BMDCNet: A Satellite Imagery Road Extraction Algorithm Based on Multilevel Road Feature

Multilevel road feature extraction from remote sensing image plays an important role in numerous applications such as autonomous driving and urban planning. However, interference from background, occlusions, and road-like information makes it difficult to distinguish different levels of roads. To ad...

Full description

Saved in:
Bibliographic Details
Published inIEEE geoscience and remote sensing letters Vol. 21; pp. 1 - 5
Main Authors Wang, Chenggong, Lu, Junyu, Chen, Zehua
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-598X
1558-0571
DOI10.1109/LGRS.2024.3485680

Cover

Abstract Multilevel road feature extraction from remote sensing image plays an important role in numerous applications such as autonomous driving and urban planning. However, interference from background, occlusions, and road-like information makes it difficult to distinguish different levels of roads. To address these issues, this study proposes a deep network named BMDCNet, which adopts LinkNet as the baseline model. The bidirectional multilevel road feature dynamic fusion (BMDF) module is designed to replace the simple skip connections, which greatly reduce the semantic gap between the encoder and the decoder. Furthermore, the dual context dynamic extraction (DCDE) module is designed to dynamically extract and integrate global and local multiscale context information. Finally, experiments are conducted on the DeepGlobe road extraction dataset and the Massachusetts roads dataset. The results demonstrate that compared with LinkNet, F1 and IoU of BMDCNet increased by 1.79% and 2.68% on DeepGlobe, and by 0.35% and 0.47% on Massachusetts, respectively. Our source code is available at https://github.com/ZehuaChenLab/BMDCNet .
AbstractList Multilevel road feature extraction from remote sensing image plays an important role in numerous applications such as autonomous driving and urban planning. However, interference from background, occlusions, and road-like information makes it difficult to distinguish different levels of roads. To address these issues, this study proposes a deep network named BMDCNet, which adopts LinkNet as the baseline model. The bidirectional multilevel road feature dynamic fusion (BMDF) module is designed to replace the simple skip connections, which greatly reduce the semantic gap between the encoder and the decoder. Furthermore, the dual context dynamic extraction (DCDE) module is designed to dynamically extract and integrate global and local multiscale context information. Finally, experiments are conducted on the DeepGlobe road extraction dataset and the Massachusetts roads dataset. The results demonstrate that compared with LinkNet, F1 and IoU of BMDCNet increased by 1.79% and 2.68% on DeepGlobe, and by 0.35% and 0.47% on Massachusetts, respectively. Our source code is available at https://github.com/ZehuaChenLab/BMDCNet .
Author Wang, Chenggong
Chen, Zehua
Lu, Junyu
Author_xml – sequence: 1
  givenname: Chenggong
  orcidid: 0009-0003-6474-9264
  surname: Wang
  fullname: Wang, Chenggong
  organization: College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
– sequence: 2
  givenname: Junyu
  orcidid: 0009-0000-6830-0518
  surname: Lu
  fullname: Lu, Junyu
  organization: College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
– sequence: 3
  givenname: Zehua
  orcidid: 0000-0001-8652-1656
  surname: Chen
  fullname: Chen, Zehua
  email: chenzehua@tyut.edu.cn
  organization: College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
BookMark eNpNkE1PwkAQhjcGEwH9ASYeNvFc3I9ut-sNEJAENAGN3jbbdoolpcXt1si_t005eJrJ5HlnMs8A9YqyAIRuKRlRStTDarHZjhhh_oj7oQhCcoH6VIjQI0LSXtv7whMq_LxCg6rak4YMQ9lHH5P10_QF3CMe461xkOeZA7w8mB3YE96UJsGzX2dN7LKywON8V9rMfR3wxFSQ4Ga0rnOX5fADeUfPwbjawjW6TE1ewc25DtH7fPY2ffZWr4vldLzyYuYHzlMsoBClnDFjjEoljwJpZKKApz6LZMooSwMFVDCQVERRGKgkirlRinAqQsOH6L7be7Tldw2V0_uytkVzUnPa_MiJkqKhaEfFtqwqC6k-2uxg7ElTolt_uvWnW3_67K_J3HWZDAD-8ZL73Gf8D22GbN8
CODEN IGRSBY
Cites_doi 10.1109/VCIP.2017.8305148
10.1109/JSTARS.2024.3375313
10.1109/CVPR42600.2020.01155
10.1109/tnnls.2024.3412947
10.1007/978-3-319-24574-4_28
10.1109/LGRS.2023.3324644
10.1109/LGRS.2021.3050477
10.1109/LGRS.2022.3228967
10.1109/CVPRW.2018.00034
10.48550/arXiv.1802.02611
10.1016/j.rse.2023.113884
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2024.3485680
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 5
ExternalDocumentID 10_1109_LGRS_2024_3485680
10734342
Genre orig-research
GeographicLocations United States--US
Massachusetts
GeographicLocations_xml – name: United States--US
– name: Massachusetts
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c246t-9261ebf322aaa9f73b67a7d9e3f42b7f212f69e152e715bb869dbc3a9903158a3
IEDL.DBID RIE
ISSN 1545-598X
IngestDate Mon Jun 30 07:47:36 EDT 2025
Wed Oct 01 04:26:05 EDT 2025
Wed Aug 27 03:06:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-9261ebf322aaa9f73b67a7d9e3f42b7f212f69e152e715bb869dbc3a9903158a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0003-6474-9264
0000-0001-8652-1656
0009-0000-6830-0518
PQID 3124830975
PQPubID 75725
PageCount 5
ParticipantIDs proquest_journals_3124830975
crossref_primary_10_1109_LGRS_2024_3485680
ieee_primary_10734342
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref8
ref7
ref12
ref9
ref4
ref3
ref6
ref5
ref10
ref2
ref1
Lou (ref11) 2023
References_xml – ident: ref3
  doi: 10.1109/VCIP.2017.8305148
– ident: ref9
  doi: 10.1109/JSTARS.2024.3375313
– ident: ref10
  doi: 10.1109/CVPR42600.2020.01155
– ident: ref12
  doi: 10.1109/tnnls.2024.3412947
– ident: ref1
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref8
  doi: 10.1109/LGRS.2023.3324644
– ident: ref5
  doi: 10.1109/LGRS.2021.3050477
– ident: ref6
  doi: 10.1109/LGRS.2022.3228967
– ident: ref4
  doi: 10.1109/CVPRW.2018.00034
– ident: ref2
  doi: 10.48550/arXiv.1802.02611
– year: 2023
  ident: ref11
  article-title: TransXNet: Learning both global and local dynamics with a dual dynamic token mixer for visual recognition
  publication-title: arXiv:2310.19380
– ident: ref7
  doi: 10.1016/j.rse.2023.113884
SSID ssj0024887
Score 2.385976
Snippet Multilevel road feature extraction from remote sensing image plays an important role in numerous applications such as autonomous driving and urban planning....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Attention mechanism
Computational modeling
Context
contextual information
Convolution
Data mining
Datasets
Decoding
dynamic convolution
Feature extraction
Information processing
Kernel
Modules
Multilevel
multiscale feature
Remote sensing
road extraction
Roads
Roads & highways
Satellite imagery
Semantics
Source code
Strips
Urban planning
Vehicle dynamics
Title BMDCNet: A Satellite Imagery Road Extraction Algorithm Based on Multilevel Road Feature
URI https://ieeexplore.ieee.org/document/10734342
https://www.proquest.com/docview/3124830975
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwELbYSoi98EZ0ecgHTkgpSZ3ENreWN4IeeIjeIj_GgIB21U2lLb-esZMKBELiFkWTyPJ4_H1jz4OQHZanFl1pFzHH0EFJbBwpYSACBEumY-9l-9zhy15-epue97N-nawecmEAIASfQcs_hrt8OzRjf1SGFs5ZylLccX9xkVfJWu-F9UTohucpQZRJ0a-vMJNY7l2cXF2jK9hOWywVWe5LQH4AodBV5ctWHPDleIH0piOrwkqeWuNSt8zrp6KNPx76IpmvmSbtVEtjiczAYJnM1U3PHybLZPYkdPWdrJC77uXhQQ_Kfdqh1yrU6CyBnr34-hYTejVUlh79L0dVDgTtPN8PR4_lwwvtIgRaiq9CGu-zjz-qpD2xHI9gldweH90cnEZ1x4XItNO8jCT6U6AdGrlSSjrOdM4VtxKYS9uaO8Q5l0tAzAeeZFqLXFptmEJIY0kmFFsjjcFwAOuEGuRdbeuMMWiGkMQCLd0LucxKxVXSJLtTFRR_q8IaRXBIYll4fRVeX0WtryZZ9VP6QbCazSbZnGqtqG3vX8GQsggWS579-eazDfLb_706SdkkjXI0hi3kFqXeDmvqDWUTyGQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-hoWm8ABtDKwzwA09I6ZLaTmLeurGtg7YP-9D6FvnjvE1sLSqpRPfX7-ykYgIh8RZFF8Xy-fz7nX0fAB95Lhy50j7hnpODkrk00aXFBAksuUmDlx1yh0fjfHAhvk7kpE1Wj7kwiBiDz7AbHuNdvpvZRTgqIwsvuOCCdtynUgghm3St36X1ytgPL5CCRKpy0l5iZqnaGx6fnpEz2BNdLkqZhyKQj2Ao9lX5azOOCHP0AsarsTWBJd-7i9p07f0fZRv_e_Av4XnLNVm_WRyb8ASnW7DRtj2_Xm7B-nHs67t8BZf7oy8HY6w_sz4707FKZ43s5C5UuFiy05l27PBXPW-yIFj_9mo2v6mv79g-gaBj9Com8t6GCKRGOlDLxRy34eLo8PxgkLQ9FxLbE3mdKPKo0Hgyc6218gU3eaELp5B70TOFJ6TzuUJCfSwyaUyZK2cs1wRqPJOl5q9hbTqb4g4wS8yr57y1lgwRs7QkWw9CXjqlC5114NNKBdWPprRGFV2SVFVBX1XQV9XqqwPbYUofCTaz2YHdldaq1vp-VpxIS8lTVcg3__jsA2wMzkfDangy_vYWnoU_Necqu7BWzxf4jphGbd7H9fUAEh_LsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BMDCNet%3A+A+Satellite+Imagery+Road+Extraction+Algorithm+Based+on+Multilevel+Road+Feature&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Wang%2C+Chenggong&rft.au=Lu%2C+Junyu&rft.au=Chen%2C+Zehua&rft.date=2024&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=21&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2024.3485680&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2024_3485680
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon