed scheme is validated through extensive simulations and experiments.
AbstractList In modern manufacturing, redundant manipulators have been widely deployed. Performing a task often requires the manipulator to follow specific trajectories while avoiding surrounding obstacles. Different from most existing obstacle-avoidance (OA) schemes that rely on the kinematic model of redundant manipulators, in this article, we propose a new data-driven obstacle-avoidance (DDOA) scheme for the collision-free tracking control of redundant manipulators. The OA task is formulated as a quadratic programming problem with inequality constraints. Then, the objectives of obstacle avoidance and tracking control are unitedly transformed into a computation problem of solving a system including three recurrent neural networks. With the Jacobian estimators designed based on zeroing neural networks, the manipulator Jacobian and critical-point Jacobian can be estimated in a data-driven way without knowing the kinematic model. Finally, the effectiveness of the proposed scheme is validated through extensive simulations and experiments.
Author Hu, Cong
Tan, Ning
Yu, Peng
Qiu, Binbin
Zhong, Zhaohui
Li, Changsheng
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0001-6310-514X
  surname: Yu
  fullname: Yu, Peng
  organization: School of Computer Science and Engineering & the Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, Sun Yat-sen University, Guangzhou, China
– sequence: 2
  givenname: Ning
  orcidid: 0000-0003-0710-6409
  surname: Tan
  fullname: Tan, Ning
  email: tann5@mail.sysu.edu.cn
  organization: School of Computer Science and Engineering & the Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, Sun Yat-sen University, Guangzhou, China
– sequence: 3
  givenname: Zhaohui
  orcidid: 0000-0003-0382-5350
  surname: Zhong
  fullname: Zhong, Zhaohui
  organization: School of Computer Science and Engineering & the Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, Sun Yat-sen University, Guangzhou, China
– sequence: 4
  givenname: Cong
  orcidid: 0000-0003-1846-2812
  surname: Hu
  fullname: Hu, Cong
  organization: Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, China
– sequence: 5
  givenname: Binbin
  orcidid: 0000-0002-9932-3306
  surname: Qiu
  fullname: Qiu, Binbin
  organization: School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, China
– sequence: 6
  givenname: Changsheng
  orcidid: 0000-0003-2469-4222
  surname: Li
  fullname: Li, Changsheng
  email: lics@bit.edu.cn
  organization: School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
BookMark eNpNkEtPwzAQhC1UJAr0ByBxsMQ5xY8kdrhVLU8VKtFyjhxnDSmtXWyniCP_nFRFiNOONN_saucY9ayzgNAZJUNKSXG5GE_mQ0ZYOuRcikxkB6jPuCgSWfCi96cZOUKDEJaEEJpzIVPRR98vtjFfjX3FsypEpVeAR1vX1MpqwMrWeOGVft_5Y2ejdyvsDH6GurUdEvGjss2mXanofMDztlqCjjg6_OCazu0iIXrVyXCFR_gJPvFERZVMfLMFi-f6DdZwig6NWgUY_M4T9HJzvRjfJdPZ7f14NE00S_OYVNJIAYTVNMuYTkkmul-JlpXkIlN1ljMmNRgjasJlpWRmTFoLVtEiJ4bUhp-gi_3ejXcfLYRYLl3rbXey5JQKynNJWUfRPaW9C8GDKTe-WSv_VVJS7soud2WXu7LL37K7zPk-0wDAPz4tBJWE_wCmGH1g
CODEN ITCDA4
Cites_doi 10.1109/TSMC.2017.2693400
10.1016/j.isatra.2023.03.042
10.1109/ROBIO.2006.340144
10.1089/soro.2021.0148
10.1109/TIE.2022.3165279
10.1017/S0263574714001349
10.1109/TCDS.2022.3182534
10.3389/fnbot.2019.00047
10.1007/s11590-022-01952-z
10.1109/TCDS.2022.3149622
10.1109/TSMCB.2004.830347
10.1109/TII.2019.2941916
10.1109/TSMC.2018.2836968
10.1109/TSMC.2021.3107898
10.1109/TSMCC.2012.2183868
10.1109/TAC.2021.3090749
10.1109/TIE.2017.2774720
10.34133/2022/9806328
10.1109/TII.2019.2922694
10.1007/s00500-020-05304-w
10.34133/2021/9843894
10.1007/978-3-662-47334-4
10.1007/s11075-022-01279-x
10.1109/TCDS.2023.3242373
10.1109/TII.2020.2976844
10.1109/TNNLS.2022.3164727
10.1109/TCST.2022.3145645
10.1109/TIE.2014.2331036
10.1109/ICMA.2018.8484351
10.1109/TNNLS.2020.2980038
10.1109/CCDC52312.2021.9602238
10.3389/fnbot.2019.00050
10.1109/TIE.2022.3156037
10.1016/j.conengprac.2017.12.011
10.1109/TCDS.2022.3215093
10.1109/JAS.2022.105869
10.1109/ICMA.2011.5985617
10.1109/ACC.2005.1470152
10.1109/TII.2021.3109426
10.1007/978-3-031-13841-6_26
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCDS.2024.3387575
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2379-8939
EndPage 1871
ExternalDocumentID 10_1109_TCDS_2024_3387575
10497180
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62173352; 62006254
  funderid: 10.13039/501100001809
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation
  grantid: 2021A1515012314
  funderid: 10.13039/501100021171
– fundername: Guangxi Key Laboratory of Automatic Detecting Technology and Instruments
  grantid: YQ23207
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c246t-b8f87e02d1552c40573380c8b8375ad56228ceff7d038ba85ff4d72b1960f0df3
IEDL.DBID RIE
ISSN 2379-8920
IngestDate Mon Jun 30 10:15:44 EDT 2025
Wed Oct 01 01:52:39 EDT 2025
Wed Aug 27 02:18:04 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-b8f87e02d1552c40573380c8b8375ad56228ceff7d038ba85ff4d72b1960f0df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0710-6409
0000-0003-1846-2812
0000-0001-6310-514X
0000-0002-9932-3306
0000-0003-2469-4222
0000-0003-0382-5350
PQID 3117136812
PQPubID 85513
PageCount 11
ParticipantIDs proquest_journals_3117136812
ieee_primary_10497180
crossref_primary_10_1109_TCDS_2024_3387575
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cognitive and developmental systems
PublicationTitleAbbrev TCDS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
Zhang (ref14) 2002
ref15
ref37
ref36
ref31
ref30
ref11
ref33
ref10
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
Emaru (ref32) 2008
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref12
  doi: 10.1109/TSMC.2017.2693400
– ident: ref13
  doi: 10.1016/j.isatra.2023.03.042
– ident: ref15
  doi: 10.1109/ROBIO.2006.340144
– ident: ref2
  doi: 10.1089/soro.2021.0148
– ident: ref40
  doi: 10.1109/TIE.2022.3165279
– ident: ref6
  doi: 10.1017/S0263574714001349
– ident: ref10
  doi: 10.1109/TCDS.2022.3182534
– year: 2002
  ident: ref14
  article-title: Analysis and design of recurrent neural networks and their applications to control and robotic systems
– ident: ref27
  doi: 10.3389/fnbot.2019.00047
– ident: ref36
  doi: 10.1007/s11590-022-01952-z
– ident: ref25
  doi: 10.1109/TCDS.2022.3149622
– ident: ref29
  doi: 10.1109/TSMCB.2004.830347
– ident: ref26
  doi: 10.1109/TII.2019.2941916
– ident: ref1
  doi: 10.1109/TSMC.2018.2836968
– ident: ref28
  doi: 10.1109/TSMC.2021.3107898
– ident: ref16
  doi: 10.1109/TSMCC.2012.2183868
– ident: ref38
  doi: 10.1109/TAC.2021.3090749
– ident: ref23
  doi: 10.1109/TIE.2017.2774720
– ident: ref24
  doi: 10.34133/2022/9806328
– ident: ref18
  doi: 10.1109/TII.2019.2922694
– ident: ref37
  doi: 10.1007/s00500-020-05304-w
– ident: ref22
  doi: 10.34133/2021/9843894
– ident: ref31
  doi: 10.1007/978-3-662-47334-4
– ident: ref35
  doi: 10.1007/s11075-022-01279-x
– ident: ref20
  doi: 10.1109/TCDS.2023.3242373
– ident: ref21
  doi: 10.1109/TII.2020.2976844
– ident: ref34
  doi: 10.1109/TNNLS.2022.3164727
– ident: ref3
  doi: 10.1109/TCST.2022.3145645
– ident: ref17
  doi: 10.1109/TIE.2014.2331036
– ident: ref8
  doi: 10.1109/ICMA.2018.8484351
– ident: ref9
  doi: 10.1109/TNNLS.2020.2980038
– ident: ref42
  doi: 10.1109/CCDC52312.2021.9602238
– ident: ref11
  doi: 10.3389/fnbot.2019.00050
– ident: ref19
  doi: 10.1109/TIE.2022.3156037
– ident: ref33
  doi: 10.1016/j.conengprac.2017.12.011
– ident: ref5
  doi: 10.1109/TCDS.2022.3215093
– start-page: 212
  volume-title: Proc. Asia Int. Symp. Mechatron.
  year: 2008
  ident: ref32
  article-title: Estimation of velocity and acceleration by nonlinear filter using sliding mode and application to control systems
– ident: ref41
  doi: 10.1109/JAS.2022.105869
– ident: ref7
  doi: 10.1109/ICMA.2011.5985617
– ident: ref30
  doi: 10.1109/ACC.2005.1470152
– ident: ref4
  doi: 10.1109/TII.2021.3109426
– ident: ref39
  doi: 10.1007/978-3-031-13841-6_26
SSID ssj0001637847
Score 2.3316536
Snippet In modern manufacturing, redundant manipulators have been widely deployed. Performing a task often requires the manipulator to follow specific trajectories...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1861
SubjectTerms Collision avoidance
Constraints
Data-driven control
End effectors
Jacobian matrices
Kinematics
Manipulator Jacobians
Obstacle avoidance
obstacle avoidance (OA)
Quadratic programming
Recurrent neural networks
Redundancy
redundant manipulator
Robot arms
Robots
Task analysis
Tracking control
Trajectory
zeroing neural network (ZNN)
Title Unifying Obstacle Avoidance and Tracking Control of Redundant Manipulators Subject to Joint Constraints: A New Data-Driven Scheme
URI https://ieeexplore.ieee.org/document/10497180
https://www.proquest.com/docview/3117136812
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2379-8939
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001637847
  issn: 2379-8920
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZtTr2kj6R0m7TMIeRQ8NYryZac27KbEAJJIA_IzegJS4lddr2B9tZ_nhnZS0NDoDeDZSM0D803T8YOyK9WGoNIVcmYyeBtZkxRZk4K4aVDE19QNfL5RXl6K8_uiruhWD3VwoQQUvJZGNNjiuX71q3JVYYSLivUpYjQXytV9cVafx0qpVA6DRTjQlWZrvgmijnJq-83s_k1okEux4jJVEFphU_uoTRY5Zk2TlfMyVt2sdlcn1nyY7zu7Nj9_qdv43_v_h3bHoxNmPbc8Z69Cs0HtjNtEGjf_4JDSOmfya--w_6g9ZlqnuDSosWI62H60C48cQWYxgPeao786jDrs9uhjXAVqAgNiQPnplmkUWDtcgWojci9A10LZ-0C39JY0DSMolsdwRRQs8LcdCabL0nZwjVyzn3YZbcnxzez02yYz5A5LssuszpqFXLuqY2bk6m1os6dtgh6C-PRsuLahRiVz4W2RhcxSq-4RaHPY-6j-Mi2mrYJnxhE7rijiN1EOOmNrLy2zrrcEJ4zXozYtw216p99G446wZe8qom0NZG2Hkg7Yrt0-k8W9gc_YvsbAteDpK5qMZkgTqcubJ9f-GyPvaG_9xl8-2yrW67DF7REOvs1ceAjuCfa9A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na9RAFB-kPejFr1Zc2-o7iAcha3Zmkkx6W3Yta-2uYLfQW5hPWKSJ7GYLevM_73uTLBZF8BbIhAzzPub93idjb8mvlmuNSLWQIZHemUTrLE-sFMJJiya-oGrk-SKfXcnz6-y6L1aPtTDe-5h85of0GGP5rrFbcpWhhMsSdSki9P0MYUXRlWv9dqnkolBxpBgXRZmoku_imKO0_LCcTC8RD3I5RFRWZJRYeO8miqNV_tLH8ZI5e8IWu-11uSXfhtvWDO3PPzo3_vf-n7LHvbkJ444_nrEHvn7ODsY1Qu2bH_AOYgJo9KwfsF9of8aqJ_hi0GbE9TC-bVaO-AJ07QDvNUuedZh0-e3QBPjqqQwNyQNzXa_iMLBmvQHUR-TggbaB82aFb2kwaBxH0W5OYQyoW2GqW51M16Ru4RJ558Yfsquzj8vJLOknNCSWy7xNjAqq8Cl31MjNythcUaVWGYS9mXZoW3FlfQiFS4UyWmUhSFdwg2KfhtQF8YLt1U3tXzII3HJLMbuRsNJpWTplrLGpJkSnnRiw9ztqVd-7RhxVBDBpWRFpKyJt1ZN2wA7p9O8t7A5-wI53BK56Wd1UYjRCpE592F7947M37OFsOb-oLj4tPh-xR_SnLp_vmO21660_QbukNa8jN94BYWfeRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unifying+Obstacle+Avoidance+and+Tracking+Control+of+Redundant+Manipulators+Subject+to+Joint+Constraints%3A+A+New+Data-Driven+Scheme&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Yu%2C+Peng&rft.au=Tan%2C+Ning&rft.au=Zhong%2C+Zhaohui&rft.au=Hu%2C+Cong&rft.date=2024-10-01&rft.pub=IEEE&rft.issn=2379-8920&rft.volume=16&rft.issue=5&rft.spage=1861&rft.epage=1871&rft_id=info:doi/10.1109%2FTCDS.2024.3387575&rft.externalDocID=10497180
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon