EMI: An Efficient Algorithm for Identifying Maximal Rigid Clusters in 3D Generic Graphs

Identifying the Maximal Rigid subGraphs (MRGs) whose relative formations cannot deform continuously in <inline-formula> <tex-math notation="LaTeX">\Re^d</tex-math> </inline-formula>, is a fundamental problem in network formation control and network localization. Whe...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on networking Vol. 32; no. 1; pp. 1 - 15
Main Authors Wei, Qinhan, Wang, Yongcai, Li, Deying
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6692
1558-2566
DOI10.1109/TNET.2023.3287822

Cover

Abstract Identifying the Maximal Rigid subGraphs (MRGs) whose relative formations cannot deform continuously in <inline-formula> <tex-math notation="LaTeX">\Re^d</tex-math> </inline-formula>, is a fundamental problem in network formation control and network localization. When <inline-formula> <tex-math notation="LaTeX">d=3</tex-math> </inline-formula>, it becomes extremely challenging and has been open for decades because the fundamental Laman condition doesn't hold in <inline-formula> <tex-math notation="LaTeX">\Re^3</tex-math> </inline-formula>. This paper presents a new understanding of this problem. Because of the existence of "implicit hinges" in 3D, its essence should be to detect the Maximal Rigid Clusters (MRCs). An MRC is a maximal set of vertices in which each vertex is mutually rigid to the others, but the vertices are not necessarily connected. We show that the MRGs in the original graph can be easily deduced from the connected components generated by the MRCs. For efficiently identifying the MRCs, at first, a randomized algorithm to detect mutually rigid vertex pairs is exploited. Based on this, a Basic MRC Identification algorithm ( BMI ) is proposed, which is an exact algorithm that can detect all MRCs based on the extracted rigid vertex pairs, but it has <inline-formula> <tex-math notation="LaTeX">O(|V|^4)</tex-math> </inline-formula> time complexity. To further pursue an efficient algorithm, we observe the "hinge MRCs" appear rarely. So an Efficient framework for MRC Identification ( EMI ) is proposed. It consists of two steps: 1) a Trimmed-BMI algorithm that guarantees to detect all simple MRCs and may miss only hinge MRCs; 2) a Trim-FIX algorithm that can find all hinge MRCs. We prove EMI can guarantee to detect all the MRCs as accurately as BMI , using <inline-formula> <tex-math notation="LaTeX">O(|V|^3)</tex-math> </inline-formula> times. Further, we show EMI achieves magnitudes of times faster than BMI in experiments. Extensive evaluations verify the effectiveness and high efficiency of EMI in various 3D networks. We have uploaded the code of the related program to https://github.com/fdwqh/EMI-algorithm.
AbstractList Identifying the Maximal Rigid subGraphs (MRGs) whose relative formations cannot deform continuously in <inline-formula> <tex-math notation="LaTeX">\Re^d</tex-math> </inline-formula>, is a fundamental problem in network formation control and network localization. When <inline-formula> <tex-math notation="LaTeX">d=3</tex-math> </inline-formula>, it becomes extremely challenging and has been open for decades because the fundamental Laman condition doesn't hold in <inline-formula> <tex-math notation="LaTeX">\Re^3</tex-math> </inline-formula>. This paper presents a new understanding of this problem. Because of the existence of "implicit hinges" in 3D, its essence should be to detect the Maximal Rigid Clusters (MRCs). An MRC is a maximal set of vertices in which each vertex is mutually rigid to the others, but the vertices are not necessarily connected. We show that the MRGs in the original graph can be easily deduced from the connected components generated by the MRCs. For efficiently identifying the MRCs, at first, a randomized algorithm to detect mutually rigid vertex pairs is exploited. Based on this, a Basic MRC Identification algorithm ( BMI ) is proposed, which is an exact algorithm that can detect all MRCs based on the extracted rigid vertex pairs, but it has <inline-formula> <tex-math notation="LaTeX">O(|V|^4)</tex-math> </inline-formula> time complexity. To further pursue an efficient algorithm, we observe the "hinge MRCs" appear rarely. So an Efficient framework for MRC Identification ( EMI ) is proposed. It consists of two steps: 1) a Trimmed-BMI algorithm that guarantees to detect all simple MRCs and may miss only hinge MRCs; 2) a Trim-FIX algorithm that can find all hinge MRCs. We prove EMI can guarantee to detect all the MRCs as accurately as BMI , using <inline-formula> <tex-math notation="LaTeX">O(|V|^3)</tex-math> </inline-formula> times. Further, we show EMI achieves magnitudes of times faster than BMI in experiments. Extensive evaluations verify the effectiveness and high efficiency of EMI in various 3D networks. We have uploaded the code of the related program to https://github.com/fdwqh/EMI-algorithm.
Identifying the Maximal Rigid subGraphs (MRGs) whose relative formations cannot deform continuously in [Formula Omitted], is a fundamental problem in network formation control and network localization. When [Formula Omitted], it becomes extremely challenging and has been open for decades because the fundamental Laman condition doesn’t hold in [Formula Omitted]. This paper presents a new understanding of this problem. Because of the existence of “implicit hinges” in 3D, its essence should be to detect the Maximal Rigid Clusters (MRCs). An MRC is a maximal set of vertices in which each vertex is mutually rigid to the others, but the vertices are not necessarily connected. We show that the MRGs in the original graph can be easily deduced from the connected components generated by the MRCs. For efficiently identifying the MRCs, at first, a randomized algorithm to detect mutually rigid vertex pairs is exploited. Based on this, a Basic MRC Identification algorithm (BMI) is proposed, which is an exact algorithm that can detect all MRCs based on the extracted rigid vertex pairs, but it has [Formula Omitted] time complexity. To further pursue an efficient algorithm, we observe the “hinge MRCs” appear rarely. So an Efficient framework for MRC Identification (EMI) is proposed. It consists of two steps: 1) a Trimmed-BMI algorithm that guarantees to detect all simple MRCs and may miss only hinge MRCs; 2) a Trim-FIX algorithm that can find all hinge MRCs. We prove EMI can guarantee to detect all the MRCs as accurately as BMI, using [Formula Omitted] times. Further, we show EMI achieves magnitudes of times faster than BMI in experiments. Extensive evaluations verify the effectiveness and high efficiency of EMI in various 3D networks. We have uploaded the code of the related program to https://github.com/fdwqh/EMI-algorithm .
Author Li, Deying
Wei, Qinhan
Wang, Yongcai
Author_xml – sequence: 1
  givenname: Qinhan
  surname: Wei
  fullname: Wei, Qinhan
  organization: School of Information, Renmin University of China, Beijing, China
– sequence: 2
  givenname: Yongcai
  orcidid: 0000-0002-4197-2258
  surname: Wang
  fullname: Wang, Yongcai
  organization: School of Information, Renmin University of China, Beijing, China
– sequence: 3
  givenname: Deying
  orcidid: 0000-0002-7748-5427
  surname: Li
  fullname: Li, Deying
  organization: School of Information, Renmin University of China, Beijing, China
BookMark eNpNkE1rAjEQhkOxULX9AYUeAj2vzccmm_QmdmsFbaFYegzZTVYjmrXJCvXfN6KHMocZZt53hnkGoOdbbwG4x2iEMZJPy_dyOSKI0BElohCEXIE-ZkxkhHHeSzXiNONckhswiHGDEKaI8D74LhezZzj2sGwaVzvrOzjertrguvUONm2AM5N6rjk6v4IL_et2egs_3coZONkeYmdDhM5D-gKn1tvgajgNer-Ot-C60dto7y55CL5ey-XkLZt_TGeT8TyrSc67TOdGsxwbVFQVqiRDhldVYWRFck1qJkiVC2mopIWppG4KwZhOs7wQOaIE13QIHs9796H9OdjYqU17CD6dVESmYJIImVT4rKpDG2OwjdqH9Ek4KozUiZ868VMnfurCL3kezh5nrf2nx1wgRukfyOtsHg
CODEN IEANEP
Cites_doi 10.1109/JSAC.2018.2864374
10.1137/0603009
10.1103/PhysRevE.76.041135
10.1090/conm/197/02540
10.1109/ICRA.2011.5979949
10.1109/MCS.2008.929280
10.1088/0305-4470/29/24/030
10.1007/s00454-004-1124-4
10.1016/j.jctb.2004.11.002
10.1007/bfb0066118
10.1109/TAC.2018.2798808
10.1109/TMC.2020.3015480
10.1016/j.neucom.2016.03.021
10.1109/JSAC.2023.3242708
10.1007/BF01534980
10.1109/ACC.2015.7171940
10.1109/TNET.2018.2866597
10.3390/s23052399
10.1186/1471-2105-14-S18-S2
10.1007/978-3-540-39658-1_10
10.1137/0221008
10.1006/jcph.1997.5809
10.1002/prot.1081
10.1353/ajm.0.0132
10.1088/0305-4470/31/31/012
10.1145/3594668
10.1016/j.automatica.2006.08.025
10.1007/978-1-4939-0781-6_10
10.1007/s11390-010-9324-2
10.4018/978-1-60566-396-8.ch006
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNET.2023.3287822
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2566
EndPage 15
ExternalDocumentID 10_1109_TNET_2023_3287822
10168053
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61972404; 12071478
  funderid: 10.13039/501100001809
– fundername: Blockchain Laboratory, Metaverse Research Center, Renmin University of China
– fundername: Public Computing Cloud, Renmin University of China
GroupedDBID -DZ
-~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
85S
8US
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABPPZ
ABQJQ
ABVLG
ACGFS
ACGOD
ACIWK
ACM
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENSD
AETEA
AFWIH
AFWXC
AGQYO
AHBIQ
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
D0L
EBS
FEDTE
GUFHI
HGAVV
HZ~
I07
IEDLZ
IES
IFIPE
IPLJI
JAVBF
LAI
LHSKQ
M43
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNS
TN5
UPT
YR2
ZCA
9M8
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
HF~
H~9
ICLAB
IFJZH
MVM
ROL
UQL
VH1
XOL
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c246t-a4da541d07bb0b950d6bb7d9b24a2c582b489d3937db9af7855ab2447840321c3
IEDL.DBID RIE
ISSN 1063-6692
IngestDate Mon Jun 30 04:43:46 EDT 2025
Wed Oct 01 02:32:02 EDT 2025
Wed Aug 27 02:13:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-a4da541d07bb0b950d6bb7d9b24a2c582b489d3937db9af7855ab2447840321c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4197-2258
0000-0002-7748-5427
PQID 2929259289
PQPubID 32020
PageCount 15
ParticipantIDs proquest_journals_2929259289
crossref_primary_10_1109_TNET_2023_3287822
ieee_primary_10168053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE/ACM transactions on networking
PublicationTitleAbbrev TNET
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
Tay (ref31) 1985; 11
ref11
ref33
ref10
ref32
ref2
ref17
ref16
ref19
ref18
Jackson (ref1); 4
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – volume: 11
  start-page: 22
  year: 1985
  ident: ref31
  article-title: Generating isostatic frameworks
  publication-title: Struct. Topol.
– ident: ref10
  doi: 10.1109/JSAC.2018.2864374
– ident: ref27
  doi: 10.1137/0603009
– ident: ref9
  doi: 10.1103/PhysRevE.76.041135
– ident: ref30
  doi: 10.1090/conm/197/02540
– ident: ref32
  doi: 10.1109/ICRA.2011.5979949
– ident: ref11
  doi: 10.1109/MCS.2008.929280
– ident: ref26
  doi: 10.1088/0305-4470/29/24/030
– ident: ref23
  doi: 10.1007/s00454-004-1124-4
– ident: ref2
  doi: 10.1016/j.jctb.2004.11.002
– ident: ref8
  doi: 10.1007/bfb0066118
– ident: ref12
  doi: 10.1109/TAC.2018.2798808
– ident: ref14
  doi: 10.1109/TMC.2020.3015480
– ident: ref22
  doi: 10.1016/j.neucom.2016.03.021
– ident: ref15
  doi: 10.1109/JSAC.2023.3242708
– ident: ref4
  doi: 10.1007/BF01534980
– ident: ref21
  doi: 10.1109/ACC.2015.7171940
– ident: ref33
  doi: 10.1109/TNET.2018.2866597
– ident: ref16
  doi: 10.3390/s23052399
– ident: ref17
  doi: 10.1186/1471-2105-14-S18-S2
– ident: ref28
  doi: 10.1007/978-3-540-39658-1_10
– ident: ref6
  doi: 10.1137/0221008
– ident: ref18
  doi: 10.1006/jcph.1997.5809
– ident: ref5
  doi: 10.1002/prot.1081
– ident: ref25
  doi: 10.1353/ajm.0.0132
– ident: ref20
  doi: 10.1088/0305-4470/31/31/012
– ident: ref7
  doi: 10.1145/3594668
– ident: ref13
  doi: 10.1016/j.automatica.2006.08.025
– ident: ref29
  doi: 10.1007/978-1-4939-0781-6_10
– ident: ref3
  doi: 10.1007/s11390-010-9324-2
– ident: ref24
  doi: 10.1353/ajm.0.0132
– ident: ref19
  doi: 10.4018/978-1-60566-396-8.ch006
– volume: 4
  start-page: 1
  volume-title: Proc. Levico Conf. Notes
  ident: ref1
  article-title: Notes on the rigidity of graphs
SSID ssj0013026
Score 2.4327204
Snippet Identifying the Maximal Rigid subGraphs (MRGs) whose relative formations cannot deform continuously in <inline-formula> <tex-math...
Identifying the Maximal Rigid subGraphs (MRGs) whose relative formations cannot deform continuously in [Formula Omitted], is a fundamental problem in network...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms 3D networks
Algorithms
Apexes
Clustering algorithms
Clusters
Electromagnetic interference
Fasteners
implicit hinge
Location awareness
Maximum rigid cluster partition
mutual rigid pair
Network formation
rigid cluster
Rigidity
Three-dimensional displays
Time complexity
Title EMI: An Efficient Algorithm for Identifying Maximal Rigid Clusters in 3D Generic Graphs
URI https://ieeexplore.ieee.org/document/10168053
https://www.proquest.com/docview/2929259289
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2566
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013026
  issn: 1063-6692
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx78nDidkoMnoV2bpB_xNubmELaDbLhbSZpsFrWTrQPxr_cl7XAqgtBD6ccj5Jc275eX93sIXQUqlJQLs1AliMMEixwJM4ETgnsviU7BqTAJzoNh2B-z-0kwqZLVbS6M1tpuPtOuObWxfDVPV2aprGWYZgyjZhttR3FYJmt9hQw8W1sNKA51wpCTKoTpe7w1GnZHrqkT7lIgCDEh3yYhW1Xl16_Yzi-9fTRct6zcVvLsrgrpph8_RBv_3fQDtFd5mrhdDo1DtKXzI7S7oT94jB4BhBvcznHXCkmABdx-mc0XWfH0isGbxWUar02FwgPxnr2CwYdslinceVkZiYUlznJMb7FVr85SfGf0r5d1NO51R52-U1VacFLCwsIRTImA-cqLpPQkDzxAUEaKA2yCpAHAxmKujHaeklxMozgIBNxjEdBDSvyUnqBaPs_1KcLc13DFZyJSEUvDqQCzNACbUsJBaQNdr7s-eSsFNRJLRDyeGJwSg1NS4dRAddOVGw-WvdhAzTVaSfXNLRMCnh6QOWCQZ3-8do52wDorN103Ua1YrPQF-BSFvLRj6ROmQcWy
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH8a7AAcxvgSZbD5wAkpIfFHUu9WQVkHbQ-oCG6RHRsWrU0RTaVpf_2enVQUJiSkHKJ8PFv-OfH72X6_B3AsTKKZVG6iStGAK54GGkeCIEH3XlObo1PhApwHw6R3wy_vxF0TrO5jYay1fvOZDd2pX8s303zupspOHdNsY69ZgY-Ccy7qcK3nRYPIZ1dDksOCJJG0WcSMI3k6GnZHocsUHjKkCG1KXwxDPq_Kfz9jP8JcbMJwUbd6Y8nvcF7pMP_7Srbx3ZX_DJ8aX5N06s6xBR9suQ0bSwqEO3CLMHwnnZJ0vZQEWiCd8cP0qah-TQj6s6QO5PXBUGSg_hQTNHhdPBSGnI3nTmRhRoqSsHPi9auLnPxwCtizXbi56I7OekGTayHIKU-qQHGjBI9NlGodaSkixFCnRiJwiuYCgeNtaZx6ntFS3adtIRTe4ykSREbjnO3Bajkt7T4QGVu8EnOVmpTnyb1Cs0ygTa3xYKwFJ4umzx5rSY3MU5FIZg6nzOGUNTi1YNc15dKDdSu24HCBVtZ8dbOMoq-HdA455MEbr32Dtd5o0M_6P4dXX2AdS-L1FuxDWK2e5vYIPYxKf_X96h8v98j_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EMI%3A+An+Efficient+Algorithm+for+Identifying+Maximal+Rigid+Clusters+in+3D+Generic+Graphs&rft.jtitle=IEEE%2FACM+transactions+on+networking&rft.au=Qinhan+Wei&rft.au=Wang%2C+Yongcai&rft.au=Li%2C+Deying&rft.date=2024-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6692&rft.eissn=1558-2566&rft.volume=32&rft.issue=1&rft.spage=460&rft_id=info:doi/10.1109%2FTNET.2023.3287822&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6692&client=summon