Single Satellite Image Sharpening With Any-Angle 2-D MTF Estimation

Sharpening a single satellite image remains challenging due to low computational efficiency, complexity of multiparameters, unphysical modeling, and the potential for radiometric consistency loss. To address these issues, this article introduces a modulation transfer function (MTF)-based sharpening...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 62; pp. 1 - 16
Main Authors Liu, Yongkun, Long, Tengfei, Jiao, Weili, Du, Yihong, He, Guojin, Zhang, Zhaoming, Wang, Guizhou, Peng, Yan
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2024.3457906

Cover

Abstract Sharpening a single satellite image remains challenging due to low computational efficiency, complexity of multiparameters, unphysical modeling, and the potential for radiometric consistency loss. To address these issues, this article introduces a modulation transfer function (MTF)-based sharpening method that is fast, has a single tunable parameter, and effectively suppresses noise and over-enhancement. This article also proposes an automatic method for extracting edge objects with any angle for MTF calculation, without relying on ideal edge objects. The improved slanted-edge method is more robust against noise by incorporating the logistic function and employing the random sample consensus (RANSAC) algorithm to remove deflected edges. The new 2-D MTF estimation method provides precise and stable sharpening results. This article extends the proposed method to single image super-resolution (SISR) for satellite images. The proposed approach outperforms state-of-the-art SISR methods, including 11 deep learning-based methods, across three public datasets and raw images (water, city, and building) acquired from three satellites. The utmost correlation to the histogram of raw image proves the proposed method's superiority in preserving radiometric information compared to other methods. In addition, the successful application of the one-time estimated 2-D MTF for raw satellite images over a year and its capability to improve edge sharpness uniformity across cameras within the sensor system further solidify the method's universality and reliability. More comparison results and code are available at https://github.com/RSingKK/Any-angle-MTF .
AbstractList Sharpening a single satellite image remains challenging due to low computational efficiency, complexity of multiparameters, unphysical modeling, and the potential for radiometric consistency loss. To address these issues, this article introduces a modulation transfer function (MTF)-based sharpening method that is fast, has a single tunable parameter, and effectively suppresses noise and over-enhancement. This article also proposes an automatic method for extracting edge objects with any angle for MTF calculation, without relying on ideal edge objects. The improved slanted-edge method is more robust against noise by incorporating the logistic function and employing the random sample consensus (RANSAC) algorithm to remove deflected edges. The new 2-D MTF estimation method provides precise and stable sharpening results. This article extends the proposed method to single image super-resolution (SISR) for satellite images. The proposed approach outperforms state-of-the-art SISR methods, including 11 deep learning-based methods, across three public datasets and raw images (water, city, and building) acquired from three satellites. The utmost correlation to the histogram of raw image proves the proposed method’s superiority in preserving radiometric information compared to other methods. In addition, the successful application of the one-time estimated 2-D MTF for raw satellite images over a year and its capability to improve edge sharpness uniformity across cameras within the sensor system further solidify the method’s universality and reliability. More comparison results and code are available at https://github.com/RSingKK/Any-angle-MTF .
Author He, Guojin
Zhang, Zhaoming
Peng, Yan
Jiao, Weili
Long, Tengfei
Wang, Guizhou
Du, Yihong
Liu, Yongkun
Author_xml – sequence: 1
  givenname: Yongkun
  orcidid: 0000-0003-3814-4897
  surname: Liu
  fullname: Liu, Yongkun
  email: liuyongkun19@mails.ucas.ac.cn
  organization: Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing, China
– sequence: 2
  givenname: Tengfei
  orcidid: 0000-0003-3572-4415
  surname: Long
  fullname: Long, Tengfei
  email: longtf@aircas.ac.cn
  organization: Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing, China
– sequence: 3
  givenname: Weili
  orcidid: 0000-0003-1156-9860
  surname: Jiao
  fullname: Jiao, Weili
  email: jiaowl@aircas.ac.cn
  organization: Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing, China
– sequence: 4
  givenname: Yihong
  surname: Du
  fullname: Du, Yihong
  email: duyihong21@mails.ucas.ac.cn
  organization: Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing, China
– sequence: 5
  givenname: Guojin
  orcidid: 0000-0001-7225-7276
  surname: He
  fullname: He, Guojin
  email: hegj@aircas.ac.cn
  organization: Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing, China
– sequence: 6
  givenname: Zhaoming
  surname: Zhang
  fullname: Zhang, Zhaoming
  email: zhangzhaoming@aircas.ac.cn
  organization: Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing, China
– sequence: 7
  givenname: Guizhou
  orcidid: 0000-0002-2347-8416
  surname: Wang
  fullname: Wang, Guizhou
  email: wanggz@aircas.ac.cn
  organization: Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing, China
– sequence: 8
  givenname: Yan
  surname: Peng
  fullname: Peng, Yan
  email: pengyan@aircas.ac.cn
  organization: Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing, China
BookMark eNpNkE1rwkAQhpdioWr7Awo9BHqOnf3M7lGsWqGlUC09LrvpRCMxsZt48N93rR46MAzDPO_M8A5Ir25qJOSewohSME-r-cdyxICJERcyM6CuSJ9KqVNQQvRIH6hRKdOG3ZBB224BqJA065PJsqzXFSZL12FVlR0mi51bx37jwh7rOEy-ym6TjOtjOv4jWfqcvK1mybTtyp3ryqa-JdeFq1q8u9Qh-ZxNV5OX9PV9vpiMX9OcCdWlDqVHz31uipheC-3AMMpNzvy3BK9iZI4bYFJToZSWPCsKEF4geJfnfEgez3v3ofk5YNvZbXMIdTxpOaXMsEwziBQ9U3lo2jZgYfchPhqOloI9eWVPXtmTV_biVdQ8nDUlIv7jVZYJw_gvecNlPw
CODEN IGRSD2
Cites_doi 10.3390/rs14010026
10.1109/TGRS.2022.3141223
10.1109/tnnls.2024.3401589
10.1145/358669.358692
10.1016/S0031-3203(99)00160-0
10.1109/IGARSS47720.2021.9554133
10.23919/OCEANS.2015.7401946
10.5120/19256-0999
10.1109/TGRS.2023.3279834
10.1023/A:1011183429707
10.1109/CVPR.2018.00344
10.1109/TGRS.2021.3069889
10.1364/OE.22.006040
10.1109/TPAMI.2024.3362475
10.1364/OE.22.026908
10.1016/S0165-1684(98)00161-3
10.1109/ICSMC.2010.5641838
10.1109/TSMC.1979.4310076
10.1016/j.isprsjprs.2013.11.010
10.1109/ISCIT.2015.7458310
10.1080/01431169308904292
10.1109/CVPR.2005.235
10.2307/2280041
10.1109/83.826787
10.1109/TGRS.2020.3024730
10.1109/TCI.2016.2607142
10.1109/TIP.2010.2072512
10.1109/JPROC.2017.2675998
10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
10.1016/j.ejrs.2023.07.012
10.1117/12.800055
10.1214/aoms/1177704250
10.1109/TIP.2018.2838660
10.1109/TPAMI.2022.3167175
10.3390/rs14215423
10.1109/LGRS.2023.3339517
10.1109/JSTARS.2023.3244069
10.1145/3343031.3351084
10.1109/TGRS.2023.3283769
10.1109/TGRS.2024.3406516
10.1145/1869790.1869829
10.1109/TGRS.2023.3300257
10.18637/jss.v031.i07
10.1109/MSP.2011.941097
10.1109/TGRS.2024.3370826
10.1109/CCSSP49278.2020.9151673
10.1007/bfb0067700
10.1364/OE.23.006187
10.3390/rs15133452
10.1109/TPAMI.2008.300
10.1109/CVPR.2005.56
10.1109/LGRS.2010.2055033
10.1109/TGRS.2023.3324497
10.1109/ICPR.2010.579
10.1109/CVPR.2019.00177
10.1109/TGRS.2024.3385752
10.1109/CVPR.2017.618
10.1109/ICCV48922.2021.00475
10.48550/arXiv.1809.00219
10.1109/CVPR.2017.19
10.1016/j.inffus.2024.102408
10.1109/ICCVW54120.2021.00217
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2024.3457906
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 16
ExternalDocumentID 10_1109_TGRS_2024_3457906
10677492
Genre orig-research
GrantInformation_xml – fundername: Science and Disruptive Technology Program, Aerospace Information Research Institute at the Chinese Academy of Sciences
  grantid: E3Z218010F
  funderid: 10.13039/501100009950
– fundername: National Natural Science Foundation of China
  grantid: 62101531
  funderid: 10.13039/501100001809
– fundername: Second Tibetan Plateau Scientific Expedition and Research Program
  grantid: 2019QZKK030701
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c246t-ae5beb3bc9fbc9b848a092139c2bd50b66667a39025814668537ff04b4e0bacc3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 10:03:15 EDT 2025
Wed Oct 01 02:58:12 EDT 2025
Wed Aug 27 02:18:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-ae5beb3bc9fbc9b848a092139c2bd50b66667a39025814668537ff04b4e0bacc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3814-4897
0000-0003-3572-4415
0000-0003-1156-9860
0000-0002-2347-8416
0000-0001-7225-7276
PQID 3112927820
PQPubID 85465
PageCount 16
ParticipantIDs proquest_journals_3112927820
crossref_primary_10_1109_TGRS_2024_3457906
ieee_primary_10677492
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Zhou (ref57) 2023
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref43
ref49
ref8
ref7
ref9
ref4
ref3
Chen (ref65) 2023
ref6
ref5
ref40
Hasanov (ref44) 2002; 27
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – year: 2023
  ident: ref65
  article-title: HAT: Hybrid attention transformer for image restoration
  publication-title: arXiv:2309.05239
– ident: ref9
  doi: 10.3390/rs14010026
– ident: ref15
  doi: 10.1109/TGRS.2022.3141223
– ident: ref22
  doi: 10.1109/tnnls.2024.3401589
– ident: ref41
  doi: 10.1145/358669.358692
– ident: ref1
  doi: 10.1016/S0031-3203(99)00160-0
– ident: ref18
  doi: 10.1109/IGARSS47720.2021.9554133
– volume: 27
  start-page: 278
  year: 2002
  ident: ref44
  article-title: A new modification of Newtons method
  publication-title: Appl. Math. Eng.
– ident: ref61
  doi: 10.23919/OCEANS.2015.7401946
– ident: ref5
  doi: 10.5120/19256-0999
– ident: ref19
  doi: 10.1109/TGRS.2023.3279834
– ident: ref34
  doi: 10.1023/A:1011183429707
– ident: ref53
  doi: 10.1109/CVPR.2018.00344
– ident: ref13
  doi: 10.1109/TGRS.2021.3069889
– ident: ref37
  doi: 10.1364/OE.22.006040
– ident: ref21
  doi: 10.1109/TPAMI.2024.3362475
– ident: ref30
  doi: 10.1364/OE.22.026908
– ident: ref32
  doi: 10.1016/S0165-1684(98)00161-3
– ident: ref3
  doi: 10.1109/ICSMC.2010.5641838
– ident: ref40
  doi: 10.1109/TSMC.1979.4310076
– ident: ref27
  doi: 10.1016/j.isprsjprs.2013.11.010
– ident: ref6
  doi: 10.1109/ISCIT.2015.7458310
– ident: ref33
  doi: 10.1080/01431169308904292
– ident: ref31
  doi: 10.1109/CVPR.2005.235
– ident: ref38
  doi: 10.2307/2280041
– ident: ref4
  doi: 10.1109/83.826787
– ident: ref64
  doi: 10.1109/TGRS.2020.3024730
– ident: ref2
  doi: 10.1109/TCI.2016.2607142
– ident: ref8
  doi: 10.1109/TIP.2010.2072512
– ident: ref47
  doi: 10.1109/JPROC.2017.2675998
– ident: ref48
  doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
– ident: ref17
  doi: 10.1016/j.ejrs.2023.07.012
– ident: ref28
  doi: 10.1117/12.800055
– ident: ref43
  doi: 10.1214/aoms/1177704250
– ident: ref58
  doi: 10.1109/TIP.2018.2838660
– ident: ref59
  doi: 10.1109/TPAMI.2022.3167175
– ident: ref11
  doi: 10.3390/rs14215423
– ident: ref25
  doi: 10.1109/LGRS.2023.3339517
– ident: ref10
  doi: 10.1109/JSTARS.2023.3244069
– ident: ref51
  doi: 10.1145/3343031.3351084
– ident: ref56
  doi: 10.1109/TGRS.2023.3283769
– ident: ref26
  doi: 10.1109/TGRS.2024.3406516
– ident: ref45
  doi: 10.1145/1869790.1869829
– ident: ref16
  doi: 10.1109/TGRS.2023.3300257
– ident: ref63
  doi: 10.18637/jss.v031.i07
– ident: ref42
  doi: 10.1109/MSP.2011.941097
– ident: ref12
  doi: 10.1109/TGRS.2024.3370826
– ident: ref7
  doi: 10.1109/CCSSP49278.2020.9151673
– ident: ref39
  doi: 10.1007/bfb0067700
– ident: ref29
  doi: 10.1364/OE.23.006187
– ident: ref24
  doi: 10.3390/rs15133452
– ident: ref35
  doi: 10.1109/TPAMI.2008.300
– ident: ref36
  doi: 10.1109/CVPR.2005.56
– ident: ref46
  doi: 10.1109/LGRS.2010.2055033
– ident: ref23
  doi: 10.1109/TGRS.2023.3324497
– ident: ref60
  doi: 10.1109/ICPR.2010.579
– ident: ref50
  doi: 10.1109/CVPR.2019.00177
– ident: ref14
  doi: 10.1109/TGRS.2024.3385752
– ident: ref62
  doi: 10.1109/CVPR.2017.618
– year: 2023
  ident: ref57
  article-title: SRFormerV2: Taking a closer look at permuted self-attention for image super-resolution
  publication-title: arXiv:2303.09735
– ident: ref54
  doi: 10.1109/ICCV48922.2021.00475
– ident: ref49
  doi: 10.48550/arXiv.1809.00219
– ident: ref52
  doi: 10.1109/CVPR.2017.19
– ident: ref20
  doi: 10.1016/j.inffus.2024.102408
– ident: ref55
  doi: 10.1109/ICCVW54120.2021.00217
SSID ssj0014517
Score 2.437681
Snippet Sharpening a single satellite image remains challenging due to low computational efficiency, complexity of multiparameters, unphysical modeling, and the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Deep learning
Estimation
Frequency-domain analysis
Image acquisition
Image edge detection
Image enhancement
Image resolution
Image segmentation
Modulation transfer function
Modulation transfer function (MTF)
Object recognition
radiometric consistency
Radiometry
random sample consensus (RANSAC)
Random sampling
Satellite imagery
Satellite images
Satellites
single satellite image sharpening
super-resolution
Wiener filters
Title Single Satellite Image Sharpening With Any-Angle 2-D MTF Estimation
URI https://ieeexplore.ieee.org/document/10677492
https://www.proquest.com/docview/3112927820
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86EPTgx5w4nZKDJyFblqbtchxzcwrbwW24W2nSVxR1G6476F_vS9rJUAQPhVLSEN5L3vf7hZAr5aHY9z2fpRISJjXyAo0jj3EjwkToGD0E25w8GAb9ibyf-tOiWd31wgCAKz6Dun11ufxkblY2VNZwcGdSocTdDltB3qz1nTKQfrPojQ4YehGiSGE2uWqMbx9G6AoKWfekHyp7u9GGEnK3qvwSxU6_9A7IcL2yvKzkpb7KdN18_gBt_PfSD8l-YWnSdr41jsgWzMpkbwN_sEx2XP2nWR6Tzgg_vAIdxQ6hMwN694aShlo85wXY2Al9fM6eaHv2wdpupGA3dDDu0S7KiLz9sUImve6402fF_QrMCBlkLAZfoy-tjUrx0S3ZirkSaBIaoROfa_RsgjD2bCLSBgoD1OxhmnKpJXAdG-OdkNJsPoNTQoMmBDGH0E9xGgWgZEsZzZsJT2UaG10l12uCR4scRiNy7gdXkeVOZLkTFdypkool4MbAnHZVUlvzKCpO2jLyrMEoLOrf2R-_nZNdO3seN6mRUva-ggu0JDJ96XbQF00bwqI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4hVgg48EaU5eEDJyQX17GT-lgBpTzaAy2CWxQ7E7FaKAjSA_vrd-ykq4oVEodIUWQn1owz7_kMcGQiEvs60rxQmHNliRdkHEVcOJnk0mbkIfjm5P4g7t2pqwf9UDerh14YRAzFZ9j0tyGXn7-4iQ-VnQS4M2VI4v7QSildtWv9Sxoo3aq7o2NOfoSsk5gtYU5GF7dDcgalakZKJ8afbzSjhsK5Kv8J46BhuqswmK6tKiz53ZyUtun-fIJt_Pbi12CltjVZp9oc6zCH4w1YnkEg3ICFUAHq3jfhdEgPnpANs4DRWSK7fCZZwzyi8yv66Am7_1U-ss74g3fCSMnPWH_UZeckJaoGyC24656PTnu8PmGBO6nikmeoLXnT1pmCLttW7UwYSUahkzbXwpJvEydZ5FORPlQYk25PikIoq1DYzLloG-bHL2PcARa3MM4EJrqg1xhEo9rGWdHKRaGKzNkGHE8Jnr5WQBppcECEST13Us-dtOZOA7Y8AWcGVrRrwN6UR2n9r72nkTcZpcf92_1i2iEs9kb9m_TmcnD9E5b8l6ooyh7Ml28T3Ce7orQHYTf9Ba5Uxe8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Satellite+Image+Sharpening+With+Any-Angle+2-D+MTF+Estimation&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Liu%2C+Yongkun&rft.au=Long%2C+Tengfei&rft.au=Jiao%2C+Weili&rft.au=Du%2C+Yihong&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTGRS.2024.3457906&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2024_3457906
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon