Low Carbon Economic Energy Management Method in a Microgrid Based on Enhanced D3QN Algorithm With Mixed Penalty Function

In this paper, an enhanced dueling double deep Q network algorithm with mixed penalty function (EN-D3QN-MPF) for microgrid energy management control is developed. First, a novel microgrid model including PV, wind turbine generator, electric storage system, electric vehicle charging station, thermost...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on sustainable energy Vol. 16; no. 3; pp. 1686 - 1696
Main Authors Zhao, Chanjuan, Li, Yunlong, Zhang, Qian, Ren, Lina
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1949-3029
1949-3037
DOI10.1109/TSTE.2025.3528952

Cover

Abstract In this paper, an enhanced dueling double deep Q network algorithm with mixed penalty function (EN-D3QN-MPF) for microgrid energy management control is developed. First, a novel microgrid model including PV, wind turbine generator, electric storage system, electric vehicle charging station, thermostatically controlled loads, and residential price-responsive loads are proposed. Then, by combining the mixed penalty function method with D3QN reinforcement learning together, a mixed penalty function method is implemented to balance the reward weightings. Accordingly, an EN-D3QN-MPF algorithm is presented to achieve low-carbon economic and EV users' charging satisfaction operation of the microgrid. The effectiveness of the proposed method is verified by the dataset collected from eastern China in 2019. Simulation results validate that our proposed method has superior energy management performance over the genetic algorithm (GA), Particle Swarm Optimization (PSO), dueling deep Q network (dueling DQN), double DQN (DDQN), and D3QN algorithms.
AbstractList In this paper, an enhanced dueling double deep Q network algorithm with mixed penalty function (EN-D3QN-MPF) for microgrid energy management control is developed. First, a novel microgrid model including PV, wind turbine generator, electric storage system, electric vehicle charging station, thermostatically controlled loads, and residential price-responsive loads are proposed. Then, by combining the mixed penalty function method with D3QN reinforcement learning together, a mixed penalty function method is implemented to balance the reward weightings. Accordingly, an EN-D3QN-MPF algorithm is presented to achieve low-carbon economic and EV users' charging satisfaction operation of the microgrid. The effectiveness of the proposed method is verified by the dataset collected from eastern China in 2019. Simulation results validate that our proposed method has superior energy management performance over the genetic algorithm (GA), Particle Swarm Optimization (PSO), dueling deep Q network (dueling DQN), double DQN (DDQN), and D3QN algorithms.
Author Zhang, Qian
Li, Yunlong
Ren, Lina
Zhao, Chanjuan
Author_xml – sequence: 1
  givenname: Chanjuan
  orcidid: 0000-0001-8862-4050
  surname: Zhao
  fullname: Zhao, Chanjuan
  email: chanjuanzhao@ahu.edu.cn
  organization: Anhui University, Hefei, China
– sequence: 2
  givenname: Yunlong
  orcidid: 0009-0000-7291-4045
  surname: Li
  fullname: Li, Yunlong
  organization: Anhui University, Hefei, China
– sequence: 3
  givenname: Qian
  orcidid: 0000-0001-8520-5854
  surname: Zhang
  fullname: Zhang, Qian
  email: qianzh@ahu.edu.cn
  organization: Anhui University, Hefei, China
– sequence: 4
  givenname: Lina
  surname: Ren
  fullname: Ren, Lina
  organization: Anhui University, Hefei, China
BookMark eNpNUF1PwjAUbQwmIvIDTHxo4vOw6-3G-og41AT8iBgfl67rRglrsRsR_r1dIMb7cD9yz7m551yinrFGIXQdklEYEn63_FimI0poNIKIJjyiZ6gfcsYDIDDu_fWUX6Bh06yJDwCIgfTRfm5_8FS43BqcSmtsrSVOjXLVAS-EEZWqlWnxQrUrW2BtsMALLZ2tnC7wvWhUgTumWQkjff8A7y94sqms0-2qxl8-e_zeb96UEZv2gGc7I1ttzRU6L8WmUcNTHaDPWbqcPgXz18fn6WQeSMriNohEwrmiXpzkLCdxHoOUJfBclVECXioHoCwRiWQwLjhjIqFMhsyPUpWCwADdHu9unf3eqabN1nbn_C9NBpTSeExjBh4VHlFeWtM4VWZbp2vhDllIss7jrPM46zzOTh57zs2Ro5VS__D-rRgo_ALphXiX
CODEN ITSEAJ
Cites_doi 10.1016/j.renene.2022.09.125
10.1109/TFUZZ.2017.2779424
10.1109/TSG.2018.2859821
10.1109/TSG.2023.3254655
10.1109/TSG.2023.3261979
10.1016/j.segan.2019.100212
10.1063/5.0107948
10.1109/TSG.2023.3266253
10.1109/TSG.2022.3179567
10.1109/JESTIE.2023.3285535
10.1016/j.apenergy.2022.118664
10.3390/app11093814
10.1109/TSG.2023.3317096
10.1109/TSG.2023.3243170
10.1016/j.segan.2020.100413
10.1016/j.energy.2021.121704
10.1016/j.apenergy.2017.04.071
10.1016/j.renene.2024.120816
10.1109/TSG.2022.3181703
10.1109/TSG.2020.3034827
10.1109/TPWRS.2023.3270366
10.1109/TSTE.2023.3316091
10.1109/TSG.2016.2569604
10.1109/TSG.2023.3240588
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
DOI 10.1109/TSTE.2025.3528952
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1949-3037
EndPage 1696
ExternalDocumentID 10_1109_TSTE_2025_3528952
10839632
Genre orig-research
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Natural Science Foundation of Education Department of Anhui Province
  grantid: 2023AH050104
– fundername: Natural Science Foundation of Anhui Province
  grantid: 2108085QE237; 2208085UD01
  funderid: 10.13039/501100003995
– fundername: National Engineering Laboratory of Energy-saving Motor & Control Technique, Anhui University
  grantid: KFKT202302
– fundername: Anhui International Joint Research Center for Ancient Architecture Intellisencing and Multi-Dimensional Modeling, Anhui Jianzhu University
  grantid: GJZZX2021KF03
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
ID FETCH-LOGICAL-c246t-5a899e2202c94b06b63ccf39bef583952933248a8c437d944a824c14c43cefa03
IEDL.DBID RIE
ISSN 1949-3029
IngestDate Wed Oct 08 11:10:39 EDT 2025
Wed Oct 01 05:36:14 EDT 2025
Wed Sep 03 07:09:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-5a899e2202c94b06b63ccf39bef583952933248a8c437d944a824c14c43cefa03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8520-5854
0000-0001-8862-4050
0009-0000-7291-4045
PQID 3222672643
PQPubID 2040348
PageCount 11
ParticipantIDs ieee_primary_10839632
crossref_primary_10_1109_TSTE_2025_3528952
proquest_journals_3222672643
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on sustainable energy
PublicationTitleAbbrev TSTE
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
Brockman (ref25) 2016
ref24
ref23
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref22
  doi: 10.1016/j.renene.2022.09.125
– ident: ref12
  doi: 10.1109/TFUZZ.2017.2779424
– ident: ref9
  doi: 10.1109/TSG.2018.2859821
– ident: ref3
  doi: 10.1109/TSG.2023.3254655
– ident: ref13
  doi: 10.1109/TSG.2023.3261979
– ident: ref23
  doi: 10.1016/j.segan.2019.100212
– ident: ref20
  doi: 10.1063/5.0107948
– ident: ref5
  doi: 10.1109/TSG.2023.3266253
– ident: ref17
  doi: 10.1109/TSG.2022.3179567
– ident: ref21
  doi: 10.1109/JESTIE.2023.3285535
– ident: ref1
  doi: 10.1016/j.apenergy.2022.118664
– ident: ref10
  doi: 10.3390/app11093814
– year: 2016
  ident: ref25
  article-title: OpenAI gym
– ident: ref16
  doi: 10.1109/TSG.2023.3317096
– ident: ref15
  doi: 10.1109/TSG.2023.3243170
– ident: ref19
  doi: 10.1016/j.segan.2020.100413
– ident: ref24
  doi: 10.1016/j.energy.2021.121704
– ident: ref11
  doi: 10.1016/j.apenergy.2017.04.071
– ident: ref2
  doi: 10.1016/j.renene.2024.120816
– ident: ref7
  doi: 10.1109/TSG.2022.3181703
– ident: ref18
  doi: 10.1109/TSG.2020.3034827
– ident: ref4
  doi: 10.1109/TPWRS.2023.3270366
– ident: ref6
  doi: 10.1109/TSTE.2023.3316091
– ident: ref8
  doi: 10.1109/TSG.2016.2569604
– ident: ref14
  doi: 10.1109/TSG.2023.3240588
SSID ssj0000333630
Score 2.4370775
Snippet In this paper, an enhanced dueling double deep Q network algorithm with mixed penalty function (EN-D3QN-MPF) for microgrid energy management control is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1686
SubjectTerms Algorithm design and analysis
Algorithms
Carbon
Carbon content
Carbon emissions
Deep reinforcement learning
Distributed generation
Economics
Electric vehicle charging
Electric vehicles
Electrical loads
EN-D3QN-MPF
Energy management
EV users' charging satisfaction
Genetic algorithms
Low carbon economy
low-carbon economic
microgrid energy management
Microgrids
Particle swarm optimization
Penalty function
Power system dynamics
Renewable energy sources
Temperature measurement
Turbogenerators
Wind power
Wind power generation
Wind turbines
Title Low Carbon Economic Energy Management Method in a Microgrid Based on Enhanced D3QN Algorithm With Mixed Penalty Function
URI https://ieeexplore.ieee.org/document/10839632
https://www.proquest.com/docview/3222672643
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1949-3037
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000333630
  issn: 1949-3029
  databaseCode: RIE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LTsMwLAIuwIE3YjBQDpyQOromTZojjE0IsQnEENyqJE1hAlo0OvH4epy05SkkLlWrJpVrO7EdvxDapdJEXKeplwA7eVRx3xOCg9WaGEZMlCZCW0OxP2DHl_TkOryuktVdLowxxgWfmZa9db78JNcTe1QGKxzEOSOw407ziJXJWh8HKj4hhLneImCXW39-ICovZtsX-8OLYReswSBs2XImIgy-ySHXWOXXbuxETG8RDWrgysiSu9akUC399qNu47-hX0ILlbKJD0ruWEZTJltBs3Uu8tMKmv9SjnAVvZzmz7gjxyrPcD0Id11yIP4Mk8F913QajzIscd_G892MRwk-BHGYYDszu3VRBfiInA_wwf1NPh4Vtw_4Cq4w_gXenBkAq3jFPRCqljHW0GWvO-wce1VnBk8HlBVeKMFMMwHgUwuqfKYY0TolQpk0hJ8MQYcARS2SkaaEJ4JSGQVUtyk8apNKn6yjmSzPzAbC3LYt0pSpUDEqQX0xIWwEiQx0O-WKBw20V9MpfiwLcMTOcPFFbIkaW6LGFVEbaM3i_cvAEuUN1KxJG1dr9Cm2PibGQSEkm39M20Jz9utldG4TzRTjidkGHaRQO4733gEPz9ZJ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1dT9sw8DTBA-xhMGCiAzY_8DQpXRp_JH5k0KobbcW0IniLbMeBCpZMJRUfv35nJ2FsaBIvUaLYyuXu7LvzfQHsM2WT2OR5kCE7BUzHYSBljFZrZgW1SZ5J4wzF8UQMT9m3c37eJKv7XBhrrQ8-s1136335WWkW7qgMVziKc0Fxx13mjDFep2s9HqmElFLhu4ugZe48-pFs_Ji9UH6e_pj20R6MeNcVNJE8-ksS-dYqz_ZjL2QGazBpwatjS666i0p3zcM_lRtfDP86vGnUTXJQ88dbeGWLDVhps5FvNuD1k4KEm3A3Km_JoZrrsiDtINL36YHkT6AMGfu202RWEEXGLqLvYj7LyBcUiBlxM4tLH1dAjuj3CTm4vijns-ryJznDK46_wzcnFsGq7skAxapjjS04HfSnh8Og6c0QmIiJKuAKDTUbIT6NZDoUWlBjciq1zTn-JEctAlW1RCWG0TiTjKkkYqbH8NHYXIX0HSwVZWG3gcSucZFhQnMtmEIFxnLcCjIVmV4e6zjqwKeWTumvugRH6k2XUKaOqKkjatoQtQNbDu9PBtYo78BuS9q0WaU3qfMyiRhVQvr-P9M-wspwOh6lo6-T4x1YdV-qY3V3YamaL-weaiSV_uD58Dd0OdmW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+Carbon+Economic+Energy+Management+Method+in+a+Microgrid+Based+on+Enhanced+D3QN+Algorithm+With+Mixed+Penalty+Function&rft.jtitle=IEEE+transactions+on+sustainable+energy&rft.au=Zhao%2C+Chanjuan&rft.au=Li%2C+Yunlong&rft.au=Zhang%2C+Qian&rft.au=Ren%2C+Lina&rft.date=2025-07-01&rft.pub=IEEE&rft.issn=1949-3029&rft.volume=16&rft.issue=3&rft.spage=1686&rft.epage=1696&rft_id=info:doi/10.1109%2FTSTE.2025.3528952&rft.externalDocID=10839632
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3029&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3029&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3029&client=summon