Dimension-Reduction Maximum Likelihood Sensor Array Calibration Using Inaccurate Cooperative Sources

The state-of-the-art auxiliary calibration algorithms can perform comprehensive calibration of various array non-ideal characteristics, such as mutual coupling, gain/phase uncertainties, and sensor position errors, employing a set of cooperative calibration sources with known direction of arrival (D...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 24; no. 6; p. 1
Main Authors Song, Shuoshuo, Ma, Xiaofeng, Sheng, Weixing
Format Journal Article
LanguageEnglish
Published New York IEEE 15.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2024.3360471

Cover

Abstract The state-of-the-art auxiliary calibration algorithms can perform comprehensive calibration of various array non-ideal characteristics, such as mutual coupling, gain/phase uncertainties, and sensor position errors, employing a set of cooperative calibration sources with known direction of arrival (DOA). However, the task of deploying calibration sources at precisely measured DOAs is complex. Otherwise, the calibration source DOA errors would seriously degrade the performance of these algorithms. In this paper, a dimension-reduction maximum likelihood calibration algorithm with inaccurate cooperative sources is proposed to overcome this issue. First, a maximum likelihood calibration model is established including both the unknown array non-ideal parameters and 2-D DOAs of all calibration sources. Next, the ambiguity of sensor position estimation caused by inaccurate 2-D DOAs of calibration sources is analyzed. Furthermore, a dimension-reduction maximum likelihood calibration model is proposed to resolve the ambiguity under the zero mean Gaussian distribution assumption of the calibration source elevation errors. Then, since the proposed multi-parameter dimension-reduction model is non-convex and multimodal, a new filled function method is proposed to cope with its local extrema attractors. The proposed single-parameter filled function has a single form without an exponential term and is second-order continuously differentiable, which is stable for numerical calculations and easy to optimize by local optimization tools. Finally, the closed-form hybrid Cramer-Rao lower-bound expressions of array parameters under unknown source DOAs are derived in detail. Numerical results verify the effectiveness of the proposed algorithm.
AbstractList The state-of-the-art auxiliary calibration algorithms can perform comprehensive calibration of various array nonideal characteristics, such as mutual coupling, gain/phase uncertainties, and sensor position errors, employing a set of cooperative calibration sources with known direction of arrival (DOA). However, the task of deploying calibration sources at precisely measured DOAs is complex. Otherwise, the calibration source DOA errors would seriously degrade the performance of these algorithms. In this article, a dimension-reduction maximum likelihood calibration algorithm (MLCA) with inaccurate cooperative sources is proposed to overcome this issue. First, a maximum likelihood (ML) calibration model is established including both the unknown array of nonideal parameters and 2-D DOAs of all calibration sources. Next, the ambiguity of sensor position estimation caused by inaccurate 2-D DOAs of calibration sources is analyzed. Furthermore, a dimension-reduction ML calibration model is proposed to resolve the ambiguity under the zero mean Gaussian distribution assumption of the calibration source elevation errors. Then, since the proposed multiparameter dimension-reduction model is nonconvex and multimodal, a new filled function method (FFM) is proposed to cope with its local extrema attractors. The proposed single-parameter filled function (SPFF) has a single form without an exponential term and is second-order continuously differentiable, which is stable for numerical calculations and easy to optimize by local optimization tools. Finally, the closed-form hybrid Cramer–Rao lower-bound (CRB) expressions of array parameters under unknown source DOAs are derived in detail. Numerical results verify the effectiveness of the proposed algorithm.
The state-of-the-art auxiliary calibration algorithms can perform comprehensive calibration of various array non-ideal characteristics, such as mutual coupling, gain/phase uncertainties, and sensor position errors, employing a set of cooperative calibration sources with known direction of arrival (DOA). However, the task of deploying calibration sources at precisely measured DOAs is complex. Otherwise, the calibration source DOA errors would seriously degrade the performance of these algorithms. In this paper, a dimension-reduction maximum likelihood calibration algorithm with inaccurate cooperative sources is proposed to overcome this issue. First, a maximum likelihood calibration model is established including both the unknown array non-ideal parameters and 2-D DOAs of all calibration sources. Next, the ambiguity of sensor position estimation caused by inaccurate 2-D DOAs of calibration sources is analyzed. Furthermore, a dimension-reduction maximum likelihood calibration model is proposed to resolve the ambiguity under the zero mean Gaussian distribution assumption of the calibration source elevation errors. Then, since the proposed multi-parameter dimension-reduction model is non-convex and multimodal, a new filled function method is proposed to cope with its local extrema attractors. The proposed single-parameter filled function has a single form without an exponential term and is second-order continuously differentiable, which is stable for numerical calculations and easy to optimize by local optimization tools. Finally, the closed-form hybrid Cramer-Rao lower-bound expressions of array parameters under unknown source DOAs are derived in detail. Numerical results verify the effectiveness of the proposed algorithm.
Author Ma, Xiaofeng
Sheng, Weixing
Song, Shuoshuo
Author_xml – sequence: 1
  givenname: Shuoshuo
  orcidid: 0000-0001-9064-9353
  surname: Song
  fullname: Song, Shuoshuo
  organization: Department of Communication Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 2
  givenname: Xiaofeng
  orcidid: 0000-0003-0561-6448
  surname: Ma
  fullname: Ma, Xiaofeng
  organization: Department of Communication Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 3
  givenname: Weixing
  orcidid: 0000-0001-7262-9607
  surname: Sheng
  fullname: Sheng, Weixing
  organization: Department of Communication Engineering, Nanjing University of Science and Technology, Nanjing, China
BookMark eNpNkM1OwzAQhC1UJNrCAyBxiMQ5xX-Jk2MVChQVkCiVuFmOswGXJi52g-jb41AOnHa0O7uz-kZo0NoWEDoneEIIzq_ul7PHCcWUTxhLMRfkCA1JkmQxETwb9JrhmDPxeoJG3q8xJrlIxBBV16aB1hvbxs9QdXoXVPSgvk3TNdHCfMDGvFtbRctgsi6aOqf2UaE2pnTq17vypn2L5q3SugstiAprt9APvyBa2s5p8KfouFYbD2d_dYxWN7OX4i5ePN3Oi-ki1pSnuzityoxnNCmFYCUTGpjigFNgdY3LlBCWlCmuQAvKIC2rmgCAooSLDDOiK8rG6PJwd-vsZwd-J9fhgTZESponKctEFjiMETm4tLPeO6jl1plGub0kWPYwZQ9T9jDlH8ywc3HYMSHzn59TluSM_QBiAHPV
CODEN ISJEAZ
Cites_doi 10.1109/TAES.2023.3271614
10.1007/BF01584070
10.1109/78.709536
10.1007/s10107-009-0264-y
10.1016/j.amc.2005.04.046
10.1109/LAWP.2015.2425423
10.1007/BF00939433
10.1109/LCOMM.2019.2896578
10.1049/el:19940288
10.1109/TAP.2004.832511
10.1109/TAP.1970.1139795
10.1109/TAES.2009.4805279
10.1049/ip-rsn:19951793
10.1109/78.143447
10.1109/78.275633
10.1109/MHS.1995.494215
10.1109/29.45542
10.1016/0165-1684(91)90013-9
10.1109/lawp.2004.841209
10.1109/TAES.2021.3059094
10.1007/BF01201215
10.1016/j.sigpro.2015.04.019
10.1109/JSEN.2021.3085677
10.1109/7.7182
10.7551/mitpress/1090.001.0001
10.1126/science.220.4598.671
10.1016/j.amc.2015.06.090
10.1002/1098-2760(20000905)26:5<331::AID-MOP17>3.0.CO;2-M
10.1016/S0165-1684(01)00121-9
10.1109/8.402210
10.1109/TAES.2010.5461663
10.1109/TASSP.1987.1165144
10.1109/LAWP.2013.2296073
10.1109/TSP.2020.2964213
10.1023/B:JOGO.0000006653.60256.f6
10.1007/s10589-005-3077-9
10.1109/8.509886
10.1109/LSP.2014.2306326
10.1016/j.sigpro.2009.08.014
10.1109/78.752611
10.1109/LAWP.2014.2347056
10.1109/TAES.2012.6129676
10.1109/78.285666
10.1109/78.340783
10.1109/TAP.1983.1143128
10.1109/8.60990
10.1109/ICASSP.1991.150676
10.1109/TAES.1986.310775
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2024.3360471
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1
ExternalDocumentID 10_1109_JSEN_2024_3360471
10423593
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61971224; 62001227
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2022YFC3331104
– fundername: Strengthening Foundation Program Fund of China
  grantid: 2022-JCJQ-ZD-151-00
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c246t-6db84825b773b37ce3a4e06e3ff0b61135b60dec723e6bdf1eeea21478031cd23
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 08:27:21 EDT 2025
Wed Oct 01 05:06:16 EDT 2025
Wed Aug 27 02:17:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-6db84825b773b37ce3a4e06e3ff0b61135b60dec723e6bdf1eeea21478031cd23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0561-6448
0000-0001-9064-9353
0000-0001-7262-9607
PQID 2956387815
PQPubID 75733
PageCount 1
ParticipantIDs ieee_primary_10423593
crossref_primary_10_1109_JSEN_2024_3360471
proquest_journals_2956387815
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-15
PublicationDateYYYYMMDD 2024-03-15
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref46
ref45
ref48
ref47
ref42
ref44
ref43
Ge (ref41) 1990; 46
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
Ng (ref36) 1996; 44
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref4
  doi: 10.1109/TAES.2023.3271614
– ident: ref47
  doi: 10.1007/BF01584070
– ident: ref26
  doi: 10.1109/78.709536
– ident: ref48
  doi: 10.1007/s10107-009-0264-y
– ident: ref45
  doi: 10.1016/j.amc.2005.04.046
– ident: ref30
  doi: 10.1109/LAWP.2015.2425423
– ident: ref42
  doi: 10.1007/BF00939433
– ident: ref6
  doi: 10.1109/LCOMM.2019.2896578
– ident: ref34
  doi: 10.1049/el:19940288
– ident: ref10
  doi: 10.1109/TAP.2004.832511
– ident: ref8
  doi: 10.1109/TAP.1970.1139795
– ident: ref27
  doi: 10.1109/TAES.2009.4805279
– ident: ref35
  doi: 10.1049/ip-rsn:19951793
– ident: ref1
  doi: 10.1109/78.143447
– ident: ref22
  doi: 10.1109/78.275633
– ident: ref40
  doi: 10.1109/MHS.1995.494215
– ident: ref15
  doi: 10.1109/29.45542
– ident: ref16
  doi: 10.1016/0165-1684(91)90013-9
– ident: ref9
  doi: 10.1109/lawp.2004.841209
– ident: ref5
  doi: 10.1109/TAES.2021.3059094
– ident: ref21
  doi: 10.1007/BF01201215
– ident: ref29
  doi: 10.1016/j.sigpro.2015.04.019
– ident: ref3
  doi: 10.1109/JSEN.2021.3085677
– ident: ref20
  doi: 10.1109/7.7182
– ident: ref38
  doi: 10.7551/mitpress/1090.001.0001
– ident: ref39
  doi: 10.1126/science.220.4598.671
– volume: 46
  start-page: 191
  issue: 1
  year: 1990
  ident: ref41
  article-title: A filled function method for finding a global minimizer of a function of several variables
  publication-title: Math. Program.
– ident: ref46
  doi: 10.1016/j.amc.2015.06.090
– ident: ref12
  doi: 10.1002/1098-2760(20000905)26:5<331::AID-MOP17>3.0.CO;2-M
– ident: ref17
  doi: 10.1016/S0165-1684(01)00121-9
– ident: ref25
  doi: 10.1109/8.402210
– ident: ref19
  doi: 10.1109/TAES.2010.5461663
– ident: ref49
  doi: 10.1109/TASSP.1987.1165144
– ident: ref13
  doi: 10.1109/LAWP.2013.2296073
– ident: ref14
  doi: 10.1109/TSP.2020.2964213
– ident: ref43
  doi: 10.1023/B:JOGO.0000006653.60256.f6
– ident: ref44
  doi: 10.1007/s10589-005-3077-9
– volume: 44
  start-page: 827
  issue: 6
  year: 1996
  ident: ref36
  article-title: Maximum likelihood sensor array calibration
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/8.509886
– ident: ref18
  doi: 10.1109/LSP.2014.2306326
– ident: ref28
  doi: 10.1016/j.sigpro.2009.08.014
– ident: ref37
  doi: 10.1109/78.752611
– ident: ref32
  doi: 10.1109/LAWP.2014.2347056
– ident: ref31
  doi: 10.1109/TAES.2012.6129676
– ident: ref23
  doi: 10.1109/78.285666
– ident: ref24
  doi: 10.1109/78.340783
– ident: ref7
  doi: 10.1109/TAP.1983.1143128
– ident: ref11
  doi: 10.1109/8.60990
– ident: ref33
  doi: 10.1109/ICASSP.1991.150676
– ident: ref2
  doi: 10.1109/TAES.1986.310775
SSID ssj0019757
Score 2.4072745
Snippet The state-of-the-art auxiliary calibration algorithms can perform comprehensive calibration of various array non-ideal characteristics, such as mutual...
The state-of-the-art auxiliary calibration algorithms can perform comprehensive calibration of various array nonideal characteristics, such as mutual coupling,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Ambiguity
Calibration
dimension-reduction
Direction of arrival
Direction-of-arrival estimation
global optimization
inaccurate calibration sources
Local optimization
Lower bounds
Mathematical models
Maximum likelihood estimation
Mutual coupling
Normal distribution
Optimization methods
Parameters
Performance degradation
Position errors
Position sensing
Reduction
sensor array calibration
Sensor arrays
Sensor phenomena and characterization
Sensors
Two dimensional analysis
Uncertainty
Title Dimension-Reduction Maximum Likelihood Sensor Array Calibration Using Inaccurate Cooperative Sources
URI https://ieeexplore.ieee.org/document/10423593
https://www.proquest.com/docview/2956387815
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BF-BAy6NiW4p84FQpixO_jxUFAYI9dIu0t8h2JuoK2KBlI5X--tpOtqJFSNx8cCzH8_J4Zr4BOKLGcxvTBp0xdcYFmkwj8jCy2lAWLGqq474eyfMbfjkRk75YPdXCIGJKPsNhHKZYftX4Nj6VBQkPxl8YtgqrSsuuWOtvyMCoBOsZJJhmnKlJH8LMqTm-HJ-OgitY8CFjknKV_2OEUleVF6o42ZezdzBa7qxLK7kdtgs39L__A21889bfw1Z_0yRfO9bYhhWc7cDmM_zBHVjvW6D_fNqF6lvE-Y9vZ9n3COcaCUau7a_pfXtPrqa3eDeNCMhkHCY187Ds3D6RWNnlOh4iKfmAXMys923EnyAnTfOAHbA4GacYweMe3Jyd_jg5z_oWDJkvuFxksnKaByfSKcUcUx6Z5UglsrqmTuY5E07SCr0qGEpX1Xn4cRtbH-mgLHxVsA-wNmtmuA_Ei8Iy7wTDYBELrmwdlI0VogpqwGudD-DLkiblQ4e0USYPhZoyErCMBCx7Ag5gL57xs4nd8Q7gYEnGshfGx7IIPiDTSufi4yuffYKNuHrMLcvFAawt5i1-DpeNhTtMTPYH9F_Qiw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB619EA58CoVSyn40FOlLE5sx_ER8dACu3tgQdpbZDsTsaJs0LKRgF-P7WQrKELqzQcncTwvj2fmG4BfVFmufdqgUaqMuEAVZYjcjXSmKHMWNdRxD4Zp75qfj8W4LVYPtTCIGJLPsOuHIZZfVLb2V2VOwp3xF4p9hi-Ccy6acq2_QQMlA7Cnk2EacSbHbRAzpurgfHQydM5gwruMpZTL-I0ZCn1V3injYGFO12C4WFuTWHLbreema5__gW3878Wvw2p71iSHDXNswCecbsLKKwTCTVhum6DfPH2D4tgj_fvbs-jSA7p6kpGBfpzc1XekP7nFPxOPgUxGblI1c6-d6Sfia7tMw0UkpB-Qs6m2tvYIFOSoqu6xgRYnoxAleNiC69OTq6Ne1DZhiGzC03mUFibjzo00UjLDpEWmOdIUWVlSk8YxEyalBVqZMExNUcbux7VvfpQ5dWGLhH2HpWk1xW0gViSaWSMYOpuYcKlLp260EIVTBDbL4g78XtAkv2-wNvLgo1CVewLmnoB5S8AObPk9fjWx2d4O7C7ImLfi-JAnzgtkmcxisfPBY_uw3Lsa9PP-2fDiB3z1X_KZZrHYhaX5rMaf7ugxN3uB4V4ACRnT2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimension-Reduction+Maximum+Likelihood+Sensor+Array+Calibration+Using+Inaccurate+Cooperative+Sources&rft.jtitle=IEEE+sensors+journal&rft.au=Song%2C+Shuoshuo&rft.au=Ma%2C+Xiaofeng&rft.au=Sheng%2C+Weixing&rft.date=2024-03-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=6&rft.spage=8526&rft.epage=8538&rft_id=info:doi/10.1109%2FJSEN.2024.3360471&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2024_3360471
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon