An Efficient Flood Detection Method With Satellite Images Based on Algorithm-Hardware Co-Design
In this letter, we propose an efficient flood detection (EFD) method using multisource satellite images based on the algorithm-hardware co-design strategy. This method aims to improve flood detection efficiency in resource-constrained edge computing environments. First, a hybrid heterogeneous comput...
        Saved in:
      
    
          | Published in | IEEE geoscience and remote sensing letters Vol. 21; pp. 1 - 5 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        2024
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1545-598X 1558-0571  | 
| DOI | 10.1109/LGRS.2024.3472050 | 
Cover
| Abstract | In this letter, we propose an efficient flood detection (EFD) method using multisource satellite images based on the algorithm-hardware co-design strategy. This method aims to improve flood detection efficiency in resource-constrained edge computing environments. First, a hybrid heterogeneous computing platform is designed to incorporate central processing units (CPUs), graphics processing units (GPUs), and field programmable gate arrays (FPGAs) hardware units to combine their individual advantages for efficient satellite image processing during the flood detection process. Second, the different flood detection algorithm modules (containing convolutional neural networks and information fusion operations) are designed and assigned to appropriate hardware units based on the characteristics of each algorithm module and the capabilities of each hardware, to reduce hardware computation waste during the operation of flood detection algorithms. Experimental results based on measured data from four flood events demonstrate that our proposed flood detection method achieves a significant improvement in computational efficiency without a noticeable loss in flood detection accuracy compared with existing state-of-the-art methods. | 
    
|---|---|
| AbstractList | In this letter, we propose an efficient flood detection (EFD) method using multisource satellite images based on the algorithm–hardware co-design strategy. This method aims to improve flood detection efficiency in resource-constrained edge computing environments. First, a hybrid heterogeneous computing platform is designed to incorporate central processing units (CPUs), graphics processing units (GPUs), and field programmable gate arrays (FPGAs) hardware units to combine their individual advantages for efficient satellite image processing during the flood detection process. Second, the different flood detection algorithm modules (containing convolutional neural networks and information fusion operations) are designed and assigned to appropriate hardware units based on the characteristics of each algorithm module and the capabilities of each hardware, to reduce hardware computation waste during the operation of flood detection algorithms. Experimental results based on measured data from four flood events demonstrate that our proposed flood detection method achieves a significant improvement in computational efficiency without a noticeable loss in flood detection accuracy compared with existing state-of-the-art methods. | 
    
| Author | Pan, Dingwei Wang, Zhihao Zeng, Shulin Wang, Yu Li, Gang Wang, Xueqian  | 
    
| Author_xml | – sequence: 1 givenname: Dingwei orcidid: 0009-0009-5322-2989 surname: Pan fullname: Pan, Dingwei email: pdw22@mails.tsinghua.edu.cn organization: Department of Electronic Engineering, Tsinghua University, Beijing, China – sequence: 2 givenname: Zhihao surname: Wang fullname: Wang, Zhihao email: ahao77@vip.163.com organization: Department of Electronic Engineering, Tsinghua University, Beijing, China – sequence: 3 givenname: Xueqian orcidid: 0000-0002-8632-6073 surname: Wang fullname: Wang, Xueqian email: wangxueqian@mail.tsinghua.edu.cn organization: Department of Electronic Engineering, Tsinghua University, Beijing, China – sequence: 4 givenname: Gang orcidid: 0000-0001-9755-2781 surname: Li fullname: Li, Gang email: gangli@mail.tsinghua.edu.cn organization: Department of Electronic Engineering, Tsinghua University, Beijing, China – sequence: 5 givenname: Shulin surname: Zeng fullname: Zeng, Shulin email: zengshulin@mail.tsinghua.edu.cn organization: Department of Electronic Engineering, Tsinghua University, Beijing, China – sequence: 6 givenname: Yu orcidid: 0000-0002-2931-8958 surname: Wang fullname: Wang, Yu email: yu-wang@mail.tsinghua.edu.cn organization: Department of Electronic Engineering, Tsinghua University, Beijing, China  | 
    
| BookMark | eNpNkF1LwzAUhoNMcJv-AMGLgNedSZo06eXcN0wEp-hdSNvTraNrZpIh_ntbtguvzsvhec-BZ4B6jW0AoXtKRpSS9Gm9eNuMGGF8FHPJiCBXqE-FUBERkva6zEUkUvV1gwbe70lLKiX7SI8bPCvLKq-gCXheW1vgKQTIQ2Ub_AJh1y4-q7DDGxOgrqsAeHUwW_D42XgocEuN6611LXKIlsYVP8YBnthoCr7aNrfoujS1h7vLHKKP-ex9sozWr4vVZLyOcsaTEGUKOCNlkkllRJ4BVYIXkAgjgUgwIBmnGcuBZTxLaUnKIhEFQKyKJKGUk3iIHs93j85-n8AHvbcn17QvdUxpKlUapx1Fz1TurPcOSn101cG4X02J7jzqzqPuPOqLx7bzcO5UAPCPlySmiYr_AAlpcGw | 
    
| CODEN | IGRSBY | 
    
| Cites_doi | 10.1038/s41598-022-07720-4 10.1109/TSMC.1979.4310076 10.1109/TGRS.2018.2860054 10.1109/SIU.2017.7960499 10.1109/JSTARS.2022.3148139 10.1016/j.inffus.2024.102445 10.1109/LGRS.2022.3173300 10.1109/LGRS.2022.3173052 10.1109/YEF-ECE49388.2020.9171811 10.5194/isprs-archives-xliii-b2-2020-1343-2020 10.1109/ICMLA58977.2023.00077  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D  | 
    
| DOI | 10.1109/LGRS.2024.3472050 | 
    
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic  | 
    
| DatabaseTitleList | Civil Engineering Abstracts | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Geology  | 
    
| EISSN | 1558-0571 | 
    
| EndPage | 5 | 
    
| ExternalDocumentID | 10_1109_LGRS_2024_3472050 10703168  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62101303; 62341130; 62325405 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2021YFA0715201  | 
    
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c246t-b8e420f6b78a5cbe1854de65a7e07eae7241b2ce2b4b91f0fd65dee38d6611403 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1545-598X | 
    
| IngestDate | Mon Jun 30 08:42:47 EDT 2025 Wed Oct 01 04:26:05 EDT 2025 Wed Aug 27 02:14:57 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c246t-b8e420f6b78a5cbe1854de65a7e07eae7241b2ce2b4b91f0fd65dee38d6611403 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-2931-8958 0009-0009-5322-2989 0000-0002-8632-6073 0000-0001-9755-2781  | 
    
| PQID | 3119789390 | 
    
| PQPubID | 75725 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | ieee_primary_10703168 proquest_journals_3119789390 crossref_primary_10_1109_LGRS_2024_3472050  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240000 2024-00-00 20240101  | 
    
| PublicationDateYYYYMMDD | 2024-01-01 | 
    
| PublicationDate_xml | – year: 2024 text: 20240000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE geoscience and remote sensing letters | 
    
| PublicationTitleAbbrev | LGRS | 
    
| PublicationYear | 2024 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref8 ref7 ref9 ref4 ref3 ref6 ref11 ref5 ref10 ref2 ref1  | 
    
| References_xml | – ident: ref2 doi: 10.1038/s41598-022-07720-4 – ident: ref11 doi: 10.1109/TSMC.1979.4310076 – ident: ref1 doi: 10.1109/TGRS.2018.2860054 – ident: ref5 doi: 10.1109/SIU.2017.7960499 – ident: ref6 doi: 10.1109/JSTARS.2022.3148139 – ident: ref10 doi: 10.1016/j.inffus.2024.102445 – ident: ref3 doi: 10.1109/LGRS.2022.3173300 – ident: ref7 doi: 10.1109/LGRS.2022.3173052 – ident: ref8 doi: 10.1109/YEF-ECE49388.2020.9171811 – ident: ref4 doi: 10.5194/isprs-archives-xliii-b2-2020-1343-2020 – ident: ref9 doi: 10.1109/ICMLA58977.2023.00077  | 
    
| SSID | ssj0024887 | 
    
| Score | 2.3796065 | 
    
| Snippet | In this letter, we propose an efficient flood detection (EFD) method using multisource satellite images based on the algorithm-hardware co-design strategy.... In this letter, we propose an efficient flood detection (EFD) method using multisource satellite images based on the algorithm–hardware co-design strategy....  | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Accuracy Algorithms Algorithm–hardware co-optimization Artificial neural networks Central processing units Co-design Computation Computational efficiency Computational modeling Computing time CPUs Data integration Detection algorithms Edge computing efficient computing Field programmable gate arrays flood detection Floods Graphics Graphics processing units Hardware heterogeneous hardware Image processing Information processing Modules Neural networks Satellite imagery Satellite images satellite remote sensing Satellites  | 
    
| Title | An Efficient Flood Detection Method With Satellite Images Based on Algorithm-Hardware Co-Design | 
    
| URI | https://ieeexplore.ieee.org/document/10703168 https://www.proquest.com/docview/3119789390  | 
    
| Volume | 21 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB2RSgguUNKiprTIh54qOTib9dp7DPloQSQHQkVuq7V3TFHppko2QuHXM_ZuRFSExG0PXsvyjP3G9sx7ABdOeVyShqOVyGPl-tykPcONKMg7lBea9PXO01lyfRN_XMhFU6weamEQMSSfYdd_hrf8Ymk3_qqMVrhnW090C1pKJ3Wx1h9iPR3U8HxIwGWqF80TZk-k7z5dfZ7TUTCKu_1YRcLX2O-BUFBV-WsrDvgyeQmz3cjqtJK77qYyXfvrEWnjfw_9EF40kSYb1K7xCp5g2YZnjej57bYNT6-Cqu_2CLJBycaBS4I6YROfy85GWIUsrZJNg8g0-_q9umXzPDB4Vsg-3NNOtGbvCQULRq0GP74tV9TknvtkgJ_5CtlwyUchQeQYbibjL8Nr3igvcBvFScWNxjgSLjFK59IaJFCPC0xkrlAozFER7pvIYmRisqwTrkhkgdjXBcG9ZwB8DQflssQTYM4UaFOB0llLrpAbaShEQ-0inTjyhw5c7kyRPdQEG1k4mIg083bLvN2yxm4dOPZTu9ewntUOnO2slzVrcJ31_QsphWOpOP3Hb2_gue-9vlE5g4NqtcFzijEq8zb41m_8Ic1- | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB61VAgubXlUpA2tD5yQnJqNvY9jCoTQJjnwELlZa--4IGCDwkZV-us79m4EKqrU2x68u5Zn7G9sz3wfwJ5LPC4pw9Eq5DJxXW6yA8ONKMg7Ei806eudR-N4cCm_T9SkKVYPtTCIGJLPsOMfw11-MbVzf1RGM9yzrcfpa3ijpJSqLtd6otZLgx6eDwq4ytJJc4l5ILKvw5Ozc9oMRrLTlUkkfJX9MxgKuiovFuOAMP13MF72rU4sue3MK9Oxv_-ibfzvzr-Ht02syXq1c2zAKyw3Ya2RPb9ebMLqSdD1XWyB7pXsOLBJ0EdY32ezsyOsQp5WyUZBZppd3VTX7DwPHJ4VstN7Wose2TfCwYJRq97dz-mMmtxznw7wK58hO5zyo5Aisg2X_eOLwwFvtBe4jWRccZOijISLTZLmyhokWJcFxipPUCSYY0LIbyKLkZFkWydcEasCsZsWBPieA_ADrJTTEneAOVOgzQQqZy05Q26UoSANUxelsSOPaMH-0hT6oabY0GFrIjLt7aa93XRjtxZs-6F91rAe1Ra0l9bTzSx81F1_R0oBWSY-_uO1L7A2uBgN9fB0_OMTrPs_1ecrbVipZnPcpYijMp-Dn_0B6iHQyw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Flood+Detection+Method+With+Satellite+Images+Based+on+Algorithm%E2%80%93Hardware+Co-Design&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Pan%2C+Dingwei&rft.au=Wang%2C+Zhihao&rft.au=Wang%2C+Xueqian&rft.au=Li%2C+Gang&rft.date=2024&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=21&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2024.3472050&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2024_3472050 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |