An Efficient Flood Detection Method With Satellite Images Based on Algorithm-Hardware Co-Design

In this letter, we propose an efficient flood detection (EFD) method using multisource satellite images based on the algorithm-hardware co-design strategy. This method aims to improve flood detection efficiency in resource-constrained edge computing environments. First, a hybrid heterogeneous comput...

Full description

Saved in:
Bibliographic Details
Published inIEEE geoscience and remote sensing letters Vol. 21; pp. 1 - 5
Main Authors Pan, Dingwei, Wang, Zhihao, Wang, Xueqian, Li, Gang, Zeng, Shulin, Wang, Yu
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-598X
1558-0571
DOI10.1109/LGRS.2024.3472050

Cover

Abstract In this letter, we propose an efficient flood detection (EFD) method using multisource satellite images based on the algorithm-hardware co-design strategy. This method aims to improve flood detection efficiency in resource-constrained edge computing environments. First, a hybrid heterogeneous computing platform is designed to incorporate central processing units (CPUs), graphics processing units (GPUs), and field programmable gate arrays (FPGAs) hardware units to combine their individual advantages for efficient satellite image processing during the flood detection process. Second, the different flood detection algorithm modules (containing convolutional neural networks and information fusion operations) are designed and assigned to appropriate hardware units based on the characteristics of each algorithm module and the capabilities of each hardware, to reduce hardware computation waste during the operation of flood detection algorithms. Experimental results based on measured data from four flood events demonstrate that our proposed flood detection method achieves a significant improvement in computational efficiency without a noticeable loss in flood detection accuracy compared with existing state-of-the-art methods.
AbstractList In this letter, we propose an efficient flood detection (EFD) method using multisource satellite images based on the algorithm–hardware co-design strategy. This method aims to improve flood detection efficiency in resource-constrained edge computing environments. First, a hybrid heterogeneous computing platform is designed to incorporate central processing units (CPUs), graphics processing units (GPUs), and field programmable gate arrays (FPGAs) hardware units to combine their individual advantages for efficient satellite image processing during the flood detection process. Second, the different flood detection algorithm modules (containing convolutional neural networks and information fusion operations) are designed and assigned to appropriate hardware units based on the characteristics of each algorithm module and the capabilities of each hardware, to reduce hardware computation waste during the operation of flood detection algorithms. Experimental results based on measured data from four flood events demonstrate that our proposed flood detection method achieves a significant improvement in computational efficiency without a noticeable loss in flood detection accuracy compared with existing state-of-the-art methods.
Author Pan, Dingwei
Wang, Zhihao
Zeng, Shulin
Wang, Yu
Li, Gang
Wang, Xueqian
Author_xml – sequence: 1
  givenname: Dingwei
  orcidid: 0009-0009-5322-2989
  surname: Pan
  fullname: Pan, Dingwei
  email: pdw22@mails.tsinghua.edu.cn
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Zhihao
  surname: Wang
  fullname: Wang, Zhihao
  email: ahao77@vip.163.com
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Xueqian
  orcidid: 0000-0002-8632-6073
  surname: Wang
  fullname: Wang, Xueqian
  email: wangxueqian@mail.tsinghua.edu.cn
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Gang
  orcidid: 0000-0001-9755-2781
  surname: Li
  fullname: Li, Gang
  email: gangli@mail.tsinghua.edu.cn
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 5
  givenname: Shulin
  surname: Zeng
  fullname: Zeng, Shulin
  email: zengshulin@mail.tsinghua.edu.cn
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 6
  givenname: Yu
  orcidid: 0000-0002-2931-8958
  surname: Wang
  fullname: Wang, Yu
  email: yu-wang@mail.tsinghua.edu.cn
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
BookMark eNpNkF1LwzAUhoNMcJv-AMGLgNedSZo06eXcN0wEp-hdSNvTraNrZpIh_ntbtguvzsvhec-BZ4B6jW0AoXtKRpSS9Gm9eNuMGGF8FHPJiCBXqE-FUBERkva6zEUkUvV1gwbe70lLKiX7SI8bPCvLKq-gCXheW1vgKQTIQ2Ub_AJh1y4-q7DDGxOgrqsAeHUwW_D42XgocEuN6611LXKIlsYVP8YBnthoCr7aNrfoujS1h7vLHKKP-ex9sozWr4vVZLyOcsaTEGUKOCNlkkllRJ4BVYIXkAgjgUgwIBmnGcuBZTxLaUnKIhEFQKyKJKGUk3iIHs93j85-n8AHvbcn17QvdUxpKlUapx1Fz1TurPcOSn101cG4X02J7jzqzqPuPOqLx7bzcO5UAPCPlySmiYr_AAlpcGw
CODEN IGRSBY
Cites_doi 10.1038/s41598-022-07720-4
10.1109/TSMC.1979.4310076
10.1109/TGRS.2018.2860054
10.1109/SIU.2017.7960499
10.1109/JSTARS.2022.3148139
10.1016/j.inffus.2024.102445
10.1109/LGRS.2022.3173300
10.1109/LGRS.2022.3173052
10.1109/YEF-ECE49388.2020.9171811
10.5194/isprs-archives-xliii-b2-2020-1343-2020
10.1109/ICMLA58977.2023.00077
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2024.3472050
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 5
ExternalDocumentID 10_1109_LGRS_2024_3472050
10703168
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62101303; 62341130; 62325405
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2021YFA0715201
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c246t-b8e420f6b78a5cbe1854de65a7e07eae7241b2ce2b4b91f0fd65dee38d6611403
IEDL.DBID RIE
ISSN 1545-598X
IngestDate Mon Jun 30 08:42:47 EDT 2025
Wed Oct 01 04:26:05 EDT 2025
Wed Aug 27 02:14:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-b8e420f6b78a5cbe1854de65a7e07eae7241b2ce2b4b91f0fd65dee38d6611403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2931-8958
0009-0009-5322-2989
0000-0002-8632-6073
0000-0001-9755-2781
PQID 3119789390
PQPubID 75725
PageCount 5
ParticipantIDs ieee_primary_10703168
proquest_journals_3119789390
crossref_primary_10_1109_LGRS_2024_3472050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref8
ref7
ref9
ref4
ref3
ref6
ref11
ref5
ref10
ref2
ref1
References_xml – ident: ref2
  doi: 10.1038/s41598-022-07720-4
– ident: ref11
  doi: 10.1109/TSMC.1979.4310076
– ident: ref1
  doi: 10.1109/TGRS.2018.2860054
– ident: ref5
  doi: 10.1109/SIU.2017.7960499
– ident: ref6
  doi: 10.1109/JSTARS.2022.3148139
– ident: ref10
  doi: 10.1016/j.inffus.2024.102445
– ident: ref3
  doi: 10.1109/LGRS.2022.3173300
– ident: ref7
  doi: 10.1109/LGRS.2022.3173052
– ident: ref8
  doi: 10.1109/YEF-ECE49388.2020.9171811
– ident: ref4
  doi: 10.5194/isprs-archives-xliii-b2-2020-1343-2020
– ident: ref9
  doi: 10.1109/ICMLA58977.2023.00077
SSID ssj0024887
Score 2.3796065
Snippet In this letter, we propose an efficient flood detection (EFD) method using multisource satellite images based on the algorithm-hardware co-design strategy....
In this letter, we propose an efficient flood detection (EFD) method using multisource satellite images based on the algorithm–hardware co-design strategy....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Algorithm–hardware co-optimization
Artificial neural networks
Central processing units
Co-design
Computation
Computational efficiency
Computational modeling
Computing time
CPUs
Data integration
Detection algorithms
Edge computing
efficient computing
Field programmable gate arrays
flood detection
Floods
Graphics
Graphics processing units
Hardware
heterogeneous hardware
Image processing
Information processing
Modules
Neural networks
Satellite imagery
Satellite images
satellite remote sensing
Satellites
Title An Efficient Flood Detection Method With Satellite Images Based on Algorithm-Hardware Co-Design
URI https://ieeexplore.ieee.org/document/10703168
https://www.proquest.com/docview/3119789390
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB2RSgguUNKiprTIh54qOTib9dp7DPloQSQHQkVuq7V3TFHppko2QuHXM_ZuRFSExG0PXsvyjP3G9sx7ABdOeVyShqOVyGPl-tykPcONKMg7lBea9PXO01lyfRN_XMhFU6weamEQMSSfYdd_hrf8Ymk3_qqMVrhnW090C1pKJ3Wx1h9iPR3U8HxIwGWqF80TZk-k7z5dfZ7TUTCKu_1YRcLX2O-BUFBV-WsrDvgyeQmz3cjqtJK77qYyXfvrEWnjfw_9EF40kSYb1K7xCp5g2YZnjej57bYNT6-Cqu_2CLJBycaBS4I6YROfy85GWIUsrZJNg8g0-_q9umXzPDB4Vsg-3NNOtGbvCQULRq0GP74tV9TknvtkgJ_5CtlwyUchQeQYbibjL8Nr3igvcBvFScWNxjgSLjFK59IaJFCPC0xkrlAozFER7pvIYmRisqwTrkhkgdjXBcG9ZwB8DQflssQTYM4UaFOB0llLrpAbaShEQ-0inTjyhw5c7kyRPdQEG1k4mIg083bLvN2yxm4dOPZTu9ewntUOnO2slzVrcJ31_QsphWOpOP3Hb2_gue-9vlE5g4NqtcFzijEq8zb41m_8Ic1-
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB61VAgubXlUpA2tD5yQnJqNvY9jCoTQJjnwELlZa--4IGCDwkZV-us79m4EKqrU2x68u5Zn7G9sz3wfwJ5LPC4pw9Eq5DJxXW6yA8ONKMg7Ei806eudR-N4cCm_T9SkKVYPtTCIGJLPsOMfw11-MbVzf1RGM9yzrcfpa3ijpJSqLtd6otZLgx6eDwq4ytJJc4l5ILKvw5Ozc9oMRrLTlUkkfJX9MxgKuiovFuOAMP13MF72rU4sue3MK9Oxv_-ibfzvzr-Ht02syXq1c2zAKyw3Ya2RPb9ebMLqSdD1XWyB7pXsOLBJ0EdY32ezsyOsQp5WyUZBZppd3VTX7DwPHJ4VstN7Wose2TfCwYJRq97dz-mMmtxznw7wK58hO5zyo5Aisg2X_eOLwwFvtBe4jWRccZOijISLTZLmyhokWJcFxipPUCSYY0LIbyKLkZFkWydcEasCsZsWBPieA_ADrJTTEneAOVOgzQQqZy05Q26UoSANUxelsSOPaMH-0hT6oabY0GFrIjLt7aa93XRjtxZs-6F91rAe1Ra0l9bTzSx81F1_R0oBWSY-_uO1L7A2uBgN9fB0_OMTrPs_1ecrbVipZnPcpYijMp-Dn_0B6iHQyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Flood+Detection+Method+With+Satellite+Images+Based+on+Algorithm%E2%80%93Hardware+Co-Design&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Pan%2C+Dingwei&rft.au=Wang%2C+Zhihao&rft.au=Wang%2C+Xueqian&rft.au=Li%2C+Gang&rft.date=2024&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=21&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2024.3472050&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2024_3472050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon