A Generic Multidimensional Design Methodology for Highly Efficient RF Power Amplifier with Improved Linearity

This article presents a generic multidimensional design methodology for power amplifiers (PAs) with enhanced linearity and efficiency. The proposed design is composed of in-phase parallel PA configurations with optimized different gate biases. The coefficients of the fundamental and harmonic current...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 72; no. 11; pp. 6401 - 6413
Main Authors Mohamed, Eslam N., Elelimy Abounemra, Ahmed M., Darwish, Mohammad, El-Tager, Ayman M.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9480
1557-9670
DOI10.1109/TMTT.2024.3396380

Cover

Abstract This article presents a generic multidimensional design methodology for power amplifiers (PAs) with enhanced linearity and efficiency. The proposed design is composed of in-phase parallel PA configurations with optimized different gate biases. The coefficients of the fundamental and harmonic currents are analyzed and studied for FET transistors considering the variation of input power and conduction angle. This analysis added an extra degree of freedom in PA design and enabled PA performance enhancement over a wider range of output power levels not only at maximum points. This helps optimize the bias point of each PA to provide either a highly efficient PA with the best achievable linearity or a highly linear PA with the best achievable efficiency. A visualized transistor datasets and a novel algorithm are developed to select the optimum gate bias voltages over a wide input power range to optimize the parallel configuration's efficiency and linearity. To verify the proposed methodology, a 20-W highly efficient PA with the best achievable linearity is designed, fabricated, and measured at a center frequency of 2.2 GHz with a bandwidth of 200 MHz. Very good agreement is achieved between simulation and measurement results. The measured results showed good linearity with IM3 up to −55 dBc at 10 dB output power back-off (OBO). The 1 dB compression point is achieved at 43 dBm output power, while the saturated output power (<inline-formula> <tex-math notation="LaTeX">P_{\mathrm {sat}} </tex-math></inline-formula>) is 43.6 dBm at a measured power-added efficiency (PAE) of 68%. Good linearity measurements are achieved with adjacent channel power ratio (ACPR) of −29 dBc at an average output power of 41.6 dBm and an average PAE of more than 47%. The error vector magnitude (EVM) is less than 2.4% at the average output power.
AbstractList This article presents a generic multidimensional design methodology for power amplifiers (PAs) with enhanced linearity and efficiency. The proposed design is composed of in-phase parallel PA configurations with optimized different gate biases. The coefficients of the fundamental and harmonic currents are analyzed and studied for FET transistors considering the variation of input power and conduction angle. This analysis added an extra degree of freedom in PA design and enabled PA performance enhancement over a wider range of output power levels not only at maximum points. This helps optimize the bias point of each PA to provide either a highly efficient PA with the best achievable linearity or a highly linear PA with the best achievable efficiency. A visualized transistor datasets and a novel algorithm are developed to select the optimum gate bias voltages over a wide input power range to optimize the parallel configuration’s efficiency and linearity. To verify the proposed methodology, a 20-W highly efficient PA with the best achievable linearity is designed, fabricated, and measured at a center frequency of 2.2 GHz with a bandwidth of 200 MHz. Very good agreement is achieved between simulation and measurement results. The measured results showed good linearity with IM3 up to −55 dBc at 10 dB output power back-off (OBO). The 1 dB compression point is achieved at 43 dBm output power, while the saturated output power ([Formula Omitted]) is 43.6 dBm at a measured power-added efficiency (PAE) of 68%. Good linearity measurements are achieved with adjacent channel power ratio (ACPR) of −29 dBc at an average output power of 41.6 dBm and an average PAE of more than 47%. The error vector magnitude (EVM) is less than 2.4% at the average output power.
This article presents a generic multidimensional design methodology for power amplifiers (PAs) with enhanced linearity and efficiency. The proposed design is composed of in-phase parallel PA configurations with optimized different gate biases. The coefficients of the fundamental and harmonic currents are analyzed and studied for FET transistors considering the variation of input power and conduction angle. This analysis added an extra degree of freedom in PA design and enabled PA performance enhancement over a wider range of output power levels not only at maximum points. This helps optimize the bias point of each PA to provide either a highly efficient PA with the best achievable linearity or a highly linear PA with the best achievable efficiency. A visualized transistor datasets and a novel algorithm are developed to select the optimum gate bias voltages over a wide input power range to optimize the parallel configuration's efficiency and linearity. To verify the proposed methodology, a 20-W highly efficient PA with the best achievable linearity is designed, fabricated, and measured at a center frequency of 2.2 GHz with a bandwidth of 200 MHz. Very good agreement is achieved between simulation and measurement results. The measured results showed good linearity with IM3 up to −55 dBc at 10 dB output power back-off (OBO). The 1 dB compression point is achieved at 43 dBm output power, while the saturated output power (<inline-formula> <tex-math notation="LaTeX">P_{\mathrm {sat}} </tex-math></inline-formula>) is 43.6 dBm at a measured power-added efficiency (PAE) of 68%. Good linearity measurements are achieved with adjacent channel power ratio (ACPR) of −29 dBc at an average output power of 41.6 dBm and an average PAE of more than 47%. The error vector magnitude (EVM) is less than 2.4% at the average output power.
Author Mohamed, Eslam N.
Elelimy Abounemra, Ahmed M.
Darwish, Mohammad
El-Tager, Ayman M.
Author_xml – sequence: 1
  givenname: Eslam N.
  orcidid: 0000-0002-1577-1508
  surname: Mohamed
  fullname: Mohamed, Eslam N.
  email: eslamnasr388@gmail.com
  organization: Electronic Engineering Department, Military Technical College, Cairo, Egypt
– sequence: 2
  givenname: Ahmed M.
  orcidid: 0000-0002-7089-4674
  surname: Elelimy Abounemra
  fullname: Elelimy Abounemra, Ahmed M.
  email: ahmed.abounemra@alumni.ucalgary.ca
  organization: Electronic Engineering Department, Military Technical College, Cairo, Egypt
– sequence: 3
  givenname: Mohammad
  orcidid: 0000-0001-9214-4308
  surname: Darwish
  fullname: Darwish, Mohammad
  email: mmdarwish@mtc.eg.edu
  organization: Radar Department, Military Technical College, Cairo, Egypt
– sequence: 4
  givenname: Ayman M.
  orcidid: 0009-0004-4030-7055
  surname: El-Tager
  fullname: El-Tager, Ayman M.
  email: prof.ayman.eltager@ieee.org
  organization: Electronic Engineering Department, Military Technical College, Cairo, Egypt
BookMark eNpNkE1rwzAMhs3YYN3HDxjsYNg5nRzHiX0s-2gLLRujOwfHkVuPJO7sdKX_findYSdJ8LxCeq7Ieec7JOSOwZgxUI-r5Wo1TiHNxpyrnEs4IyMmRJGovIBzMgJgMlGZhEtyFePXMGYC5Ii0EzrFDoMzdLlrele7FrvofKcb-ozRrTu6xH7ja9_49YFaH-jMrTfNgb5Y64zDrqcfr_Td7zHQSbttnHVDt3f9hs7bbfA_WNOF61AH1x9uyIXVTcTbv3pNPl9fVk-zZPE2nT9NFolJs7xPlIEKhFC6rtBYm2orLDNcizytTCaZrI0qikpK4NwIntqsyHJV6VpWOWiw_Jo8nPYOB3zvMPbll9-F4adYcpbmIPOCq4FiJ8oEH2NAW26Da3U4lAzKo9XyaLU8Wi3_rA6Z-1PGIeI_XmQ8BeC_eXR2oA
CODEN IETMAB
Cites_doi 10.1109/access.2020.3046706
10.1109/HPCS.2018.00026
10.1109/wamicon.2018.8363898
10.1109/ICEENG49683.2022.9782002
10.1109/tmtt.2014.2305806
10.1109/TMTT.2012.2187535
10.1016/j.spmi.2017.05.042
10.3390/electronics10091073
10.1109/TED.2008.2011849
10.1109/lmwc.2020.2984949
10.1109/tmtt.2018.2870830
10.1109/TMTT.2008.2011161
10.3390/electronics9010103
10.1109/IMAS55807.2023.10066929
10.1149/1.3701519
10.1002/mmce.22010
10.1109/access.2021.3063286
10.1002/9780470462348
10.1109/TMTT.2021.3131199
10.1109/TCSII.2017.2735022
10.1002/9780470746547
10.1109/mmw.2000.823830
10.1109/COMST.2022.3199884
10.1109/tmtt.2016.2617882
10.1109/TCSII.2019.2945062
10.1109/PAWR.2019.8708728
10.1002/mop.33360
10.1109/TMTT.2002.807684
10.1109/TCSII.2016.2609460
10.1109/tmtt.2023.3260399
10.1109/tmtt.2020.2977642
10.1109/mmm.2021.3095979
10.3390/electronics6040096
10.1109/tmtt.2017.2709304
10.1109/lmwc.2016.2646914
10.1109/PAWR53092.2022.9719742
10.1049/iet-map.2018.5680
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TMTT.2024.3396380
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9670
EndPage 6413
ExternalDocumentID 10_1109_TMTT_2024_3396380
10543200
Genre orig-research
GroupedDBID -~X
.GJ
0R~
29I
3EH
4.4
5GY
5VS
66.
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c246t-9c0b0559adbecff2af5f1c3a562bc4818dc977b88033c532f47469bad8b60a0f3
IEDL.DBID RIE
ISSN 0018-9480
IngestDate Mon Jun 30 10:13:13 EDT 2025
Wed Oct 01 02:41:52 EDT 2025
Wed Aug 27 03:06:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-9c0b0559adbecff2af5f1c3a562bc4818dc977b88033c532f47469bad8b60a0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1577-1508
0009-0004-4030-7055
0000-0002-7089-4674
0000-0001-9214-4308
PQID 3126086739
PQPubID 106035
PageCount 13
ParticipantIDs ieee_primary_10543200
crossref_primary_10_1109_TMTT_2024_3396380
proquest_journals_3126086739
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on microwave theory and techniques
PublicationTitleAbbrev TMTT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref38
ref18
Dawson (ref16)
Pedro (ref35) 2003
Cripps (ref19) 2002
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref12
  doi: 10.1109/access.2020.3046706
– ident: ref11
  doi: 10.1109/HPCS.2018.00026
– ident: ref24
  doi: 10.1109/wamicon.2018.8363898
– ident: ref7
  doi: 10.1109/ICEENG49683.2022.9782002
– ident: ref14
  doi: 10.1109/tmtt.2014.2305806
– ident: ref1
  doi: 10.1109/TMTT.2012.2187535
– ident: ref2
  doi: 10.1016/j.spmi.2017.05.042
– ident: ref15
  doi: 10.3390/electronics10091073
– volume-title: Intermodulation Distortion in Microwave and Wireless Circuits
  year: 2003
  ident: ref35
– ident: ref5
  doi: 10.1109/TED.2008.2011849
– ident: ref21
  doi: 10.1109/lmwc.2020.2984949
– ident: ref28
  doi: 10.1109/tmtt.2018.2870830
– ident: ref13
  doi: 10.1109/TMTT.2008.2011161
– ident: ref22
  doi: 10.3390/electronics9010103
– ident: ref3
  doi: 10.1109/IMAS55807.2023.10066929
– ident: ref9
  doi: 10.1149/1.3701519
– ident: ref25
  doi: 10.1002/mmce.22010
– ident: ref40
  doi: 10.1109/access.2021.3063286
– ident: ref34
  doi: 10.1002/9780470462348
– ident: ref27
  doi: 10.1109/TMTT.2021.3131199
– ident: ref38
  doi: 10.1109/TCSII.2017.2735022
– ident: ref6
  doi: 10.1002/9780470746547
– ident: ref33
  doi: 10.1109/mmw.2000.823830
– ident: ref20
  doi: 10.1109/COMST.2022.3199884
– volume-title: Advanced Techniques in RF Power Amplifier Design
  year: 2002
  ident: ref19
– ident: ref29
  doi: 10.1109/tmtt.2016.2617882
– ident: ref39
  doi: 10.1109/TCSII.2019.2945062
– ident: ref18
  doi: 10.1109/PAWR.2019.8708728
– ident: ref37
  doi: 10.1002/mop.33360
– ident: ref4
  doi: 10.1109/TMTT.2002.807684
– ident: ref30
  doi: 10.1109/TCSII.2016.2609460
– ident: ref36
  doi: 10.1109/tmtt.2023.3260399
– start-page: 200
  volume-title: Proc. Workshop RF Circuits 2.5G 3G Wireless Syst.
  ident: ref16
  article-title: Power amplifier linearization techniques: An overview
– ident: ref32
  doi: 10.1109/tmtt.2020.2977642
– ident: ref31
  doi: 10.1109/mmm.2021.3095979
– ident: ref10
  doi: 10.3390/electronics6040096
– ident: ref23
  doi: 10.1109/tmtt.2017.2709304
– ident: ref26
  doi: 10.1109/lmwc.2016.2646914
– ident: ref8
  doi: 10.1109/PAWR53092.2022.9719742
– ident: ref17
  doi: 10.1049/iet-map.2018.5680
SSID ssj0014508
Score 2.463474
Snippet This article presents a generic multidimensional design methodology for power amplifiers (PAs) with enhanced linearity and efficiency. The proposed design is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 6401
SubjectTerms Algorithms
Anti-phase IM3
Bias
Configuration management
Design analysis
Design engineering
Design optimization
Efficiency
Error analysis
Field effect transistors
Harmonic analysis
in-phase parallel PA configuration
Linearity
Logic gates
Parallel degrees of freedom
Power amplifiers
power amplifiers (PAs)
Power generation
Radio frequency
Transistors
Title A Generic Multidimensional Design Methodology for Highly Efficient RF Power Amplifier with Improved Linearity
URI https://ieeexplore.ieee.org/document/10543200
https://www.proquest.com/docview/3126086739
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9670
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014508
  issn: 0018-9480
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60Jz34rFitsgdPQuImu3kdi7YUoUUkhd7CPkHUVjQ96K93djeRqgjecshjyby-mZ35FqELR3pFeBIokhUBU8IEnKo4YAk1AiC5No6OYTJNxzN2O0_mzbC6m4XRWrvmMx3aS7eXr5ZyZUtlYOEJoyDWTbSZ5akf1vraMmAJadwuWDDL2y3MiBRX5aQsIRWMWUipVTjyLQi5U1V-uWIXX0a7aNquzLeVPIarWoTy4wdp47-Xvod2GqSJB1419tGGXhyg7TX-wUP0PMCOdvpBYjeIqyzVv6fpwDeutQNP3AnTrvaOAd9i2xfy9I6HjnkCPonvR_jOnrSGB7Y33UCUxba2i321QisM2S5YE4D9LpqNhuX1OGjOXwhkzNI6KCQRBDIOrkDQxsTcJCaSlANkEpJBpFcS0KMAD0CpTGhsWAbJtuAqFynhxNAj1FksF_oYYWGkxaZSZJQynRoeaRnlBBSFx-BCVA9dtgKpXjzNRuXSE1JUVnqVlV7VSK-HuvYHr93o_20P9VsZVo0lvlU0gowtTzNanPzx2Cnasm_3A4Z91KlfV_oMkEYtzp2GfQKsztBA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HtSDb7FadQ-ehNRNdpM2x6ItVdsikkJvYZ8gaivaHvTXO7tJpSqCtxwSdsm389yZbwDOPOkVFXGgaSMNuJY2EExHAY-ZleiSG-vpGPqDpDvkN6N4VDar-14YY4wvPjN19-jv8vVEzVyqDCU85gxhXYYVXIPHRbvW16UBj2mpeFGGeXN-iRnS9CLrZxkGgxGvM-aOHP1mhvxclV_K2FuYziYM5nsrCkse67OprKuPH7SN_978FmyUviZpFYdjG5bMeAfWFxgId-G5RTzx9IMivhVXO7L_gqiDXPniDtL3M6Z99p2gh0tcZcjTO2l77glcktx3yJ2btUZarjrdop0lLrtLinyF0QTjXZQndPf3YNhpZ5fdoJzAEKiIJ9MgVVRSjDmERqitjYSNbaiYQKdJKo62Xiv0HyXqAMZUzCLLGxhuS6GbMqGCWrYPlfFkbA6ASKucd6pkgzFuEitCo8ImRRRFhEpEV-F8Dkj-UhBt5D5AoWnu0MsdenmJXhX23A9eeLH4t1WozTHMS1l8y1mIMVszabD08I_PTmG1m_V7ee96cHsEa26lot2wBpXp68wco98xlSf-tH0Cve7TjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Generic+Multidimensional+Design+Methodology+for+Highly+Efficient+RF+Power+Amplifier+with+Improved+Linearity&rft.jtitle=IEEE+transactions+on+microwave+theory+and+techniques&rft.au=Mohamed%2C+Eslam+N.&rft.au=Elelimy+Abounemra%2C+Ahmed+M.&rft.au=Darwish%2C+Mohammad&rft.au=El-Tager%2C+Ayman+M.&rft.date=2024-11-01&rft.issn=0018-9480&rft.eissn=1557-9670&rft.volume=72&rft.issue=11&rft.spage=6401&rft.epage=6413&rft_id=info:doi/10.1109%2FTMTT.2024.3396380&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMTT_2024_3396380
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9480&client=summon