BMDCNet: A Satellite Imagery Road Extraction Algorithm Based on Multilevel Road Feature
Multilevel road feature extraction from remote sensing image plays an important role in numerous applications such as autonomous driving and urban planning. However, interference from background, occlusions, and road-like information makes it difficult to distinguish different levels of roads. To ad...
        Saved in:
      
    
          | Published in | IEEE geoscience and remote sensing letters Vol. 21; pp. 1 - 5 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        2024
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1545-598X 1558-0571  | 
| DOI | 10.1109/LGRS.2024.3485680 | 
Cover
| Abstract | Multilevel road feature extraction from remote sensing image plays an important role in numerous applications such as autonomous driving and urban planning. However, interference from background, occlusions, and road-like information makes it difficult to distinguish different levels of roads. To address these issues, this study proposes a deep network named BMDCNet, which adopts LinkNet as the baseline model. The bidirectional multilevel road feature dynamic fusion (BMDF) module is designed to replace the simple skip connections, which greatly reduce the semantic gap between the encoder and the decoder. Furthermore, the dual context dynamic extraction (DCDE) module is designed to dynamically extract and integrate global and local multiscale context information. Finally, experiments are conducted on the DeepGlobe road extraction dataset and the Massachusetts roads dataset. The results demonstrate that compared with LinkNet, F1 and IoU of BMDCNet increased by 1.79% and 2.68% on DeepGlobe, and by 0.35% and 0.47% on Massachusetts, respectively. Our source code is available at https://github.com/ZehuaChenLab/BMDCNet . | 
    
|---|---|
| AbstractList | Multilevel road feature extraction from remote sensing image plays an important role in numerous applications such as autonomous driving and urban planning. However, interference from background, occlusions, and road-like information makes it difficult to distinguish different levels of roads. To address these issues, this study proposes a deep network named BMDCNet, which adopts LinkNet as the baseline model. The bidirectional multilevel road feature dynamic fusion (BMDF) module is designed to replace the simple skip connections, which greatly reduce the semantic gap between the encoder and the decoder. Furthermore, the dual context dynamic extraction (DCDE) module is designed to dynamically extract and integrate global and local multiscale context information. Finally, experiments are conducted on the DeepGlobe road extraction dataset and the Massachusetts roads dataset. The results demonstrate that compared with LinkNet, F1 and IoU of BMDCNet increased by 1.79% and 2.68% on DeepGlobe, and by 0.35% and 0.47% on Massachusetts, respectively. Our source code is available at https://github.com/ZehuaChenLab/BMDCNet . | 
    
| Author | Wang, Chenggong Chen, Zehua Lu, Junyu  | 
    
| Author_xml | – sequence: 1 givenname: Chenggong orcidid: 0009-0003-6474-9264 surname: Wang fullname: Wang, Chenggong organization: College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China – sequence: 2 givenname: Junyu orcidid: 0009-0000-6830-0518 surname: Lu fullname: Lu, Junyu organization: College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China – sequence: 3 givenname: Zehua orcidid: 0000-0001-8652-1656 surname: Chen fullname: Chen, Zehua email: chenzehua@tyut.edu.cn organization: College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China  | 
    
| BookMark | eNpNkE1PwkAQhjcGEwH9ASYeNvFc3I9ut-sNEJAENAGN3jbbdoolpcXt1si_t005eJrJ5HlnMs8A9YqyAIRuKRlRStTDarHZjhhh_oj7oQhCcoH6VIjQI0LSXtv7whMq_LxCg6rak4YMQ9lHH5P10_QF3CMe461xkOeZA7w8mB3YE96UJsGzX2dN7LKywON8V9rMfR3wxFSQ4Ga0rnOX5fADeUfPwbjawjW6TE1ewc25DtH7fPY2ffZWr4vldLzyYuYHzlMsoBClnDFjjEoljwJpZKKApz6LZMooSwMFVDCQVERRGKgkirlRinAqQsOH6L7be7Tldw2V0_uytkVzUnPa_MiJkqKhaEfFtqwqC6k-2uxg7ElTolt_uvWnW3_67K_J3HWZDAD-8ZL73Gf8D22GbN8 | 
    
| CODEN | IGRSBY | 
    
| Cites_doi | 10.1109/VCIP.2017.8305148 10.1109/JSTARS.2024.3375313 10.1109/CVPR42600.2020.01155 10.1109/tnnls.2024.3412947 10.1007/978-3-319-24574-4_28 10.1109/LGRS.2023.3324644 10.1109/LGRS.2021.3050477 10.1109/LGRS.2022.3228967 10.1109/CVPRW.2018.00034 10.48550/arXiv.1802.02611 10.1016/j.rse.2023.113884  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D  | 
    
| DOI | 10.1109/LGRS.2024.3485680 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic  | 
    
| DatabaseTitleList | Civil Engineering Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Geology  | 
    
| EISSN | 1558-0571 | 
    
| EndPage | 5 | 
    
| ExternalDocumentID | 10_1109_LGRS_2024_3485680 10734342  | 
    
| Genre | orig-research | 
    
| GeographicLocations | United States--US Massachusetts  | 
    
| GeographicLocations_xml | – name: United States--US – name: Massachusetts  | 
    
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c246t-9261ebf322aaa9f73b67a7d9e3f42b7f212f69e152e715bb869dbc3a9903158a3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1545-598X | 
    
| IngestDate | Mon Jun 30 07:47:36 EDT 2025 Wed Oct 01 04:26:05 EDT 2025 Wed Aug 27 03:06:51 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c246t-9261ebf322aaa9f73b67a7d9e3f42b7f212f69e152e715bb869dbc3a9903158a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0009-0003-6474-9264 0000-0001-8652-1656 0009-0000-6830-0518  | 
    
| PQID | 3124830975 | 
    
| PQPubID | 75725 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | proquest_journals_3124830975 crossref_primary_10_1109_LGRS_2024_3485680 ieee_primary_10734342  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240000 2024-00-00 20240101  | 
    
| PublicationDateYYYYMMDD | 2024-01-01 | 
    
| PublicationDate_xml | – year: 2024 text: 20240000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE geoscience and remote sensing letters | 
    
| PublicationTitleAbbrev | LGRS | 
    
| PublicationYear | 2024 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref8 ref7 ref12 ref9 ref4 ref3 ref6 ref5 ref10 ref2 ref1 Lou (ref11) 2023  | 
    
| References_xml | – ident: ref3 doi: 10.1109/VCIP.2017.8305148 – ident: ref9 doi: 10.1109/JSTARS.2024.3375313 – ident: ref10 doi: 10.1109/CVPR42600.2020.01155 – ident: ref12 doi: 10.1109/tnnls.2024.3412947 – ident: ref1 doi: 10.1007/978-3-319-24574-4_28 – ident: ref8 doi: 10.1109/LGRS.2023.3324644 – ident: ref5 doi: 10.1109/LGRS.2021.3050477 – ident: ref6 doi: 10.1109/LGRS.2022.3228967 – ident: ref4 doi: 10.1109/CVPRW.2018.00034 – ident: ref2 doi: 10.48550/arXiv.1802.02611 – year: 2023 ident: ref11 article-title: TransXNet: Learning both global and local dynamics with a dual dynamic token mixer for visual recognition publication-title: arXiv:2310.19380 – ident: ref7 doi: 10.1016/j.rse.2023.113884  | 
    
| SSID | ssj0024887 | 
    
| Score | 2.385976 | 
    
| Snippet | Multilevel road feature extraction from remote sensing image plays an important role in numerous applications such as autonomous driving and urban planning.... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Algorithms Attention mechanism Computational modeling Context contextual information Convolution Data mining Datasets Decoding dynamic convolution Feature extraction Information processing Kernel Modules Multilevel multiscale feature Remote sensing road extraction Roads Roads & highways Satellite imagery Semantics Source code Strips Urban planning Vehicle dynamics  | 
    
| Title | BMDCNet: A Satellite Imagery Road Extraction Algorithm Based on Multilevel Road Feature | 
    
| URI | https://ieeexplore.ieee.org/document/10734342 https://www.proquest.com/docview/3124830975  | 
    
| Volume | 21 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwELbYSoi98EZ0ecgHTkgpSZ3ENreWN4IeeIjeIj_GgIB21U2lLb-esZMKBELiFkWTyPJ4_H1jz4OQHZanFl1pFzHH0EFJbBwpYSACBEumY-9l-9zhy15-epue97N-nawecmEAIASfQcs_hrt8OzRjf1SGFs5ZylLccX9xkVfJWu-F9UTohucpQZRJ0a-vMJNY7l2cXF2jK9hOWywVWe5LQH4AodBV5ctWHPDleIH0piOrwkqeWuNSt8zrp6KNPx76IpmvmSbtVEtjiczAYJnM1U3PHybLZPYkdPWdrJC77uXhQQ_Kfdqh1yrU6CyBnr34-hYTejVUlh79L0dVDgTtPN8PR4_lwwvtIgRaiq9CGu-zjz-qpD2xHI9gldweH90cnEZ1x4XItNO8jCT6U6AdGrlSSjrOdM4VtxKYS9uaO8Q5l0tAzAeeZFqLXFptmEJIY0kmFFsjjcFwAOuEGuRdbeuMMWiGkMQCLd0LucxKxVXSJLtTFRR_q8IaRXBIYll4fRVeX0WtryZZ9VP6QbCazSbZnGqtqG3vX8GQsggWS579-eazDfLb_706SdkkjXI0hi3kFqXeDmvqDWUTyGQ | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-hoWm8ABtDKwzwA09I6ZLaTmLeurGtg7YP-9D6FvnjvE1sLSqpRPfX7-ykYgIh8RZFF8Xy-fz7nX0fAB95Lhy50j7hnpODkrk00aXFBAksuUmDlx1yh0fjfHAhvk7kpE1Wj7kwiBiDz7AbHuNdvpvZRTgqIwsvuOCCdtynUgghm3St36X1ytgPL5CCRKpy0l5iZqnaGx6fnpEz2BNdLkqZhyKQj2Ao9lX5azOOCHP0AsarsTWBJd-7i9p07f0fZRv_e_Av4XnLNVm_WRyb8ASnW7DRtj2_Xm7B-nHs67t8BZf7oy8HY6w_sz4707FKZ43s5C5UuFiy05l27PBXPW-yIFj_9mo2v6mv79g-gaBj9Com8t6GCKRGOlDLxRy34eLo8PxgkLQ9FxLbE3mdKPKo0Hgyc6218gU3eaELp5B70TOFJ6TzuUJCfSwyaUyZK2cs1wRqPJOl5q9hbTqb4g4wS8yr57y1lgwRs7QkWw9CXjqlC5114NNKBdWPprRGFV2SVFVBX1XQV9XqqwPbYUofCTaz2YHdldaq1vp-VpxIS8lTVcg3__jsA2wMzkfDangy_vYWnoU_Necqu7BWzxf4jphGbd7H9fUAEh_LsQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BMDCNet%3A+A+Satellite+Imagery+Road+Extraction+Algorithm+Based+on+Multilevel+Road+Feature&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Wang%2C+Chenggong&rft.au=Lu%2C+Junyu&rft.au=Chen%2C+Zehua&rft.date=2024&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=21&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2024.3485680&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2024_3485680 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |