A Generic Multidimensional Design Methodology for Highly Efficient RF Power Amplifier with Improved Linearity
This article presents a generic multidimensional design methodology for power amplifiers (PAs) with enhanced linearity and efficiency. The proposed design is composed of in-phase parallel PA configurations with optimized different gate biases. The coefficients of the fundamental and harmonic current...
Saved in:
| Published in | IEEE transactions on microwave theory and techniques Vol. 72; no. 11; pp. 6401 - 6413 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9480 1557-9670 |
| DOI | 10.1109/TMTT.2024.3396380 |
Cover
| Abstract | This article presents a generic multidimensional design methodology for power amplifiers (PAs) with enhanced linearity and efficiency. The proposed design is composed of in-phase parallel PA configurations with optimized different gate biases. The coefficients of the fundamental and harmonic currents are analyzed and studied for FET transistors considering the variation of input power and conduction angle. This analysis added an extra degree of freedom in PA design and enabled PA performance enhancement over a wider range of output power levels not only at maximum points. This helps optimize the bias point of each PA to provide either a highly efficient PA with the best achievable linearity or a highly linear PA with the best achievable efficiency. A visualized transistor datasets and a novel algorithm are developed to select the optimum gate bias voltages over a wide input power range to optimize the parallel configuration's efficiency and linearity. To verify the proposed methodology, a 20-W highly efficient PA with the best achievable linearity is designed, fabricated, and measured at a center frequency of 2.2 GHz with a bandwidth of 200 MHz. Very good agreement is achieved between simulation and measurement results. The measured results showed good linearity with IM3 up to −55 dBc at 10 dB output power back-off (OBO). The 1 dB compression point is achieved at 43 dBm output power, while the saturated output power (<inline-formula> <tex-math notation="LaTeX">P_{\mathrm {sat}} </tex-math></inline-formula>) is 43.6 dBm at a measured power-added efficiency (PAE) of 68%. Good linearity measurements are achieved with adjacent channel power ratio (ACPR) of −29 dBc at an average output power of 41.6 dBm and an average PAE of more than 47%. The error vector magnitude (EVM) is less than 2.4% at the average output power. |
|---|---|
| AbstractList | This article presents a generic multidimensional design methodology for power amplifiers (PAs) with enhanced linearity and efficiency. The proposed design is composed of in-phase parallel PA configurations with optimized different gate biases. The coefficients of the fundamental and harmonic currents are analyzed and studied for FET transistors considering the variation of input power and conduction angle. This analysis added an extra degree of freedom in PA design and enabled PA performance enhancement over a wider range of output power levels not only at maximum points. This helps optimize the bias point of each PA to provide either a highly efficient PA with the best achievable linearity or a highly linear PA with the best achievable efficiency. A visualized transistor datasets and a novel algorithm are developed to select the optimum gate bias voltages over a wide input power range to optimize the parallel configuration’s efficiency and linearity. To verify the proposed methodology, a 20-W highly efficient PA with the best achievable linearity is designed, fabricated, and measured at a center frequency of 2.2 GHz with a bandwidth of 200 MHz. Very good agreement is achieved between simulation and measurement results. The measured results showed good linearity with IM3 up to −55 dBc at 10 dB output power back-off (OBO). The 1 dB compression point is achieved at 43 dBm output power, while the saturated output power ([Formula Omitted]) is 43.6 dBm at a measured power-added efficiency (PAE) of 68%. Good linearity measurements are achieved with adjacent channel power ratio (ACPR) of −29 dBc at an average output power of 41.6 dBm and an average PAE of more than 47%. The error vector magnitude (EVM) is less than 2.4% at the average output power. This article presents a generic multidimensional design methodology for power amplifiers (PAs) with enhanced linearity and efficiency. The proposed design is composed of in-phase parallel PA configurations with optimized different gate biases. The coefficients of the fundamental and harmonic currents are analyzed and studied for FET transistors considering the variation of input power and conduction angle. This analysis added an extra degree of freedom in PA design and enabled PA performance enhancement over a wider range of output power levels not only at maximum points. This helps optimize the bias point of each PA to provide either a highly efficient PA with the best achievable linearity or a highly linear PA with the best achievable efficiency. A visualized transistor datasets and a novel algorithm are developed to select the optimum gate bias voltages over a wide input power range to optimize the parallel configuration's efficiency and linearity. To verify the proposed methodology, a 20-W highly efficient PA with the best achievable linearity is designed, fabricated, and measured at a center frequency of 2.2 GHz with a bandwidth of 200 MHz. Very good agreement is achieved between simulation and measurement results. The measured results showed good linearity with IM3 up to −55 dBc at 10 dB output power back-off (OBO). The 1 dB compression point is achieved at 43 dBm output power, while the saturated output power (<inline-formula> <tex-math notation="LaTeX">P_{\mathrm {sat}} </tex-math></inline-formula>) is 43.6 dBm at a measured power-added efficiency (PAE) of 68%. Good linearity measurements are achieved with adjacent channel power ratio (ACPR) of −29 dBc at an average output power of 41.6 dBm and an average PAE of more than 47%. The error vector magnitude (EVM) is less than 2.4% at the average output power. |
| Author | Mohamed, Eslam N. Elelimy Abounemra, Ahmed M. Darwish, Mohammad El-Tager, Ayman M. |
| Author_xml | – sequence: 1 givenname: Eslam N. orcidid: 0000-0002-1577-1508 surname: Mohamed fullname: Mohamed, Eslam N. email: eslamnasr388@gmail.com organization: Electronic Engineering Department, Military Technical College, Cairo, Egypt – sequence: 2 givenname: Ahmed M. orcidid: 0000-0002-7089-4674 surname: Elelimy Abounemra fullname: Elelimy Abounemra, Ahmed M. email: ahmed.abounemra@alumni.ucalgary.ca organization: Electronic Engineering Department, Military Technical College, Cairo, Egypt – sequence: 3 givenname: Mohammad orcidid: 0000-0001-9214-4308 surname: Darwish fullname: Darwish, Mohammad email: mmdarwish@mtc.eg.edu organization: Radar Department, Military Technical College, Cairo, Egypt – sequence: 4 givenname: Ayman M. orcidid: 0009-0004-4030-7055 surname: El-Tager fullname: El-Tager, Ayman M. email: prof.ayman.eltager@ieee.org organization: Electronic Engineering Department, Military Technical College, Cairo, Egypt |
| BookMark | eNpNkE1rwzAMhs3YYN3HDxjsYNg5nRzHiX0s-2gLLRujOwfHkVuPJO7sdKX_findYSdJ8LxCeq7Ieec7JOSOwZgxUI-r5Wo1TiHNxpyrnEs4IyMmRJGovIBzMgJgMlGZhEtyFePXMGYC5Ii0EzrFDoMzdLlrele7FrvofKcb-ozRrTu6xH7ja9_49YFaH-jMrTfNgb5Y64zDrqcfr_Td7zHQSbttnHVDt3f9hs7bbfA_WNOF61AH1x9uyIXVTcTbv3pNPl9fVk-zZPE2nT9NFolJs7xPlIEKhFC6rtBYm2orLDNcizytTCaZrI0qikpK4NwIntqsyHJV6VpWOWiw_Jo8nPYOB3zvMPbll9-F4adYcpbmIPOCq4FiJ8oEH2NAW26Da3U4lAzKo9XyaLU8Wi3_rA6Z-1PGIeI_XmQ8BeC_eXR2oA |
| CODEN | IETMAB |
| Cites_doi | 10.1109/access.2020.3046706 10.1109/HPCS.2018.00026 10.1109/wamicon.2018.8363898 10.1109/ICEENG49683.2022.9782002 10.1109/tmtt.2014.2305806 10.1109/TMTT.2012.2187535 10.1016/j.spmi.2017.05.042 10.3390/electronics10091073 10.1109/TED.2008.2011849 10.1109/lmwc.2020.2984949 10.1109/tmtt.2018.2870830 10.1109/TMTT.2008.2011161 10.3390/electronics9010103 10.1109/IMAS55807.2023.10066929 10.1149/1.3701519 10.1002/mmce.22010 10.1109/access.2021.3063286 10.1002/9780470462348 10.1109/TMTT.2021.3131199 10.1109/TCSII.2017.2735022 10.1002/9780470746547 10.1109/mmw.2000.823830 10.1109/COMST.2022.3199884 10.1109/tmtt.2016.2617882 10.1109/TCSII.2019.2945062 10.1109/PAWR.2019.8708728 10.1002/mop.33360 10.1109/TMTT.2002.807684 10.1109/TCSII.2016.2609460 10.1109/tmtt.2023.3260399 10.1109/tmtt.2020.2977642 10.1109/mmm.2021.3095979 10.3390/electronics6040096 10.1109/tmtt.2017.2709304 10.1109/lmwc.2016.2646914 10.1109/PAWR53092.2022.9719742 10.1049/iet-map.2018.5680 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TMTT.2024.3396380 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9670 |
| EndPage | 6413 |
| ExternalDocumentID | 10_1109_TMTT_2024_3396380 10543200 |
| Genre | orig-research |
| GroupedDBID | -~X .GJ 0R~ 29I 3EH 4.4 5GY 5VS 66. 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TAF TN5 VH1 VJK VOH AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c246t-9c0b0559adbecff2af5f1c3a562bc4818dc977b88033c532f47469bad8b60a0f3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9480 |
| IngestDate | Mon Jun 30 10:13:13 EDT 2025 Wed Oct 01 02:41:52 EDT 2025 Wed Aug 27 03:06:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-9c0b0559adbecff2af5f1c3a562bc4818dc977b88033c532f47469bad8b60a0f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1577-1508 0009-0004-4030-7055 0000-0002-7089-4674 0000-0001-9214-4308 |
| PQID | 3126086739 |
| PQPubID | 106035 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_10543200 crossref_primary_10_1109_TMTT_2024_3396380 proquest_journals_3126086739 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on microwave theory and techniques |
| PublicationTitleAbbrev | TMTT |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref38 ref18 Dawson (ref16) Pedro (ref35) 2003 Cripps (ref19) 2002 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref12 doi: 10.1109/access.2020.3046706 – ident: ref11 doi: 10.1109/HPCS.2018.00026 – ident: ref24 doi: 10.1109/wamicon.2018.8363898 – ident: ref7 doi: 10.1109/ICEENG49683.2022.9782002 – ident: ref14 doi: 10.1109/tmtt.2014.2305806 – ident: ref1 doi: 10.1109/TMTT.2012.2187535 – ident: ref2 doi: 10.1016/j.spmi.2017.05.042 – ident: ref15 doi: 10.3390/electronics10091073 – volume-title: Intermodulation Distortion in Microwave and Wireless Circuits year: 2003 ident: ref35 – ident: ref5 doi: 10.1109/TED.2008.2011849 – ident: ref21 doi: 10.1109/lmwc.2020.2984949 – ident: ref28 doi: 10.1109/tmtt.2018.2870830 – ident: ref13 doi: 10.1109/TMTT.2008.2011161 – ident: ref22 doi: 10.3390/electronics9010103 – ident: ref3 doi: 10.1109/IMAS55807.2023.10066929 – ident: ref9 doi: 10.1149/1.3701519 – ident: ref25 doi: 10.1002/mmce.22010 – ident: ref40 doi: 10.1109/access.2021.3063286 – ident: ref34 doi: 10.1002/9780470462348 – ident: ref27 doi: 10.1109/TMTT.2021.3131199 – ident: ref38 doi: 10.1109/TCSII.2017.2735022 – ident: ref6 doi: 10.1002/9780470746547 – ident: ref33 doi: 10.1109/mmw.2000.823830 – ident: ref20 doi: 10.1109/COMST.2022.3199884 – volume-title: Advanced Techniques in RF Power Amplifier Design year: 2002 ident: ref19 – ident: ref29 doi: 10.1109/tmtt.2016.2617882 – ident: ref39 doi: 10.1109/TCSII.2019.2945062 – ident: ref18 doi: 10.1109/PAWR.2019.8708728 – ident: ref37 doi: 10.1002/mop.33360 – ident: ref4 doi: 10.1109/TMTT.2002.807684 – ident: ref30 doi: 10.1109/TCSII.2016.2609460 – ident: ref36 doi: 10.1109/tmtt.2023.3260399 – start-page: 200 volume-title: Proc. Workshop RF Circuits 2.5G 3G Wireless Syst. ident: ref16 article-title: Power amplifier linearization techniques: An overview – ident: ref32 doi: 10.1109/tmtt.2020.2977642 – ident: ref31 doi: 10.1109/mmm.2021.3095979 – ident: ref10 doi: 10.3390/electronics6040096 – ident: ref23 doi: 10.1109/tmtt.2017.2709304 – ident: ref26 doi: 10.1109/lmwc.2016.2646914 – ident: ref8 doi: 10.1109/PAWR53092.2022.9719742 – ident: ref17 doi: 10.1049/iet-map.2018.5680 |
| SSID | ssj0014508 |
| Score | 2.463474 |
| Snippet | This article presents a generic multidimensional design methodology for power amplifiers (PAs) with enhanced linearity and efficiency. The proposed design is... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 6401 |
| SubjectTerms | Algorithms Anti-phase IM3 Bias Configuration management Design analysis Design engineering Design optimization Efficiency Error analysis Field effect transistors Harmonic analysis in-phase parallel PA configuration Linearity Logic gates Parallel degrees of freedom Power amplifiers power amplifiers (PAs) Power generation Radio frequency Transistors |
| Title | A Generic Multidimensional Design Methodology for Highly Efficient RF Power Amplifier with Improved Linearity |
| URI | https://ieeexplore.ieee.org/document/10543200 https://www.proquest.com/docview/3126086739 |
| Volume | 72 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9670 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014508 issn: 0018-9480 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60Jz34rFitsgdPQuImu3kdi7YUoUUkhd7CPkHUVjQ96K93djeRqgjecshjyby-mZ35FqELR3pFeBIokhUBU8IEnKo4YAk1AiC5No6OYTJNxzN2O0_mzbC6m4XRWrvmMx3aS7eXr5ZyZUtlYOEJoyDWTbSZ5akf1vraMmAJadwuWDDL2y3MiBRX5aQsIRWMWUipVTjyLQi5U1V-uWIXX0a7aNquzLeVPIarWoTy4wdp47-Xvod2GqSJB1419tGGXhyg7TX-wUP0PMCOdvpBYjeIqyzVv6fpwDeutQNP3AnTrvaOAd9i2xfy9I6HjnkCPonvR_jOnrSGB7Y33UCUxba2i321QisM2S5YE4D9LpqNhuX1OGjOXwhkzNI6KCQRBDIOrkDQxsTcJCaSlANkEpJBpFcS0KMAD0CpTGhsWAbJtuAqFynhxNAj1FksF_oYYWGkxaZSZJQynRoeaRnlBBSFx-BCVA9dtgKpXjzNRuXSE1JUVnqVlV7VSK-HuvYHr93o_20P9VsZVo0lvlU0gowtTzNanPzx2Cnasm_3A4Z91KlfV_oMkEYtzp2GfQKsztBA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HtSDb7FadQ-ehNRNdpM2x6ItVdsikkJvYZ8gaivaHvTXO7tJpSqCtxwSdsm389yZbwDOPOkVFXGgaSMNuJY2EExHAY-ZleiSG-vpGPqDpDvkN6N4VDar-14YY4wvPjN19-jv8vVEzVyqDCU85gxhXYYVXIPHRbvW16UBj2mpeFGGeXN-iRnS9CLrZxkGgxGvM-aOHP1mhvxclV_K2FuYziYM5nsrCkse67OprKuPH7SN_978FmyUviZpFYdjG5bMeAfWFxgId-G5RTzx9IMivhVXO7L_gqiDXPniDtL3M6Z99p2gh0tcZcjTO2l77glcktx3yJ2btUZarjrdop0lLrtLinyF0QTjXZQndPf3YNhpZ5fdoJzAEKiIJ9MgVVRSjDmERqitjYSNbaiYQKdJKo62Xiv0HyXqAMZUzCLLGxhuS6GbMqGCWrYPlfFkbA6ASKucd6pkgzFuEitCo8ImRRRFhEpEV-F8Dkj-UhBt5D5AoWnu0MsdenmJXhX23A9eeLH4t1WozTHMS1l8y1mIMVszabD08I_PTmG1m_V7ee96cHsEa26lot2wBpXp68wco98xlSf-tH0Cve7TjQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Generic+Multidimensional+Design+Methodology+for+Highly+Efficient+RF+Power+Amplifier+with+Improved+Linearity&rft.jtitle=IEEE+transactions+on+microwave+theory+and+techniques&rft.au=Mohamed%2C+Eslam+N.&rft.au=Elelimy+Abounemra%2C+Ahmed+M.&rft.au=Darwish%2C+Mohammad&rft.au=El-Tager%2C+Ayman+M.&rft.date=2024-11-01&rft.issn=0018-9480&rft.eissn=1557-9670&rft.volume=72&rft.issue=11&rft.spage=6401&rft.epage=6413&rft_id=info:doi/10.1109%2FTMTT.2024.3396380&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMTT_2024_3396380 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9480&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9480&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9480&client=summon |