Unifying Obstacle Avoidance and Tracking Control of Redundant Manipulators Subject to Joint Constraints: A New Data-Driven Scheme
In modern manufacturing, redundant manipulators have been widely deployed. Performing a task often requires the manipulator to follow specific trajectories while avoiding surrounding obstacles. Different from most existing obstacle-avoidance (OA) schemes that rely on the kinematic model of redundant...
Saved in:
Published in | IEEE transactions on cognitive and developmental systems Vol. 16; no. 5; pp. 1861 - 1871 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2379-8920 2379-8939 |
DOI | 10.1109/TCDS.2024.3387575 |
Cover
Abstract | In modern manufacturing, redundant manipulators have been widely deployed. Performing a task often requires the manipulator to follow specific trajectories while avoiding surrounding obstacles. Different from most existing obstacle-avoidance (OA) schemes that rely on the kinematic model of redundant manipulators, in this article, we propose a new data-driven obstacle-avoidance (DDOA) scheme for the collision-free tracking control of redundant manipulators. The OA task is formulated as a quadratic programming problem with inequality constraints. Then, the objectives of obstacle avoidance and tracking control are unitedly transformed into a computation problem of solving a system including three recurrent neural networks. With the Jacobian estimators designed based on zeroing neural networks, the manipulator Jacobian and critical-point Jacobian can be estimated in a data-driven way without knowing the kinematic model. Finally, the effectiveness of the proposed scheme is validated through extensive simulations and experiments. |
---|---|
AbstractList | In modern manufacturing, redundant manipulators have been widely deployed. Performing a task often requires the manipulator to follow specific trajectories while avoiding surrounding obstacles. Different from most existing obstacle-avoidance (OA) schemes that rely on the kinematic model of redundant manipulators, in this article, we propose a new data-driven obstacle-avoidance (DDOA) scheme for the collision-free tracking control of redundant manipulators. The OA task is formulated as a quadratic programming problem with inequality constraints. Then, the objectives of obstacle avoidance and tracking control are unitedly transformed into a computation problem of solving a system including three recurrent neural networks. With the Jacobian estimators designed based on zeroing neural networks, the manipulator Jacobian and critical-point Jacobian can be estimated in a data-driven way without knowing the kinematic model. Finally, the effectiveness of the proposed scheme is validated through extensive simulations and experiments. |
Author | Hu, Cong Tan, Ning Yu, Peng Qiu, Binbin Zhong, Zhaohui Li, Changsheng |
Author_xml | – sequence: 1 givenname: Peng orcidid: 0000-0001-6310-514X surname: Yu fullname: Yu, Peng organization: School of Computer Science and Engineering & the Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, Sun Yat-sen University, Guangzhou, China – sequence: 2 givenname: Ning orcidid: 0000-0003-0710-6409 surname: Tan fullname: Tan, Ning email: tann5@mail.sysu.edu.cn organization: School of Computer Science and Engineering & the Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, Sun Yat-sen University, Guangzhou, China – sequence: 3 givenname: Zhaohui orcidid: 0000-0003-0382-5350 surname: Zhong fullname: Zhong, Zhaohui organization: School of Computer Science and Engineering & the Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, Sun Yat-sen University, Guangzhou, China – sequence: 4 givenname: Cong orcidid: 0000-0003-1846-2812 surname: Hu fullname: Hu, Cong organization: Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, China – sequence: 5 givenname: Binbin orcidid: 0000-0002-9932-3306 surname: Qiu fullname: Qiu, Binbin organization: School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, China – sequence: 6 givenname: Changsheng orcidid: 0000-0003-2469-4222 surname: Li fullname: Li, Changsheng email: lics@bit.edu.cn organization: School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China |
BookMark | eNpNkEtPwzAQhC1UJAr0ByBxsMQ5xY8kdrhVLU8VKtFyjhxnDSmtXWyniCP_nFRFiNOONN_saucY9ayzgNAZJUNKSXG5GE_mQ0ZYOuRcikxkB6jPuCgSWfCi96cZOUKDEJaEEJpzIVPRR98vtjFfjX3FsypEpVeAR1vX1MpqwMrWeOGVft_5Y2ejdyvsDH6GurUdEvGjss2mXanofMDztlqCjjg6_OCazu0iIXrVyXCFR_gJPvFERZVMfLMFi-f6DdZwig6NWgUY_M4T9HJzvRjfJdPZ7f14NE00S_OYVNJIAYTVNMuYTkkmul-JlpXkIlN1ljMmNRgjasJlpWRmTFoLVtEiJ4bUhp-gi_3ejXcfLYRYLl3rbXey5JQKynNJWUfRPaW9C8GDKTe-WSv_VVJS7soud2WXu7LL37K7zPk-0wDAPz4tBJWE_wCmGH1g |
CODEN | ITCDA4 |
Cites_doi | 10.1109/TSMC.2017.2693400 10.1016/j.isatra.2023.03.042 10.1109/ROBIO.2006.340144 10.1089/soro.2021.0148 10.1109/TIE.2022.3165279 10.1017/S0263574714001349 10.1109/TCDS.2022.3182534 10.3389/fnbot.2019.00047 10.1007/s11590-022-01952-z 10.1109/TCDS.2022.3149622 10.1109/TSMCB.2004.830347 10.1109/TII.2019.2941916 10.1109/TSMC.2018.2836968 10.1109/TSMC.2021.3107898 10.1109/TSMCC.2012.2183868 10.1109/TAC.2021.3090749 10.1109/TIE.2017.2774720 10.34133/2022/9806328 10.1109/TII.2019.2922694 10.1007/s00500-020-05304-w 10.34133/2021/9843894 10.1007/978-3-662-47334-4 10.1007/s11075-022-01279-x 10.1109/TCDS.2023.3242373 10.1109/TII.2020.2976844 10.1109/TNNLS.2022.3164727 10.1109/TCST.2022.3145645 10.1109/TIE.2014.2331036 10.1109/ICMA.2018.8484351 10.1109/TNNLS.2020.2980038 10.1109/CCDC52312.2021.9602238 10.3389/fnbot.2019.00050 10.1109/TIE.2022.3156037 10.1016/j.conengprac.2017.12.011 10.1109/TCDS.2022.3215093 10.1109/JAS.2022.105869 10.1109/ICMA.2011.5985617 10.1109/ACC.2005.1470152 10.1109/TII.2021.3109426 10.1007/978-3-031-13841-6_26 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCDS.2024.3387575 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2379-8939 |
EndPage | 1871 |
ExternalDocumentID | 10_1109_TCDS_2024_3387575 10497180 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62173352; 62006254 funderid: 10.13039/501100001809 – fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation grantid: 2021A1515012314 funderid: 10.13039/501100021171 – fundername: Guangxi Key Laboratory of Automatic Detecting Technology and Instruments grantid: YQ23207 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c246t-b8f87e02d1552c40573380c8b8375ad56228ceff7d038ba85ff4d72b1960f0df3 |
IEDL.DBID | RIE |
ISSN | 2379-8920 |
IngestDate | Mon Jun 30 10:15:44 EDT 2025 Wed Oct 01 01:52:39 EDT 2025 Wed Aug 27 02:18:04 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c246t-b8f87e02d1552c40573380c8b8375ad56228ceff7d038ba85ff4d72b1960f0df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0710-6409 0000-0003-1846-2812 0000-0001-6310-514X 0000-0002-9932-3306 0000-0003-2469-4222 0000-0003-0382-5350 |
PQID | 3117136812 |
PQPubID | 85513 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3117136812 ieee_primary_10497180 crossref_primary_10_1109_TCDS_2024_3387575 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cognitive and developmental systems |
PublicationTitleAbbrev | TCDS |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 Zhang (ref14) 2002 ref15 ref37 ref36 ref31 ref30 ref11 ref33 ref10 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 Emaru (ref32) 2008 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref12 doi: 10.1109/TSMC.2017.2693400 – ident: ref13 doi: 10.1016/j.isatra.2023.03.042 – ident: ref15 doi: 10.1109/ROBIO.2006.340144 – ident: ref2 doi: 10.1089/soro.2021.0148 – ident: ref40 doi: 10.1109/TIE.2022.3165279 – ident: ref6 doi: 10.1017/S0263574714001349 – ident: ref10 doi: 10.1109/TCDS.2022.3182534 – year: 2002 ident: ref14 article-title: Analysis and design of recurrent neural networks and their applications to control and robotic systems – ident: ref27 doi: 10.3389/fnbot.2019.00047 – ident: ref36 doi: 10.1007/s11590-022-01952-z – ident: ref25 doi: 10.1109/TCDS.2022.3149622 – ident: ref29 doi: 10.1109/TSMCB.2004.830347 – ident: ref26 doi: 10.1109/TII.2019.2941916 – ident: ref1 doi: 10.1109/TSMC.2018.2836968 – ident: ref28 doi: 10.1109/TSMC.2021.3107898 – ident: ref16 doi: 10.1109/TSMCC.2012.2183868 – ident: ref38 doi: 10.1109/TAC.2021.3090749 – ident: ref23 doi: 10.1109/TIE.2017.2774720 – ident: ref24 doi: 10.34133/2022/9806328 – ident: ref18 doi: 10.1109/TII.2019.2922694 – ident: ref37 doi: 10.1007/s00500-020-05304-w – ident: ref22 doi: 10.34133/2021/9843894 – ident: ref31 doi: 10.1007/978-3-662-47334-4 – ident: ref35 doi: 10.1007/s11075-022-01279-x – ident: ref20 doi: 10.1109/TCDS.2023.3242373 – ident: ref21 doi: 10.1109/TII.2020.2976844 – ident: ref34 doi: 10.1109/TNNLS.2022.3164727 – ident: ref3 doi: 10.1109/TCST.2022.3145645 – ident: ref17 doi: 10.1109/TIE.2014.2331036 – ident: ref8 doi: 10.1109/ICMA.2018.8484351 – ident: ref9 doi: 10.1109/TNNLS.2020.2980038 – ident: ref42 doi: 10.1109/CCDC52312.2021.9602238 – ident: ref11 doi: 10.3389/fnbot.2019.00050 – ident: ref19 doi: 10.1109/TIE.2022.3156037 – ident: ref33 doi: 10.1016/j.conengprac.2017.12.011 – ident: ref5 doi: 10.1109/TCDS.2022.3215093 – start-page: 212 volume-title: Proc. Asia Int. Symp. Mechatron. year: 2008 ident: ref32 article-title: Estimation of velocity and acceleration by nonlinear filter using sliding mode and application to control systems – ident: ref41 doi: 10.1109/JAS.2022.105869 – ident: ref7 doi: 10.1109/ICMA.2011.5985617 – ident: ref30 doi: 10.1109/ACC.2005.1470152 – ident: ref4 doi: 10.1109/TII.2021.3109426 – ident: ref39 doi: 10.1007/978-3-031-13841-6_26 |
SSID | ssj0001637847 |
Score | 2.3316536 |
Snippet | In modern manufacturing, redundant manipulators have been widely deployed. Performing a task often requires the manipulator to follow specific trajectories... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1861 |
SubjectTerms | Collision avoidance Constraints Data-driven control End effectors Jacobian matrices Kinematics Manipulator Jacobians Obstacle avoidance obstacle avoidance (OA) Quadratic programming Recurrent neural networks Redundancy redundant manipulator Robot arms Robots Task analysis Tracking control Trajectory zeroing neural network (ZNN) |
Title | Unifying Obstacle Avoidance and Tracking Control of Redundant Manipulators Subject to Joint Constraints: A New Data-Driven Scheme |
URI | https://ieeexplore.ieee.org/document/10497180 https://www.proquest.com/docview/3117136812 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2379-8939 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001637847 issn: 2379-8920 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZtTr2kj6R0m7TMIeRQ8NYryZac27KbEAJJIA_IzegJS4lddr2B9tZ_nhnZS0NDoDeDZSM0D803T8YOyK9WGoNIVcmYyeBtZkxRZk4K4aVDE19QNfL5RXl6K8_uiruhWD3VwoQQUvJZGNNjiuX71q3JVYYSLivUpYjQXytV9cVafx0qpVA6DRTjQlWZrvgmijnJq-83s_k1okEux4jJVEFphU_uoTRY5Zk2TlfMyVt2sdlcn1nyY7zu7Nj9_qdv43_v_h3bHoxNmPbc8Z69Cs0HtjNtEGjf_4JDSOmfya--w_6g9ZlqnuDSosWI62H60C48cQWYxgPeao786jDrs9uhjXAVqAgNiQPnplmkUWDtcgWojci9A10LZ-0C39JY0DSMolsdwRRQs8LcdCabL0nZwjVyzn3YZbcnxzez02yYz5A5LssuszpqFXLuqY2bk6m1os6dtgh6C-PRsuLahRiVz4W2RhcxSq-4RaHPY-6j-Mi2mrYJnxhE7rijiN1EOOmNrLy2zrrcEJ4zXozYtw216p99G446wZe8qom0NZG2Hkg7Yrt0-k8W9gc_YvsbAteDpK5qMZkgTqcubJ9f-GyPvaG_9xl8-2yrW67DF7REOvs1ceAjuCfa9A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na9RAFB-kPejFr1Zc2-o7iAcha3Zmkkx6W3Yta-2uYLfQW5hPWKSJ7GYLevM_73uTLBZF8BbIhAzzPub93idjb8mvlmuNSLWQIZHemUTrLE-sFMJJiya-oGrk-SKfXcnz6-y6L1aPtTDe-5h85of0GGP5rrFbcpWhhMsSdSki9P0MYUXRlWv9dqnkolBxpBgXRZmoku_imKO0_LCcTC8RD3I5RFRWZJRYeO8miqNV_tLH8ZI5e8IWu-11uSXfhtvWDO3PPzo3_vf-n7LHvbkJ444_nrEHvn7ODsY1Qu2bH_AOYgJo9KwfsF9of8aqJ_hi0GbE9TC-bVaO-AJ07QDvNUuedZh0-e3QBPjqqQwNyQNzXa_iMLBmvQHUR-TggbaB82aFb2kwaBxH0W5OYQyoW2GqW51M16Ru4RJ558Yfsquzj8vJLOknNCSWy7xNjAqq8Cl31MjNythcUaVWGYS9mXZoW3FlfQiFS4UyWmUhSFdwg2KfhtQF8YLt1U3tXzII3HJLMbuRsNJpWTplrLGpJkSnnRiw9ztqVd-7RhxVBDBpWRFpKyJt1ZN2wA7p9O8t7A5-wI53BK56Wd1UYjRCpE592F7947M37OFsOb-oLj4tPh-xR_SnLp_vmO21660_QbukNa8jN94BYWfeRQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unifying+Obstacle+Avoidance+and+Tracking+Control+of+Redundant+Manipulators+Subject+to+Joint+Constraints%3A+A+New+Data-Driven+Scheme&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Yu%2C+Peng&rft.au=Tan%2C+Ning&rft.au=Zhong%2C+Zhaohui&rft.au=Hu%2C+Cong&rft.date=2024-10-01&rft.pub=IEEE&rft.issn=2379-8920&rft.volume=16&rft.issue=5&rft.spage=1861&rft.epage=1871&rft_id=info:doi/10.1109%2FTCDS.2024.3387575&rft.externalDocID=10497180 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon |