Single Satellite Image Sharpening With Any-Angle 2-D MTF Estimation
Sharpening a single satellite image remains challenging due to low computational efficiency, complexity of multiparameters, unphysical modeling, and the potential for radiometric consistency loss. To address these issues, this article introduces a modulation transfer function (MTF)-based sharpening...
Saved in:
| Published in | IEEE transactions on geoscience and remote sensing Vol. 62; pp. 1 - 16 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-2892 1558-0644 |
| DOI | 10.1109/TGRS.2024.3457906 |
Cover
| Abstract | Sharpening a single satellite image remains challenging due to low computational efficiency, complexity of multiparameters, unphysical modeling, and the potential for radiometric consistency loss. To address these issues, this article introduces a modulation transfer function (MTF)-based sharpening method that is fast, has a single tunable parameter, and effectively suppresses noise and over-enhancement. This article also proposes an automatic method for extracting edge objects with any angle for MTF calculation, without relying on ideal edge objects. The improved slanted-edge method is more robust against noise by incorporating the logistic function and employing the random sample consensus (RANSAC) algorithm to remove deflected edges. The new 2-D MTF estimation method provides precise and stable sharpening results. This article extends the proposed method to single image super-resolution (SISR) for satellite images. The proposed approach outperforms state-of-the-art SISR methods, including 11 deep learning-based methods, across three public datasets and raw images (water, city, and building) acquired from three satellites. The utmost correlation to the histogram of raw image proves the proposed method's superiority in preserving radiometric information compared to other methods. In addition, the successful application of the one-time estimated 2-D MTF for raw satellite images over a year and its capability to improve edge sharpness uniformity across cameras within the sensor system further solidify the method's universality and reliability. More comparison results and code are available at https://github.com/RSingKK/Any-angle-MTF . |
|---|---|
| AbstractList | Sharpening a single satellite image remains challenging due to low computational efficiency, complexity of multiparameters, unphysical modeling, and the potential for radiometric consistency loss. To address these issues, this article introduces a modulation transfer function (MTF)-based sharpening method that is fast, has a single tunable parameter, and effectively suppresses noise and over-enhancement. This article also proposes an automatic method for extracting edge objects with any angle for MTF calculation, without relying on ideal edge objects. The improved slanted-edge method is more robust against noise by incorporating the logistic function and employing the random sample consensus (RANSAC) algorithm to remove deflected edges. The new 2-D MTF estimation method provides precise and stable sharpening results. This article extends the proposed method to single image super-resolution (SISR) for satellite images. The proposed approach outperforms state-of-the-art SISR methods, including 11 deep learning-based methods, across three public datasets and raw images (water, city, and building) acquired from three satellites. The utmost correlation to the histogram of raw image proves the proposed method’s superiority in preserving radiometric information compared to other methods. In addition, the successful application of the one-time estimated 2-D MTF for raw satellite images over a year and its capability to improve edge sharpness uniformity across cameras within the sensor system further solidify the method’s universality and reliability. More comparison results and code are available at https://github.com/RSingKK/Any-angle-MTF . |
| Author | He, Guojin Zhang, Zhaoming Peng, Yan Jiao, Weili Long, Tengfei Wang, Guizhou Du, Yihong Liu, Yongkun |
| Author_xml | – sequence: 1 givenname: Yongkun orcidid: 0000-0003-3814-4897 surname: Liu fullname: Liu, Yongkun email: liuyongkun19@mails.ucas.ac.cn organization: Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing, China – sequence: 2 givenname: Tengfei orcidid: 0000-0003-3572-4415 surname: Long fullname: Long, Tengfei email: longtf@aircas.ac.cn organization: Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing, China – sequence: 3 givenname: Weili orcidid: 0000-0003-1156-9860 surname: Jiao fullname: Jiao, Weili email: jiaowl@aircas.ac.cn organization: Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing, China – sequence: 4 givenname: Yihong surname: Du fullname: Du, Yihong email: duyihong21@mails.ucas.ac.cn organization: Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing, China – sequence: 5 givenname: Guojin orcidid: 0000-0001-7225-7276 surname: He fullname: He, Guojin email: hegj@aircas.ac.cn organization: Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing, China – sequence: 6 givenname: Zhaoming surname: Zhang fullname: Zhang, Zhaoming email: zhangzhaoming@aircas.ac.cn organization: Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing, China – sequence: 7 givenname: Guizhou orcidid: 0000-0002-2347-8416 surname: Wang fullname: Wang, Guizhou email: wanggz@aircas.ac.cn organization: Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing, China – sequence: 8 givenname: Yan surname: Peng fullname: Peng, Yan email: pengyan@aircas.ac.cn organization: Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing, China |
| BookMark | eNpNkE1rwkAQhpdioWr7Awo9BHqOnf3M7lGsWqGlUC09LrvpRCMxsZt48N93rR46MAzDPO_M8A5Ir25qJOSewohSME-r-cdyxICJERcyM6CuSJ9KqVNQQvRIH6hRKdOG3ZBB224BqJA065PJsqzXFSZL12FVlR0mi51bx37jwh7rOEy-ym6TjOtjOv4jWfqcvK1mybTtyp3ryqa-JdeFq1q8u9Qh-ZxNV5OX9PV9vpiMX9OcCdWlDqVHz31uipheC-3AMMpNzvy3BK9iZI4bYFJToZSWPCsKEF4geJfnfEgez3v3ofk5YNvZbXMIdTxpOaXMsEwziBQ9U3lo2jZgYfchPhqOloI9eWVPXtmTV_biVdQ8nDUlIv7jVZYJw_gvecNlPw |
| CODEN | IGRSD2 |
| Cites_doi | 10.3390/rs14010026 10.1109/TGRS.2022.3141223 10.1109/tnnls.2024.3401589 10.1145/358669.358692 10.1016/S0031-3203(99)00160-0 10.1109/IGARSS47720.2021.9554133 10.23919/OCEANS.2015.7401946 10.5120/19256-0999 10.1109/TGRS.2023.3279834 10.1023/A:1011183429707 10.1109/CVPR.2018.00344 10.1109/TGRS.2021.3069889 10.1364/OE.22.006040 10.1109/TPAMI.2024.3362475 10.1364/OE.22.026908 10.1016/S0165-1684(98)00161-3 10.1109/ICSMC.2010.5641838 10.1109/TSMC.1979.4310076 10.1016/j.isprsjprs.2013.11.010 10.1109/ISCIT.2015.7458310 10.1080/01431169308904292 10.1109/CVPR.2005.235 10.2307/2280041 10.1109/83.826787 10.1109/TGRS.2020.3024730 10.1109/TCI.2016.2607142 10.1109/TIP.2010.2072512 10.1109/JPROC.2017.2675998 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2 10.1016/j.ejrs.2023.07.012 10.1117/12.800055 10.1214/aoms/1177704250 10.1109/TIP.2018.2838660 10.1109/TPAMI.2022.3167175 10.3390/rs14215423 10.1109/LGRS.2023.3339517 10.1109/JSTARS.2023.3244069 10.1145/3343031.3351084 10.1109/TGRS.2023.3283769 10.1109/TGRS.2024.3406516 10.1145/1869790.1869829 10.1109/TGRS.2023.3300257 10.18637/jss.v031.i07 10.1109/MSP.2011.941097 10.1109/TGRS.2024.3370826 10.1109/CCSSP49278.2020.9151673 10.1007/bfb0067700 10.1364/OE.23.006187 10.3390/rs15133452 10.1109/TPAMI.2008.300 10.1109/CVPR.2005.56 10.1109/LGRS.2010.2055033 10.1109/TGRS.2023.3324497 10.1109/ICPR.2010.579 10.1109/CVPR.2019.00177 10.1109/TGRS.2024.3385752 10.1109/CVPR.2017.618 10.1109/ICCV48922.2021.00475 10.48550/arXiv.1809.00219 10.1109/CVPR.2017.19 10.1016/j.inffus.2024.102408 10.1109/ICCVW54120.2021.00217 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2024.3457906 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 16 |
| ExternalDocumentID | 10_1109_TGRS_2024_3457906 10677492 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Science and Disruptive Technology Program, Aerospace Information Research Institute at the Chinese Academy of Sciences grantid: E3Z218010F funderid: 10.13039/501100009950 – fundername: National Natural Science Foundation of China grantid: 62101531 funderid: 10.13039/501100001809 – fundername: Second Tibetan Plateau Scientific Expedition and Research Program grantid: 2019QZKK030701 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c246t-ae5beb3bc9fbc9b848a092139c2bd50b66667a39025814668537ff04b4e0bacc3 |
| IEDL.DBID | RIE |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 10:03:15 EDT 2025 Wed Oct 01 02:58:12 EDT 2025 Wed Aug 27 02:18:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-ae5beb3bc9fbc9b848a092139c2bd50b66667a39025814668537ff04b4e0bacc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3814-4897 0000-0003-3572-4415 0000-0003-1156-9860 0000-0002-2347-8416 0000-0001-7225-7276 |
| PQID | 3112927820 |
| PQPubID | 85465 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_3112927820 crossref_primary_10_1109_TGRS_2024_3457906 ieee_primary_10677492 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Zhou (ref57) 2023 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref43 ref49 ref8 ref7 ref9 ref4 ref3 Chen (ref65) 2023 ref6 ref5 ref40 Hasanov (ref44) 2002; 27 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref64 ref63 ref22 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – year: 2023 ident: ref65 article-title: HAT: Hybrid attention transformer for image restoration publication-title: arXiv:2309.05239 – ident: ref9 doi: 10.3390/rs14010026 – ident: ref15 doi: 10.1109/TGRS.2022.3141223 – ident: ref22 doi: 10.1109/tnnls.2024.3401589 – ident: ref41 doi: 10.1145/358669.358692 – ident: ref1 doi: 10.1016/S0031-3203(99)00160-0 – ident: ref18 doi: 10.1109/IGARSS47720.2021.9554133 – volume: 27 start-page: 278 year: 2002 ident: ref44 article-title: A new modification of Newtons method publication-title: Appl. Math. Eng. – ident: ref61 doi: 10.23919/OCEANS.2015.7401946 – ident: ref5 doi: 10.5120/19256-0999 – ident: ref19 doi: 10.1109/TGRS.2023.3279834 – ident: ref34 doi: 10.1023/A:1011183429707 – ident: ref53 doi: 10.1109/CVPR.2018.00344 – ident: ref13 doi: 10.1109/TGRS.2021.3069889 – ident: ref37 doi: 10.1364/OE.22.006040 – ident: ref21 doi: 10.1109/TPAMI.2024.3362475 – ident: ref30 doi: 10.1364/OE.22.026908 – ident: ref32 doi: 10.1016/S0165-1684(98)00161-3 – ident: ref3 doi: 10.1109/ICSMC.2010.5641838 – ident: ref40 doi: 10.1109/TSMC.1979.4310076 – ident: ref27 doi: 10.1016/j.isprsjprs.2013.11.010 – ident: ref6 doi: 10.1109/ISCIT.2015.7458310 – ident: ref33 doi: 10.1080/01431169308904292 – ident: ref31 doi: 10.1109/CVPR.2005.235 – ident: ref38 doi: 10.2307/2280041 – ident: ref4 doi: 10.1109/83.826787 – ident: ref64 doi: 10.1109/TGRS.2020.3024730 – ident: ref2 doi: 10.1109/TCI.2016.2607142 – ident: ref8 doi: 10.1109/TIP.2010.2072512 – ident: ref47 doi: 10.1109/JPROC.2017.2675998 – ident: ref48 doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2 – ident: ref17 doi: 10.1016/j.ejrs.2023.07.012 – ident: ref28 doi: 10.1117/12.800055 – ident: ref43 doi: 10.1214/aoms/1177704250 – ident: ref58 doi: 10.1109/TIP.2018.2838660 – ident: ref59 doi: 10.1109/TPAMI.2022.3167175 – ident: ref11 doi: 10.3390/rs14215423 – ident: ref25 doi: 10.1109/LGRS.2023.3339517 – ident: ref10 doi: 10.1109/JSTARS.2023.3244069 – ident: ref51 doi: 10.1145/3343031.3351084 – ident: ref56 doi: 10.1109/TGRS.2023.3283769 – ident: ref26 doi: 10.1109/TGRS.2024.3406516 – ident: ref45 doi: 10.1145/1869790.1869829 – ident: ref16 doi: 10.1109/TGRS.2023.3300257 – ident: ref63 doi: 10.18637/jss.v031.i07 – ident: ref42 doi: 10.1109/MSP.2011.941097 – ident: ref12 doi: 10.1109/TGRS.2024.3370826 – ident: ref7 doi: 10.1109/CCSSP49278.2020.9151673 – ident: ref39 doi: 10.1007/bfb0067700 – ident: ref29 doi: 10.1364/OE.23.006187 – ident: ref24 doi: 10.3390/rs15133452 – ident: ref35 doi: 10.1109/TPAMI.2008.300 – ident: ref36 doi: 10.1109/CVPR.2005.56 – ident: ref46 doi: 10.1109/LGRS.2010.2055033 – ident: ref23 doi: 10.1109/TGRS.2023.3324497 – ident: ref60 doi: 10.1109/ICPR.2010.579 – ident: ref50 doi: 10.1109/CVPR.2019.00177 – ident: ref14 doi: 10.1109/TGRS.2024.3385752 – ident: ref62 doi: 10.1109/CVPR.2017.618 – year: 2023 ident: ref57 article-title: SRFormerV2: Taking a closer look at permuted self-attention for image super-resolution publication-title: arXiv:2303.09735 – ident: ref54 doi: 10.1109/ICCV48922.2021.00475 – ident: ref49 doi: 10.48550/arXiv.1809.00219 – ident: ref52 doi: 10.1109/CVPR.2017.19 – ident: ref20 doi: 10.1016/j.inffus.2024.102408 – ident: ref55 doi: 10.1109/ICCVW54120.2021.00217 |
| SSID | ssj0014517 |
| Score | 2.437681 |
| Snippet | Sharpening a single satellite image remains challenging due to low computational efficiency, complexity of multiparameters, unphysical modeling, and the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Deep learning Estimation Frequency-domain analysis Image acquisition Image edge detection Image enhancement Image resolution Image segmentation Modulation transfer function Modulation transfer function (MTF) Object recognition radiometric consistency Radiometry random sample consensus (RANSAC) Random sampling Satellite imagery Satellite images Satellites single satellite image sharpening super-resolution Wiener filters |
| Title | Single Satellite Image Sharpening With Any-Angle 2-D MTF Estimation |
| URI | https://ieeexplore.ieee.org/document/10677492 https://www.proquest.com/docview/3112927820 |
| Volume | 62 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86EPTgx5w4nZKDJyFblqbtchxzcwrbwW24W2nSVxR1G6476F_vS9rJUAQPhVLSEN5L3vf7hZAr5aHY9z2fpRISJjXyAo0jj3EjwkToGD0E25w8GAb9ibyf-tOiWd31wgCAKz6Dun11ufxkblY2VNZwcGdSocTdDltB3qz1nTKQfrPojQ4YehGiSGE2uWqMbx9G6AoKWfekHyp7u9GGEnK3qvwSxU6_9A7IcL2yvKzkpb7KdN18_gBt_PfSD8l-YWnSdr41jsgWzMpkbwN_sEx2XP2nWR6Tzgg_vAIdxQ6hMwN694aShlo85wXY2Al9fM6eaHv2wdpupGA3dDDu0S7KiLz9sUImve6402fF_QrMCBlkLAZfoy-tjUrx0S3ZirkSaBIaoROfa_RsgjD2bCLSBgoD1OxhmnKpJXAdG-OdkNJsPoNTQoMmBDGH0E9xGgWgZEsZzZsJT2UaG10l12uCR4scRiNy7gdXkeVOZLkTFdypkool4MbAnHZVUlvzKCpO2jLyrMEoLOrf2R-_nZNdO3seN6mRUva-ggu0JDJ96XbQF00bwqI |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4hVgg48EaU5eEDJyQX17GT-lgBpTzaAy2CWxQ7E7FaKAjSA_vrd-ykq4oVEodIUWQn1owz7_kMcGQiEvs60rxQmHNliRdkHEVcOJnk0mbkIfjm5P4g7t2pqwf9UDerh14YRAzFZ9j0tyGXn7-4iQ-VnQS4M2VI4v7QSildtWv9Sxoo3aq7o2NOfoSsk5gtYU5GF7dDcgalakZKJ8afbzSjhsK5Kv8J46BhuqswmK6tKiz53ZyUtun-fIJt_Pbi12CltjVZp9oc6zCH4w1YnkEg3ICFUAHq3jfhdEgPnpANs4DRWSK7fCZZwzyi8yv66Am7_1U-ss74g3fCSMnPWH_UZeckJaoGyC24656PTnu8PmGBO6nikmeoLXnT1pmCLttW7UwYSUahkzbXwpJvEydZ5FORPlQYk25PikIoq1DYzLloG-bHL2PcARa3MM4EJrqg1xhEo9rGWdHKRaGKzNkGHE8Jnr5WQBppcECEST13Us-dtOZOA7Y8AWcGVrRrwN6UR2n9r72nkTcZpcf92_1i2iEs9kb9m_TmcnD9E5b8l6ooyh7Ml28T3Ce7orQHYTf9Ba5Uxe8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Satellite+Image+Sharpening+With+Any-Angle+2-D+MTF+Estimation&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Liu%2C+Yongkun&rft.au=Long%2C+Tengfei&rft.au=Jiao%2C+Weili&rft.au=Du%2C+Yihong&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTGRS.2024.3457906&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2024_3457906 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |