Low Carbon Economic Energy Management Method in a Microgrid Based on Enhanced D3QN Algorithm With Mixed Penalty Function
In this paper, an enhanced dueling double deep Q network algorithm with mixed penalty function (EN-D3QN-MPF) for microgrid energy management control is developed. First, a novel microgrid model including PV, wind turbine generator, electric storage system, electric vehicle charging station, thermost...
        Saved in:
      
    
          | Published in | IEEE transactions on sustainable energy Vol. 16; no. 3; pp. 1686 - 1696 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        01.07.2025
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1949-3029 1949-3037  | 
| DOI | 10.1109/TSTE.2025.3528952 | 
Cover
| Abstract | In this paper, an enhanced dueling double deep Q network algorithm with mixed penalty function (EN-D3QN-MPF) for microgrid energy management control is developed. First, a novel microgrid model including PV, wind turbine generator, electric storage system, electric vehicle charging station, thermostatically controlled loads, and residential price-responsive loads are proposed. Then, by combining the mixed penalty function method with D3QN reinforcement learning together, a mixed penalty function method is implemented to balance the reward weightings. Accordingly, an EN-D3QN-MPF algorithm is presented to achieve low-carbon economic and EV users' charging satisfaction operation of the microgrid. The effectiveness of the proposed method is verified by the dataset collected from eastern China in 2019. Simulation results validate that our proposed method has superior energy management performance over the genetic algorithm (GA), Particle Swarm Optimization (PSO), dueling deep Q network (dueling DQN), double DQN (DDQN), and D3QN algorithms. | 
    
|---|---|
| AbstractList | In this paper, an enhanced dueling double deep Q network algorithm with mixed penalty function (EN-D3QN-MPF) for microgrid energy management control is developed. First, a novel microgrid model including PV, wind turbine generator, electric storage system, electric vehicle charging station, thermostatically controlled loads, and residential price-responsive loads are proposed. Then, by combining the mixed penalty function method with D3QN reinforcement learning together, a mixed penalty function method is implemented to balance the reward weightings. Accordingly, an EN-D3QN-MPF algorithm is presented to achieve low-carbon economic and EV users' charging satisfaction operation of the microgrid. The effectiveness of the proposed method is verified by the dataset collected from eastern China in 2019. Simulation results validate that our proposed method has superior energy management performance over the genetic algorithm (GA), Particle Swarm Optimization (PSO), dueling deep Q network (dueling DQN), double DQN (DDQN), and D3QN algorithms. | 
    
| Author | Zhang, Qian Li, Yunlong Ren, Lina Zhao, Chanjuan  | 
    
| Author_xml | – sequence: 1 givenname: Chanjuan orcidid: 0000-0001-8862-4050 surname: Zhao fullname: Zhao, Chanjuan email: chanjuanzhao@ahu.edu.cn organization: Anhui University, Hefei, China – sequence: 2 givenname: Yunlong orcidid: 0009-0000-7291-4045 surname: Li fullname: Li, Yunlong organization: Anhui University, Hefei, China – sequence: 3 givenname: Qian orcidid: 0000-0001-8520-5854 surname: Zhang fullname: Zhang, Qian email: qianzh@ahu.edu.cn organization: Anhui University, Hefei, China – sequence: 4 givenname: Lina surname: Ren fullname: Ren, Lina organization: Anhui University, Hefei, China  | 
    
| BookMark | eNpNUF1PwjAUbQwmIvIDTHxo4vOw6-3G-og41AT8iBgfl67rRglrsRsR_r1dIMb7cD9yz7m551yinrFGIXQdklEYEn63_FimI0poNIKIJjyiZ6gfcsYDIDDu_fWUX6Bh06yJDwCIgfTRfm5_8FS43BqcSmtsrSVOjXLVAS-EEZWqlWnxQrUrW2BtsMALLZ2tnC7wvWhUgTumWQkjff8A7y94sqms0-2qxl8-e_zeb96UEZv2gGc7I1ttzRU6L8WmUcNTHaDPWbqcPgXz18fn6WQeSMriNohEwrmiXpzkLCdxHoOUJfBclVECXioHoCwRiWQwLjhjIqFMhsyPUpWCwADdHu9unf3eqabN1nbn_C9NBpTSeExjBh4VHlFeWtM4VWZbp2vhDllIss7jrPM46zzOTh57zs2Ro5VS__D-rRgo_ALphXiX | 
    
| CODEN | ITSEAJ | 
    
| Cites_doi | 10.1016/j.renene.2022.09.125 10.1109/TFUZZ.2017.2779424 10.1109/TSG.2018.2859821 10.1109/TSG.2023.3254655 10.1109/TSG.2023.3261979 10.1016/j.segan.2019.100212 10.1063/5.0107948 10.1109/TSG.2023.3266253 10.1109/TSG.2022.3179567 10.1109/JESTIE.2023.3285535 10.1016/j.apenergy.2022.118664 10.3390/app11093814 10.1109/TSG.2023.3317096 10.1109/TSG.2023.3243170 10.1016/j.segan.2020.100413 10.1016/j.energy.2021.121704 10.1016/j.apenergy.2017.04.071 10.1016/j.renene.2024.120816 10.1109/TSG.2022.3181703 10.1109/TSG.2020.3034827 10.1109/TPWRS.2023.3270366 10.1109/TSTE.2023.3316091 10.1109/TSG.2016.2569604 10.1109/TSG.2023.3240588  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI  | 
    
| DOI | 10.1109/TSTE.2025.3528952 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts  | 
    
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management  | 
    
| DatabaseTitleList | Aerospace Database  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Economics Engineering  | 
    
| EISSN | 1949-3037 | 
    
| EndPage | 1696 | 
    
| ExternalDocumentID | 10_1109_TSTE_2025_3528952 10839632  | 
    
| Genre | orig-research | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GrantInformation_xml | – fundername: Natural Science Foundation of Education Department of Anhui Province grantid: 2023AH050104 – fundername: Natural Science Foundation of Anhui Province grantid: 2108085QE237; 2208085UD01 funderid: 10.13039/501100003995 – fundername: National Engineering Laboratory of Energy-saving Motor & Control Technique, Anhui University grantid: KFKT202302 – fundername: Anhui International Joint Research Center for Ancient Architecture Intellisencing and Multi-Dimensional Modeling, Anhui Jianzhu University grantid: GJZZX2021KF03  | 
    
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI  | 
    
| ID | FETCH-LOGICAL-c246t-5a899e2202c94b06b63ccf39bef583952933248a8c437d944a824c14c43cefa03 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1949-3029 | 
    
| IngestDate | Wed Oct 08 11:10:39 EDT 2025 Wed Oct 01 05:36:14 EDT 2025 Wed Sep 03 07:09:36 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c246t-5a899e2202c94b06b63ccf39bef583952933248a8c437d944a824c14c43cefa03 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-8520-5854 0000-0001-8862-4050 0009-0000-7291-4045  | 
    
| PQID | 3222672643 | 
    
| PQPubID | 2040348 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | ieee_primary_10839632 crossref_primary_10_1109_TSTE_2025_3528952 proquest_journals_3222672643  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-07-01 | 
    
| PublicationDateYYYYMMDD | 2025-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE transactions on sustainable energy | 
    
| PublicationTitleAbbrev | TSTE | 
    
| PublicationYear | 2025 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 Brockman (ref25) 2016 ref24 ref23 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5  | 
    
| References_xml | – ident: ref22 doi: 10.1016/j.renene.2022.09.125 – ident: ref12 doi: 10.1109/TFUZZ.2017.2779424 – ident: ref9 doi: 10.1109/TSG.2018.2859821 – ident: ref3 doi: 10.1109/TSG.2023.3254655 – ident: ref13 doi: 10.1109/TSG.2023.3261979 – ident: ref23 doi: 10.1016/j.segan.2019.100212 – ident: ref20 doi: 10.1063/5.0107948 – ident: ref5 doi: 10.1109/TSG.2023.3266253 – ident: ref17 doi: 10.1109/TSG.2022.3179567 – ident: ref21 doi: 10.1109/JESTIE.2023.3285535 – ident: ref1 doi: 10.1016/j.apenergy.2022.118664 – ident: ref10 doi: 10.3390/app11093814 – year: 2016 ident: ref25 article-title: OpenAI gym – ident: ref16 doi: 10.1109/TSG.2023.3317096 – ident: ref15 doi: 10.1109/TSG.2023.3243170 – ident: ref19 doi: 10.1016/j.segan.2020.100413 – ident: ref24 doi: 10.1016/j.energy.2021.121704 – ident: ref11 doi: 10.1016/j.apenergy.2017.04.071 – ident: ref2 doi: 10.1016/j.renene.2024.120816 – ident: ref7 doi: 10.1109/TSG.2022.3181703 – ident: ref18 doi: 10.1109/TSG.2020.3034827 – ident: ref4 doi: 10.1109/TPWRS.2023.3270366 – ident: ref6 doi: 10.1109/TSTE.2023.3316091 – ident: ref8 doi: 10.1109/TSG.2016.2569604 – ident: ref14 doi: 10.1109/TSG.2023.3240588  | 
    
| SSID | ssj0000333630 | 
    
| Score | 2.4370775 | 
    
| Snippet | In this paper, an enhanced dueling double deep Q network algorithm with mixed penalty function (EN-D3QN-MPF) for microgrid energy management control is... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 1686 | 
    
| SubjectTerms | Algorithm design and analysis Algorithms Carbon Carbon content Carbon emissions Deep reinforcement learning Distributed generation Economics Electric vehicle charging Electric vehicles Electrical loads EN-D3QN-MPF Energy management EV users' charging satisfaction Genetic algorithms Low carbon economy low-carbon economic microgrid energy management Microgrids Particle swarm optimization Penalty function Power system dynamics Renewable energy sources Temperature measurement Turbogenerators Wind power Wind power generation Wind turbines  | 
    
| Title | Low Carbon Economic Energy Management Method in a Microgrid Based on Enhanced D3QN Algorithm With Mixed Penalty Function | 
    
| URI | https://ieeexplore.ieee.org/document/10839632 https://www.proquest.com/docview/3222672643  | 
    
| Volume | 16 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1949-3037 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000333630 issn: 1949-3029 databaseCode: RIE dateStart: 20100101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LTsMwLAIuwIE3YjBQDpyQOromTZojjE0IsQnEENyqJE1hAlo0OvH4epy05SkkLlWrJpVrO7EdvxDapdJEXKeplwA7eVRx3xOCg9WaGEZMlCZCW0OxP2DHl_TkOryuktVdLowxxgWfmZa9db78JNcTe1QGKxzEOSOw407ziJXJWh8HKj4hhLneImCXW39-ICovZtsX-8OLYReswSBs2XImIgy-ySHXWOXXbuxETG8RDWrgysiSu9akUC399qNu47-hX0ILlbKJD0ruWEZTJltBs3Uu8tMKmv9SjnAVvZzmz7gjxyrPcD0Id11yIP4Mk8F913QajzIscd_G892MRwk-BHGYYDszu3VRBfiInA_wwf1NPh4Vtw_4Cq4w_gXenBkAq3jFPRCqljHW0GWvO-wce1VnBk8HlBVeKMFMMwHgUwuqfKYY0TolQpk0hJ8MQYcARS2SkaaEJ4JSGQVUtyk8apNKn6yjmSzPzAbC3LYt0pSpUDEqQX0xIWwEiQx0O-WKBw20V9MpfiwLcMTOcPFFbIkaW6LGFVEbaM3i_cvAEuUN1KxJG1dr9Cm2PibGQSEkm39M20Jz9utldG4TzRTjidkGHaRQO4733gEPz9ZJ | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1dT9sw8DTBA-xhMGCiAzY_8DQpXRp_JH5k0KobbcW0IniLbMeBCpZMJRUfv35nJ2FsaBIvUaLYyuXu7LvzfQHsM2WT2OR5kCE7BUzHYSBljFZrZgW1SZ5J4wzF8UQMT9m3c37eJKv7XBhrrQ8-s1136335WWkW7qgMVziKc0Fxx13mjDFep2s9HqmElFLhu4ugZe48-pFs_Ji9UH6e_pj20R6MeNcVNJE8-ksS-dYqz_ZjL2QGazBpwatjS666i0p3zcM_lRtfDP86vGnUTXJQ88dbeGWLDVhps5FvNuD1k4KEm3A3Km_JoZrrsiDtINL36YHkT6AMGfu202RWEEXGLqLvYj7LyBcUiBlxM4tLH1dAjuj3CTm4vijns-ryJznDK46_wzcnFsGq7skAxapjjS04HfSnh8Og6c0QmIiJKuAKDTUbIT6NZDoUWlBjciq1zTn-JEctAlW1RCWG0TiTjKkkYqbH8NHYXIX0HSwVZWG3gcSucZFhQnMtmEIFxnLcCjIVmV4e6zjqwKeWTumvugRH6k2XUKaOqKkjatoQtQNbDu9PBtYo78BuS9q0WaU3qfMyiRhVQvr-P9M-wspwOh6lo6-T4x1YdV-qY3V3YamaL-weaiSV_uD58Dd0OdmW | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+Carbon+Economic+Energy+Management+Method+in+a+Microgrid+Based+on+Enhanced+D3QN+Algorithm+With+Mixed+Penalty+Function&rft.jtitle=IEEE+transactions+on+sustainable+energy&rft.au=Zhao%2C+Chanjuan&rft.au=Li%2C+Yunlong&rft.au=Zhang%2C+Qian&rft.au=Ren%2C+Lina&rft.date=2025-07-01&rft.pub=IEEE&rft.issn=1949-3029&rft.volume=16&rft.issue=3&rft.spage=1686&rft.epage=1696&rft_id=info:doi/10.1109%2FTSTE.2025.3528952&rft.externalDocID=10839632 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3029&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3029&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3029&client=summon |