EMI: An Efficient Algorithm for Identifying Maximal Rigid Clusters in 3D Generic Graphs
Identifying the Maximal Rigid subGraphs (MRGs) whose relative formations cannot deform continuously in <inline-formula> <tex-math notation="LaTeX">\Re^d</tex-math> </inline-formula>, is a fundamental problem in network formation control and network localization. Whe...
Saved in:
| Published in | IEEE/ACM transactions on networking Vol. 32; no. 1; pp. 1 - 15 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1063-6692 1558-2566 |
| DOI | 10.1109/TNET.2023.3287822 |
Cover
| Abstract | Identifying the Maximal Rigid subGraphs (MRGs) whose relative formations cannot deform continuously in <inline-formula> <tex-math notation="LaTeX">\Re^d</tex-math> </inline-formula>, is a fundamental problem in network formation control and network localization. When <inline-formula> <tex-math notation="LaTeX">d=3</tex-math> </inline-formula>, it becomes extremely challenging and has been open for decades because the fundamental Laman condition doesn't hold in <inline-formula> <tex-math notation="LaTeX">\Re^3</tex-math> </inline-formula>. This paper presents a new understanding of this problem. Because of the existence of "implicit hinges" in 3D, its essence should be to detect the Maximal Rigid Clusters (MRCs). An MRC is a maximal set of vertices in which each vertex is mutually rigid to the others, but the vertices are not necessarily connected. We show that the MRGs in the original graph can be easily deduced from the connected components generated by the MRCs. For efficiently identifying the MRCs, at first, a randomized algorithm to detect mutually rigid vertex pairs is exploited. Based on this, a Basic MRC Identification algorithm ( BMI ) is proposed, which is an exact algorithm that can detect all MRCs based on the extracted rigid vertex pairs, but it has <inline-formula> <tex-math notation="LaTeX">O(|V|^4)</tex-math> </inline-formula> time complexity. To further pursue an efficient algorithm, we observe the "hinge MRCs" appear rarely. So an Efficient framework for MRC Identification ( EMI ) is proposed. It consists of two steps: 1) a Trimmed-BMI algorithm that guarantees to detect all simple MRCs and may miss only hinge MRCs; 2) a Trim-FIX algorithm that can find all hinge MRCs. We prove EMI can guarantee to detect all the MRCs as accurately as BMI , using <inline-formula> <tex-math notation="LaTeX">O(|V|^3)</tex-math> </inline-formula> times. Further, we show EMI achieves magnitudes of times faster than BMI in experiments. Extensive evaluations verify the effectiveness and high efficiency of EMI in various 3D networks. We have uploaded the code of the related program to https://github.com/fdwqh/EMI-algorithm. |
|---|---|
| AbstractList | Identifying the Maximal Rigid subGraphs (MRGs) whose relative formations cannot deform continuously in <inline-formula> <tex-math notation="LaTeX">\Re^d</tex-math> </inline-formula>, is a fundamental problem in network formation control and network localization. When <inline-formula> <tex-math notation="LaTeX">d=3</tex-math> </inline-formula>, it becomes extremely challenging and has been open for decades because the fundamental Laman condition doesn't hold in <inline-formula> <tex-math notation="LaTeX">\Re^3</tex-math> </inline-formula>. This paper presents a new understanding of this problem. Because of the existence of "implicit hinges" in 3D, its essence should be to detect the Maximal Rigid Clusters (MRCs). An MRC is a maximal set of vertices in which each vertex is mutually rigid to the others, but the vertices are not necessarily connected. We show that the MRGs in the original graph can be easily deduced from the connected components generated by the MRCs. For efficiently identifying the MRCs, at first, a randomized algorithm to detect mutually rigid vertex pairs is exploited. Based on this, a Basic MRC Identification algorithm ( BMI ) is proposed, which is an exact algorithm that can detect all MRCs based on the extracted rigid vertex pairs, but it has <inline-formula> <tex-math notation="LaTeX">O(|V|^4)</tex-math> </inline-formula> time complexity. To further pursue an efficient algorithm, we observe the "hinge MRCs" appear rarely. So an Efficient framework for MRC Identification ( EMI ) is proposed. It consists of two steps: 1) a Trimmed-BMI algorithm that guarantees to detect all simple MRCs and may miss only hinge MRCs; 2) a Trim-FIX algorithm that can find all hinge MRCs. We prove EMI can guarantee to detect all the MRCs as accurately as BMI , using <inline-formula> <tex-math notation="LaTeX">O(|V|^3)</tex-math> </inline-formula> times. Further, we show EMI achieves magnitudes of times faster than BMI in experiments. Extensive evaluations verify the effectiveness and high efficiency of EMI in various 3D networks. We have uploaded the code of the related program to https://github.com/fdwqh/EMI-algorithm. Identifying the Maximal Rigid subGraphs (MRGs) whose relative formations cannot deform continuously in [Formula Omitted], is a fundamental problem in network formation control and network localization. When [Formula Omitted], it becomes extremely challenging and has been open for decades because the fundamental Laman condition doesn’t hold in [Formula Omitted]. This paper presents a new understanding of this problem. Because of the existence of “implicit hinges” in 3D, its essence should be to detect the Maximal Rigid Clusters (MRCs). An MRC is a maximal set of vertices in which each vertex is mutually rigid to the others, but the vertices are not necessarily connected. We show that the MRGs in the original graph can be easily deduced from the connected components generated by the MRCs. For efficiently identifying the MRCs, at first, a randomized algorithm to detect mutually rigid vertex pairs is exploited. Based on this, a Basic MRC Identification algorithm (BMI) is proposed, which is an exact algorithm that can detect all MRCs based on the extracted rigid vertex pairs, but it has [Formula Omitted] time complexity. To further pursue an efficient algorithm, we observe the “hinge MRCs” appear rarely. So an Efficient framework for MRC Identification (EMI) is proposed. It consists of two steps: 1) a Trimmed-BMI algorithm that guarantees to detect all simple MRCs and may miss only hinge MRCs; 2) a Trim-FIX algorithm that can find all hinge MRCs. We prove EMI can guarantee to detect all the MRCs as accurately as BMI, using [Formula Omitted] times. Further, we show EMI achieves magnitudes of times faster than BMI in experiments. Extensive evaluations verify the effectiveness and high efficiency of EMI in various 3D networks. We have uploaded the code of the related program to https://github.com/fdwqh/EMI-algorithm . |
| Author | Li, Deying Wei, Qinhan Wang, Yongcai |
| Author_xml | – sequence: 1 givenname: Qinhan surname: Wei fullname: Wei, Qinhan organization: School of Information, Renmin University of China, Beijing, China – sequence: 2 givenname: Yongcai orcidid: 0000-0002-4197-2258 surname: Wang fullname: Wang, Yongcai organization: School of Information, Renmin University of China, Beijing, China – sequence: 3 givenname: Deying orcidid: 0000-0002-7748-5427 surname: Li fullname: Li, Deying organization: School of Information, Renmin University of China, Beijing, China |
| BookMark | eNpNkE1rAjEQhkOxULX9AYUeAj2vzccmm_QmdmsFbaFYegzZTVYjmrXJCvXfN6KHMocZZt53hnkGoOdbbwG4x2iEMZJPy_dyOSKI0BElohCEXIE-ZkxkhHHeSzXiNONckhswiHGDEKaI8D74LhezZzj2sGwaVzvrOzjertrguvUONm2AM5N6rjk6v4IL_et2egs_3coZONkeYmdDhM5D-gKn1tvgajgNer-Ot-C60dto7y55CL5ey-XkLZt_TGeT8TyrSc67TOdGsxwbVFQVqiRDhldVYWRFck1qJkiVC2mopIWppG4KwZhOs7wQOaIE13QIHs9796H9OdjYqU17CD6dVESmYJIImVT4rKpDG2OwjdqH9Ek4KozUiZ868VMnfurCL3kezh5nrf2nx1wgRukfyOtsHg |
| CODEN | IEANEP |
| Cites_doi | 10.1109/JSAC.2018.2864374 10.1137/0603009 10.1103/PhysRevE.76.041135 10.1090/conm/197/02540 10.1109/ICRA.2011.5979949 10.1109/MCS.2008.929280 10.1088/0305-4470/29/24/030 10.1007/s00454-004-1124-4 10.1016/j.jctb.2004.11.002 10.1007/bfb0066118 10.1109/TAC.2018.2798808 10.1109/TMC.2020.3015480 10.1016/j.neucom.2016.03.021 10.1109/JSAC.2023.3242708 10.1007/BF01534980 10.1109/ACC.2015.7171940 10.1109/TNET.2018.2866597 10.3390/s23052399 10.1186/1471-2105-14-S18-S2 10.1007/978-3-540-39658-1_10 10.1137/0221008 10.1006/jcph.1997.5809 10.1002/prot.1081 10.1353/ajm.0.0132 10.1088/0305-4470/31/31/012 10.1145/3594668 10.1016/j.automatica.2006.08.025 10.1007/978-1-4939-0781-6_10 10.1007/s11390-010-9324-2 10.4018/978-1-60566-396-8.ch006 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TNET.2023.3287822 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2566 |
| EndPage | 15 |
| ExternalDocumentID | 10_1109_TNET_2023_3287822 10168053 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61972404; 12071478 funderid: 10.13039/501100001809 – fundername: Blockchain Laboratory, Metaverse Research Center, Renmin University of China – fundername: Public Computing Cloud, Renmin University of China |
| GroupedDBID | -DZ -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 85S 8US 97E AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABPPZ ABQJQ ABVLG ACGFS ACGOD ACIWK ACM ADBCU ADL AEBYY AEFXT AEJOY AENSD AETEA AFWIH AFWXC AGQYO AHBIQ AIKLT AKJIK AKQYR AKRVB ALMA_UNASSIGNED_HOLDINGS ATWAV BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 D0L EBS FEDTE GUFHI HGAVV HZ~ I07 IEDLZ IES IFIPE IPLJI JAVBF LAI LHSKQ M43 O9- OCL P1C P2P PQQKQ RIA RIE RNS TN5 UPT YR2 ZCA 9M8 AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD HF~ H~9 ICLAB IFJZH MVM ROL UQL VH1 XOL 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c246t-a4da541d07bb0b950d6bb7d9b24a2c582b489d3937db9af7855ab2447840321c3 |
| IEDL.DBID | RIE |
| ISSN | 1063-6692 |
| IngestDate | Mon Jun 30 04:43:46 EDT 2025 Wed Oct 01 02:32:02 EDT 2025 Wed Aug 27 02:13:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-a4da541d07bb0b950d6bb7d9b24a2c582b489d3937db9af7855ab2447840321c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4197-2258 0000-0002-7748-5427 |
| PQID | 2929259289 |
| PQPubID | 32020 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2929259289 crossref_primary_10_1109_TNET_2023_3287822 ieee_primary_10168053 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE/ACM transactions on networking |
| PublicationTitleAbbrev | TNET |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref30 Tay (ref31) 1985; 11 ref11 ref33 ref10 ref32 ref2 ref17 ref16 ref19 ref18 Jackson (ref1); 4 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – volume: 11 start-page: 22 year: 1985 ident: ref31 article-title: Generating isostatic frameworks publication-title: Struct. Topol. – ident: ref10 doi: 10.1109/JSAC.2018.2864374 – ident: ref27 doi: 10.1137/0603009 – ident: ref9 doi: 10.1103/PhysRevE.76.041135 – ident: ref30 doi: 10.1090/conm/197/02540 – ident: ref32 doi: 10.1109/ICRA.2011.5979949 – ident: ref11 doi: 10.1109/MCS.2008.929280 – ident: ref26 doi: 10.1088/0305-4470/29/24/030 – ident: ref23 doi: 10.1007/s00454-004-1124-4 – ident: ref2 doi: 10.1016/j.jctb.2004.11.002 – ident: ref8 doi: 10.1007/bfb0066118 – ident: ref12 doi: 10.1109/TAC.2018.2798808 – ident: ref14 doi: 10.1109/TMC.2020.3015480 – ident: ref22 doi: 10.1016/j.neucom.2016.03.021 – ident: ref15 doi: 10.1109/JSAC.2023.3242708 – ident: ref4 doi: 10.1007/BF01534980 – ident: ref21 doi: 10.1109/ACC.2015.7171940 – ident: ref33 doi: 10.1109/TNET.2018.2866597 – ident: ref16 doi: 10.3390/s23052399 – ident: ref17 doi: 10.1186/1471-2105-14-S18-S2 – ident: ref28 doi: 10.1007/978-3-540-39658-1_10 – ident: ref6 doi: 10.1137/0221008 – ident: ref18 doi: 10.1006/jcph.1997.5809 – ident: ref5 doi: 10.1002/prot.1081 – ident: ref25 doi: 10.1353/ajm.0.0132 – ident: ref20 doi: 10.1088/0305-4470/31/31/012 – ident: ref7 doi: 10.1145/3594668 – ident: ref13 doi: 10.1016/j.automatica.2006.08.025 – ident: ref29 doi: 10.1007/978-1-4939-0781-6_10 – ident: ref3 doi: 10.1007/s11390-010-9324-2 – ident: ref24 doi: 10.1353/ajm.0.0132 – ident: ref19 doi: 10.4018/978-1-60566-396-8.ch006 – volume: 4 start-page: 1 volume-title: Proc. Levico Conf. Notes ident: ref1 article-title: Notes on the rigidity of graphs |
| SSID | ssj0013026 |
| Score | 2.4327204 |
| Snippet | Identifying the Maximal Rigid subGraphs (MRGs) whose relative formations cannot deform continuously in <inline-formula> <tex-math... Identifying the Maximal Rigid subGraphs (MRGs) whose relative formations cannot deform continuously in [Formula Omitted], is a fundamental problem in network... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | 3D networks Algorithms Apexes Clustering algorithms Clusters Electromagnetic interference Fasteners implicit hinge Location awareness Maximum rigid cluster partition mutual rigid pair Network formation rigid cluster Rigidity Three-dimensional displays Time complexity |
| Title | EMI: An Efficient Algorithm for Identifying Maximal Rigid Clusters in 3D Generic Graphs |
| URI | https://ieeexplore.ieee.org/document/10168053 https://www.proquest.com/docview/2929259289 |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2566 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013026 issn: 1063-6692 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx78nDidkoMnoV2bpB_xNubmELaDbLhbSZpsFrWTrQPxr_cl7XAqgtBD6ccj5Jc275eX93sIXQUqlJQLs1AliMMEixwJM4ETgnsviU7BqTAJzoNh2B-z-0kwqZLVbS6M1tpuPtOuObWxfDVPV2aprGWYZgyjZhttR3FYJmt9hQw8W1sNKA51wpCTKoTpe7w1GnZHrqkT7lIgCDEh3yYhW1Xl16_Yzi-9fTRct6zcVvLsrgrpph8_RBv_3fQDtFd5mrhdDo1DtKXzI7S7oT94jB4BhBvcznHXCkmABdx-mc0XWfH0isGbxWUar02FwgPxnr2CwYdslinceVkZiYUlznJMb7FVr85SfGf0r5d1NO51R52-U1VacFLCwsIRTImA-cqLpPQkDzxAUEaKA2yCpAHAxmKujHaeklxMozgIBNxjEdBDSvyUnqBaPs_1KcLc13DFZyJSEUvDqQCzNACbUsJBaQNdr7s-eSsFNRJLRDyeGJwSg1NS4dRAddOVGw-WvdhAzTVaSfXNLRMCnh6QOWCQZ3-8do52wDorN103Ua1YrPQF-BSFvLRj6ROmQcWy |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH8a7AAcxvgSZbD5wAkpIfFHUu9WQVkHbQ-oCG6RHRsWrU0RTaVpf_2enVQUJiSkHKJ8PFv-OfH72X6_B3AsTKKZVG6iStGAK54GGkeCIEH3XlObo1PhApwHw6R3wy_vxF0TrO5jYay1fvOZDd2pX8s303zupspOHdNsY69ZgY-Ccy7qcK3nRYPIZ1dDksOCJJG0WcSMI3k6GnZHocsUHjKkCG1KXwxDPq_Kfz9jP8JcbMJwUbd6Y8nvcF7pMP_7Srbx3ZX_DJ8aX5N06s6xBR9suQ0bSwqEO3CLMHwnnZJ0vZQEWiCd8cP0qah-TQj6s6QO5PXBUGSg_hQTNHhdPBSGnI3nTmRhRoqSsHPi9auLnPxwCtizXbi56I7OekGTayHIKU-qQHGjBI9NlGodaSkixFCnRiJwiuYCgeNtaZx6ntFS3adtIRTe4ykSREbjnO3Bajkt7T4QGVu8EnOVmpTnyb1Cs0ygTa3xYKwFJ4umzx5rSY3MU5FIZg6nzOGUNTi1YNc15dKDdSu24HCBVtZ8dbOMoq-HdA455MEbr32Dtd5o0M_6P4dXX2AdS-L1FuxDWK2e5vYIPYxKf_X96h8v98j_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EMI%3A+An+Efficient+Algorithm+for+Identifying+Maximal+Rigid+Clusters+in+3D+Generic+Graphs&rft.jtitle=IEEE%2FACM+transactions+on+networking&rft.au=Qinhan+Wei&rft.au=Wang%2C+Yongcai&rft.au=Li%2C+Deying&rft.date=2024-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6692&rft.eissn=1558-2566&rft.volume=32&rft.issue=1&rft.spage=460&rft_id=info:doi/10.1109%2FTNET.2023.3287822&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6692&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6692&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6692&client=summon |