Dimension-Reduction Maximum Likelihood Sensor Array Calibration Using Inaccurate Cooperative Sources
The state-of-the-art auxiliary calibration algorithms can perform comprehensive calibration of various array non-ideal characteristics, such as mutual coupling, gain/phase uncertainties, and sensor position errors, employing a set of cooperative calibration sources with known direction of arrival (D...
Saved in:
| Published in | IEEE sensors journal Vol. 24; no. 6; p. 1 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
15.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1530-437X 1558-1748 |
| DOI | 10.1109/JSEN.2024.3360471 |
Cover
| Abstract | The state-of-the-art auxiliary calibration algorithms can perform comprehensive calibration of various array non-ideal characteristics, such as mutual coupling, gain/phase uncertainties, and sensor position errors, employing a set of cooperative calibration sources with known direction of arrival (DOA). However, the task of deploying calibration sources at precisely measured DOAs is complex. Otherwise, the calibration source DOA errors would seriously degrade the performance of these algorithms. In this paper, a dimension-reduction maximum likelihood calibration algorithm with inaccurate cooperative sources is proposed to overcome this issue. First, a maximum likelihood calibration model is established including both the unknown array non-ideal parameters and 2-D DOAs of all calibration sources. Next, the ambiguity of sensor position estimation caused by inaccurate 2-D DOAs of calibration sources is analyzed. Furthermore, a dimension-reduction maximum likelihood calibration model is proposed to resolve the ambiguity under the zero mean Gaussian distribution assumption of the calibration source elevation errors. Then, since the proposed multi-parameter dimension-reduction model is non-convex and multimodal, a new filled function method is proposed to cope with its local extrema attractors. The proposed single-parameter filled function has a single form without an exponential term and is second-order continuously differentiable, which is stable for numerical calculations and easy to optimize by local optimization tools. Finally, the closed-form hybrid Cramer-Rao lower-bound expressions of array parameters under unknown source DOAs are derived in detail. Numerical results verify the effectiveness of the proposed algorithm. |
|---|---|
| AbstractList | The state-of-the-art auxiliary calibration algorithms can perform comprehensive calibration of various array nonideal characteristics, such as mutual coupling, gain/phase uncertainties, and sensor position errors, employing a set of cooperative calibration sources with known direction of arrival (DOA). However, the task of deploying calibration sources at precisely measured DOAs is complex. Otherwise, the calibration source DOA errors would seriously degrade the performance of these algorithms. In this article, a dimension-reduction maximum likelihood calibration algorithm (MLCA) with inaccurate cooperative sources is proposed to overcome this issue. First, a maximum likelihood (ML) calibration model is established including both the unknown array of nonideal parameters and 2-D DOAs of all calibration sources. Next, the ambiguity of sensor position estimation caused by inaccurate 2-D DOAs of calibration sources is analyzed. Furthermore, a dimension-reduction ML calibration model is proposed to resolve the ambiguity under the zero mean Gaussian distribution assumption of the calibration source elevation errors. Then, since the proposed multiparameter dimension-reduction model is nonconvex and multimodal, a new filled function method (FFM) is proposed to cope with its local extrema attractors. The proposed single-parameter filled function (SPFF) has a single form without an exponential term and is second-order continuously differentiable, which is stable for numerical calculations and easy to optimize by local optimization tools. Finally, the closed-form hybrid Cramer–Rao lower-bound (CRB) expressions of array parameters under unknown source DOAs are derived in detail. Numerical results verify the effectiveness of the proposed algorithm. The state-of-the-art auxiliary calibration algorithms can perform comprehensive calibration of various array non-ideal characteristics, such as mutual coupling, gain/phase uncertainties, and sensor position errors, employing a set of cooperative calibration sources with known direction of arrival (DOA). However, the task of deploying calibration sources at precisely measured DOAs is complex. Otherwise, the calibration source DOA errors would seriously degrade the performance of these algorithms. In this paper, a dimension-reduction maximum likelihood calibration algorithm with inaccurate cooperative sources is proposed to overcome this issue. First, a maximum likelihood calibration model is established including both the unknown array non-ideal parameters and 2-D DOAs of all calibration sources. Next, the ambiguity of sensor position estimation caused by inaccurate 2-D DOAs of calibration sources is analyzed. Furthermore, a dimension-reduction maximum likelihood calibration model is proposed to resolve the ambiguity under the zero mean Gaussian distribution assumption of the calibration source elevation errors. Then, since the proposed multi-parameter dimension-reduction model is non-convex and multimodal, a new filled function method is proposed to cope with its local extrema attractors. The proposed single-parameter filled function has a single form without an exponential term and is second-order continuously differentiable, which is stable for numerical calculations and easy to optimize by local optimization tools. Finally, the closed-form hybrid Cramer-Rao lower-bound expressions of array parameters under unknown source DOAs are derived in detail. Numerical results verify the effectiveness of the proposed algorithm. |
| Author | Ma, Xiaofeng Sheng, Weixing Song, Shuoshuo |
| Author_xml | – sequence: 1 givenname: Shuoshuo orcidid: 0000-0001-9064-9353 surname: Song fullname: Song, Shuoshuo organization: Department of Communication Engineering, Nanjing University of Science and Technology, Nanjing, China – sequence: 2 givenname: Xiaofeng orcidid: 0000-0003-0561-6448 surname: Ma fullname: Ma, Xiaofeng organization: Department of Communication Engineering, Nanjing University of Science and Technology, Nanjing, China – sequence: 3 givenname: Weixing orcidid: 0000-0001-7262-9607 surname: Sheng fullname: Sheng, Weixing organization: Department of Communication Engineering, Nanjing University of Science and Technology, Nanjing, China |
| BookMark | eNpNkM1OwzAQhC1UJNrCAyBxiMQ5xX-Jk2MVChQVkCiVuFmOswGXJi52g-jb41AOnHa0O7uz-kZo0NoWEDoneEIIzq_ul7PHCcWUTxhLMRfkCA1JkmQxETwb9JrhmDPxeoJG3q8xJrlIxBBV16aB1hvbxs9QdXoXVPSgvk3TNdHCfMDGvFtbRctgsi6aOqf2UaE2pnTq17vypn2L5q3SugstiAprt9APvyBa2s5p8KfouFYbD2d_dYxWN7OX4i5ePN3Oi-ki1pSnuzityoxnNCmFYCUTGpjigFNgdY3LlBCWlCmuQAvKIC2rmgCAooSLDDOiK8rG6PJwd-vsZwd-J9fhgTZESponKctEFjiMETm4tLPeO6jl1plGub0kWPYwZQ9T9jDlH8ywc3HYMSHzn59TluSM_QBiAHPV |
| CODEN | ISJEAZ |
| Cites_doi | 10.1109/TAES.2023.3271614 10.1007/BF01584070 10.1109/78.709536 10.1007/s10107-009-0264-y 10.1016/j.amc.2005.04.046 10.1109/LAWP.2015.2425423 10.1007/BF00939433 10.1109/LCOMM.2019.2896578 10.1049/el:19940288 10.1109/TAP.2004.832511 10.1109/TAP.1970.1139795 10.1109/TAES.2009.4805279 10.1049/ip-rsn:19951793 10.1109/78.143447 10.1109/78.275633 10.1109/MHS.1995.494215 10.1109/29.45542 10.1016/0165-1684(91)90013-9 10.1109/lawp.2004.841209 10.1109/TAES.2021.3059094 10.1007/BF01201215 10.1016/j.sigpro.2015.04.019 10.1109/JSEN.2021.3085677 10.1109/7.7182 10.7551/mitpress/1090.001.0001 10.1126/science.220.4598.671 10.1016/j.amc.2015.06.090 10.1002/1098-2760(20000905)26:5<331::AID-MOP17>3.0.CO;2-M 10.1016/S0165-1684(01)00121-9 10.1109/8.402210 10.1109/TAES.2010.5461663 10.1109/TASSP.1987.1165144 10.1109/LAWP.2013.2296073 10.1109/TSP.2020.2964213 10.1023/B:JOGO.0000006653.60256.f6 10.1007/s10589-005-3077-9 10.1109/8.509886 10.1109/LSP.2014.2306326 10.1016/j.sigpro.2009.08.014 10.1109/78.752611 10.1109/LAWP.2014.2347056 10.1109/TAES.2012.6129676 10.1109/78.285666 10.1109/78.340783 10.1109/TAP.1983.1143128 10.1109/8.60990 10.1109/ICASSP.1991.150676 10.1109/TAES.1986.310775 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2024.3360471 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_JSEN_2024_3360471 10423593 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61971224; 62001227 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2022YFC3331104 – fundername: Strengthening Foundation Program Fund of China grantid: 2022-JCJQ-ZD-151-00 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c246t-6db84825b773b37ce3a4e06e3ff0b61135b60dec723e6bdf1eeea21478031cd23 |
| IEDL.DBID | RIE |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 08:27:21 EDT 2025 Wed Oct 01 05:06:16 EDT 2025 Wed Aug 27 02:17:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-6db84825b773b37ce3a4e06e3ff0b61135b60dec723e6bdf1eeea21478031cd23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0561-6448 0000-0001-9064-9353 0000-0001-7262-9607 |
| PQID | 2956387815 |
| PQPubID | 75733 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_10423593 crossref_primary_10_1109_JSEN_2024_3360471 proquest_journals_2956387815 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-15 |
| PublicationDateYYYYMMDD | 2024-03-15 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref46 ref45 ref48 ref47 ref42 ref44 ref43 Ge (ref41) 1990; 46 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 Ng (ref36) 1996; 44 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref4 doi: 10.1109/TAES.2023.3271614 – ident: ref47 doi: 10.1007/BF01584070 – ident: ref26 doi: 10.1109/78.709536 – ident: ref48 doi: 10.1007/s10107-009-0264-y – ident: ref45 doi: 10.1016/j.amc.2005.04.046 – ident: ref30 doi: 10.1109/LAWP.2015.2425423 – ident: ref42 doi: 10.1007/BF00939433 – ident: ref6 doi: 10.1109/LCOMM.2019.2896578 – ident: ref34 doi: 10.1049/el:19940288 – ident: ref10 doi: 10.1109/TAP.2004.832511 – ident: ref8 doi: 10.1109/TAP.1970.1139795 – ident: ref27 doi: 10.1109/TAES.2009.4805279 – ident: ref35 doi: 10.1049/ip-rsn:19951793 – ident: ref1 doi: 10.1109/78.143447 – ident: ref22 doi: 10.1109/78.275633 – ident: ref40 doi: 10.1109/MHS.1995.494215 – ident: ref15 doi: 10.1109/29.45542 – ident: ref16 doi: 10.1016/0165-1684(91)90013-9 – ident: ref9 doi: 10.1109/lawp.2004.841209 – ident: ref5 doi: 10.1109/TAES.2021.3059094 – ident: ref21 doi: 10.1007/BF01201215 – ident: ref29 doi: 10.1016/j.sigpro.2015.04.019 – ident: ref3 doi: 10.1109/JSEN.2021.3085677 – ident: ref20 doi: 10.1109/7.7182 – ident: ref38 doi: 10.7551/mitpress/1090.001.0001 – ident: ref39 doi: 10.1126/science.220.4598.671 – volume: 46 start-page: 191 issue: 1 year: 1990 ident: ref41 article-title: A filled function method for finding a global minimizer of a function of several variables publication-title: Math. Program. – ident: ref46 doi: 10.1016/j.amc.2015.06.090 – ident: ref12 doi: 10.1002/1098-2760(20000905)26:5<331::AID-MOP17>3.0.CO;2-M – ident: ref17 doi: 10.1016/S0165-1684(01)00121-9 – ident: ref25 doi: 10.1109/8.402210 – ident: ref19 doi: 10.1109/TAES.2010.5461663 – ident: ref49 doi: 10.1109/TASSP.1987.1165144 – ident: ref13 doi: 10.1109/LAWP.2013.2296073 – ident: ref14 doi: 10.1109/TSP.2020.2964213 – ident: ref43 doi: 10.1023/B:JOGO.0000006653.60256.f6 – ident: ref44 doi: 10.1007/s10589-005-3077-9 – volume: 44 start-page: 827 issue: 6 year: 1996 ident: ref36 article-title: Maximum likelihood sensor array calibration publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/8.509886 – ident: ref18 doi: 10.1109/LSP.2014.2306326 – ident: ref28 doi: 10.1016/j.sigpro.2009.08.014 – ident: ref37 doi: 10.1109/78.752611 – ident: ref32 doi: 10.1109/LAWP.2014.2347056 – ident: ref31 doi: 10.1109/TAES.2012.6129676 – ident: ref23 doi: 10.1109/78.285666 – ident: ref24 doi: 10.1109/78.340783 – ident: ref7 doi: 10.1109/TAP.1983.1143128 – ident: ref11 doi: 10.1109/8.60990 – ident: ref33 doi: 10.1109/ICASSP.1991.150676 – ident: ref2 doi: 10.1109/TAES.1986.310775 |
| SSID | ssj0019757 |
| Score | 2.4072745 |
| Snippet | The state-of-the-art auxiliary calibration algorithms can perform comprehensive calibration of various array non-ideal characteristics, such as mutual... The state-of-the-art auxiliary calibration algorithms can perform comprehensive calibration of various array nonideal characteristics, such as mutual coupling,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Ambiguity Calibration dimension-reduction Direction of arrival Direction-of-arrival estimation global optimization inaccurate calibration sources Local optimization Lower bounds Mathematical models Maximum likelihood estimation Mutual coupling Normal distribution Optimization methods Parameters Performance degradation Position errors Position sensing Reduction sensor array calibration Sensor arrays Sensor phenomena and characterization Sensors Two dimensional analysis Uncertainty |
| Title | Dimension-Reduction Maximum Likelihood Sensor Array Calibration Using Inaccurate Cooperative Sources |
| URI | https://ieeexplore.ieee.org/document/10423593 https://www.proquest.com/docview/2956387815 |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BF-BAy6NiW4p84FQpixO_jxUFAYI9dIu0t8h2JuoK2KBlI5X--tpOtqJFSNx8cCzH8_J4Zr4BOKLGcxvTBp0xdcYFmkwj8jCy2lAWLGqq474eyfMbfjkRk75YPdXCIGJKPsNhHKZYftX4Nj6VBQkPxl8YtgqrSsuuWOtvyMCoBOsZJJhmnKlJH8LMqTm-HJ-OgitY8CFjknKV_2OEUleVF6o42ZezdzBa7qxLK7kdtgs39L__A21889bfw1Z_0yRfO9bYhhWc7cDmM_zBHVjvW6D_fNqF6lvE-Y9vZ9n3COcaCUau7a_pfXtPrqa3eDeNCMhkHCY187Ds3D6RWNnlOh4iKfmAXMys923EnyAnTfOAHbA4GacYweMe3Jyd_jg5z_oWDJkvuFxksnKaByfSKcUcUx6Z5UglsrqmTuY5E07SCr0qGEpX1Xn4cRtbH-mgLHxVsA-wNmtmuA_Ei8Iy7wTDYBELrmwdlI0VogpqwGudD-DLkiblQ4e0USYPhZoyErCMBCx7Ag5gL57xs4nd8Q7gYEnGshfGx7IIPiDTSufi4yuffYKNuHrMLcvFAawt5i1-DpeNhTtMTPYH9F_Qiw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB619EA58CoVSyn40FOlLE5sx_ER8dACu3tgQdpbZDsTsaJs0LKRgF-P7WQrKELqzQcncTwvj2fmG4BfVFmufdqgUaqMuEAVZYjcjXSmKHMWNdRxD4Zp75qfj8W4LVYPtTCIGJLPsOuHIZZfVLb2V2VOwp3xF4p9hi-Ccy6acq2_QQMlA7Cnk2EacSbHbRAzpurgfHQydM5gwruMpZTL-I0ZCn1V3injYGFO12C4WFuTWHLbreema5__gW3878Wvw2p71iSHDXNswCecbsLKKwTCTVhum6DfPH2D4tgj_fvbs-jSA7p6kpGBfpzc1XekP7nFPxOPgUxGblI1c6-d6Sfia7tMw0UkpB-Qs6m2tvYIFOSoqu6xgRYnoxAleNiC69OTq6Ne1DZhiGzC03mUFibjzo00UjLDpEWmOdIUWVlSk8YxEyalBVqZMExNUcbux7VvfpQ5dWGLhH2HpWk1xW0gViSaWSMYOpuYcKlLp260EIVTBDbL4g78XtAkv2-wNvLgo1CVewLmnoB5S8AObPk9fjWx2d4O7C7ImLfi-JAnzgtkmcxisfPBY_uw3Lsa9PP-2fDiB3z1X_KZZrHYhaX5rMaf7ugxN3uB4V4ACRnT2A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimension-Reduction+Maximum+Likelihood+Sensor+Array+Calibration+Using+Inaccurate+Cooperative+Sources&rft.jtitle=IEEE+sensors+journal&rft.au=Song%2C+Shuoshuo&rft.au=Ma%2C+Xiaofeng&rft.au=Sheng%2C+Weixing&rft.date=2024-03-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=6&rft.spage=8526&rft.epage=8538&rft_id=info:doi/10.1109%2FJSEN.2024.3360471&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2024_3360471 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |