An Efficient Adaptive Multi-Kernel Learning With Safe Screening Rule for Outlier Detection

Recent advances in multi-kernel-based methods for outlier detection have positioned them as an attractive way to detect instances that are markedly different from the remaining data in a dataset. Currently, most outlier detection approaches based on multi-kernel learning are simply a convex combinat...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 36; no. 8; pp. 3656 - 3669
Main Authors Wang, Xinye, Duan, Lei, He, Chengxin, Chen, Yuanyuan, Wu, Xindong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1041-4347
1558-2191
DOI10.1109/TKDE.2023.3330708

Cover

Abstract Recent advances in multi-kernel-based methods for outlier detection have positioned them as an attractive way to detect instances that are markedly different from the remaining data in a dataset. Currently, most outlier detection approaches based on multi-kernel learning are simply a convex combination of various kernels with handcrafted weights, meaning that these weights may not be suitable. Meanwhile, this combination of weights does not sufficiently consider the intrinsic correlations of instances when fusing different kernels. Thus, a key challenge is how to adaptively learn an appropriate combination of weights for capturing a new feature space in which outliers can be better detected than the original space. Simultaneously, it is still a burning issue to get the optimal combination of weights due to considerable computational cost and memory usage when the feature or instance size is large. In this paper, we propose a novel method for e fficient a daptive m ulti-kernel for o utlier d etection (EAMOD), which automatically learns the optimal weight for each training instance under different kernels using a non-negative function. In addition, we design a safe screening rule (SSR) for EAMOD to improve its training efficiency without any loss of accuracy. To the best of our knowledge, it is the first attempt to develop SSR for multi-kernel-based outlier detection methods. Extensive experiments show that EAMOD is effective and efficient.
AbstractList Recent advances in multi-kernel-based methods for outlier detection have positioned them as an attractive way to detect instances that are markedly different from the remaining data in a dataset. Currently, most outlier detection approaches based on multi-kernel learning are simply a convex combination of various kernels with handcrafted weights, meaning that these weights may not be suitable. Meanwhile, this combination of weights does not sufficiently consider the intrinsic correlations of instances when fusing different kernels. Thus, a key challenge is how to adaptively learn an appropriate combination of weights for capturing a new feature space in which outliers can be better detected than the original space. Simultaneously, it is still a burning issue to get the optimal combination of weights due to considerable computational cost and memory usage when the feature or instance size is large. In this paper, we propose a novel method for e fficient a daptive m ulti-kernel for o utlier d etection (EAMOD), which automatically learns the optimal weight for each training instance under different kernels using a non-negative function. In addition, we design a safe screening rule (SSR) for EAMOD to improve its training efficiency without any loss of accuracy. To the best of our knowledge, it is the first attempt to develop SSR for multi-kernel-based outlier detection methods. Extensive experiments show that EAMOD is effective and efficient.
Author He, Chengxin
Chen, Yuanyuan
Duan, Lei
Wang, Xinye
Wu, Xindong
Author_xml – sequence: 1
  givenname: Xinye
  orcidid: 0000-0003-2095-6117
  surname: Wang
  fullname: Wang, Xinye
  email: wangxinye@stu.scu.edu.cn
  organization: School of Computer Science, Sichuan University, Chengdu, China
– sequence: 2
  givenname: Lei
  orcidid: 0000-0001-7254-1832
  surname: Duan
  fullname: Duan, Lei
  email: leiduan@scu.edu.cn
  organization: School of Computer Science, Sichuan University, Chengdu, China
– sequence: 3
  givenname: Chengxin
  orcidid: 0000-0003-3759-3914
  surname: He
  fullname: He, Chengxin
  email: hechengxin@stu.scu.edu.cn
  organization: School of Computer Science, Sichuan University, Chengdu, China
– sequence: 4
  givenname: Yuanyuan
  orcidid: 0000-0002-5358-9213
  surname: Chen
  fullname: Chen, Yuanyuan
  email: chenyuanyuan@scu.edu.cn
  organization: School of Computer Science, Sichuan University, Chengdu, China
– sequence: 5
  givenname: Xindong
  orcidid: 0000-0003-2396-1704
  surname: Wu
  fullname: Wu, Xindong
  email: xwu@hfut.edu.cn
  organization: Research Center for Knowledge Engineering, Zhejiang Lab, Hangzhou, China
BookMark eNpNkNtKAzEQhoNUsFYfQPAi4PXWnDd7Wdp6oJWCrQjehD1MNGXN1mxW8O3d2l4IAzMM3z8D3zka-MYDQleUjCkl2e1mMZuPGWF8zDknKdEnaEil1AmjGR30MxE0EVykZ-i8bbeEEJ1qOkRvE4_n1rrSgY94UuW76L4BP3V1dMkCgocaLyEP3vl3_OriB17nFvC6DAB_u-euBmybgFddrB0EPIMIZXSNv0CnNq9buDz2EXq5m2-mD8lydf84nSyTkgkVE5mWRDEqtLSZSAtqS8tFXklaWJAUSi4yrbhUqmJFnlGrJQhGCgYqZYWqFB-hm8PdXWi-Omij2TZd8P1L05vQfalU9xQ9UGVo2jaANbvgPvPwYygxe4Vmr9DsFZqjwj5zfcg4APjHc0qYYPwX30Nttg
CODEN ITKEEH
Cites_doi 10.1109/TNNLS.2017.2688182
10.1609/aaai.v28i1.8983
10.1109/EAIT.2011.25
10.1016/S0167-8655(03)00003-5
10.1007/978-3-319-68474-1_13
10.1016/j.patcog.2016.07.027
10.1109/ICDM50108.2020.00135
10.1109/TCYB.2013.2248710
10.2139/ssrn.4313179
10.1145/375663.375668
10.1007/978-3-642-04180-8_39
10.1137/1.9781611973440.63
10.1007/s10115-012-0484-y
10.1109/TPAMI.2010.215
10.1016/j.knosys.2018.11.030
10.1109/TKDE.2019.2905606
10.1007/978-1-4614-6396-2
10.1109/ICDE51399.2021.00318
10.1016/j.eswa.2013.11.025
10.1109/TKDE.2020.3036524
10.1109/CVPR.2017.460
10.1109/ICDM.2018.00088
10.1016/j.csda.2022.107508
10.1145/3464423
10.1145/1401890.1401946
10.1023/B:MACH.0000008084.60811.49
10.1007/s00500-016-2317-5
10.1109/ICDE51399.2021.00317
10.1007/978-1-4614-6230-9_8
10.1109/TNNLS.2021.3129321
10.1145/342009.335437
10.1007/978-3-319-46128-1_11
10.1137/1.9781611975673.66
10.1109/BigData.2016.7840816
10.1007/978-3-642-01307-2_84
10.1080/00207721.2017.1381892
10.1145/1835804.1835813
10.1609/aaai.v36i6.20629
10.1145/1081870.1081891
10.1016/j.knosys.2019.105223
10.1016/j.patcog.2006.07.009
10.1016/S1570-579X(01)80028-8
10.1007/978-3-642-01307-2_86
10.1007/3-540-47887-6_53
10.1016/j.neucom.2014.11.078
10.1111/coin.12156
10.1109/ICDM.2008.17
10.1006/hmat.2000.2289
10.1109/ICDE48307.2020.00047
10.1155/2015/412957
10.1145/342009.335388
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2023.3330708
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL(IEEE/IET Electronic Library )
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 3669
ExternalDocumentID 10_1109_TKDE_2023_3330708
10310242
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61972268; 62120106008
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TAF
TN5
UHB
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c246t-57c0621485f947b1fcf34ad51bfe51ec349863566d2ba91f85e420b2e672b6d63
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Mon Jun 30 07:10:28 EDT 2025
Wed Oct 01 02:06:30 EDT 2025
Wed Aug 27 02:05:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-57c0621485f947b1fcf34ad51bfe51ec349863566d2ba91f85e420b2e672b6d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3759-3914
0000-0002-5358-9213
0000-0003-2396-1704
0000-0003-2095-6117
0000-0001-7254-1832
PQID 3078078678
PQPubID 85438
PageCount 14
ParticipantIDs proquest_journals_3078078678
crossref_primary_10_1109_TKDE_2023_3330708
ieee_primary_10310242
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Atamtürk (ref35)
ref57
ref12
ref15
ref59
ref14
ref58
Lauriola (ref61) 2020
ref53
ref52
ref11
ref55
ref54
ref17
ref16
ref19
ref18
Li (ref40) 2022
ref51
ref50
ref46
ref48
ref42
ref41
ref43
Shiju (ref30) 2017; 48
ref49
ref8
Lauriola (ref64)
ref7
ref9
ref4
ref3
Ogawa (ref32)
ref6
Bao (ref34)
ref5
Ruff (ref22)
Wang (ref27)
ref37
ref36
ref31
ref33
ref2
ref1
Cortes (ref62)
ref39
ref38
Wang (ref24)
Schölkopf (ref45)
ref23
Kingma (ref56)
ref26
ref25
ref20
ref63
ref21
ref65
Arning (ref47)
ref28
ref29
ref60
Sugiyama (ref44)
Qin (ref10)
References_xml – ident: ref33
  doi: 10.1109/TNNLS.2017.2688182
– start-page: 421
  volume-title: Proc. Int. Conf. Extending Database Technol.
  ident: ref10
  article-title: Scalable kernel density estimation-based local outlier detection over large data streams
– ident: ref8
  doi: 10.1609/aaai.v28i1.8983
– ident: ref17
  doi: 10.1109/EAIT.2011.25
– ident: ref48
  doi: 10.1016/S0167-8655(03)00003-5
– ident: ref16
  doi: 10.1007/978-3-319-68474-1_13
– ident: ref31
  doi: 10.1016/j.patcog.2016.07.027
– start-page: 239
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref62
  article-title: Two-stage learning kernel algorithms
– ident: ref42
  doi: 10.1109/ICDM50108.2020.00135
– ident: ref28
  doi: 10.1109/TCYB.2013.2248710
– year: 2022
  ident: ref40
  article-title: ECOD: Unsupervised outlier detection using empirical cumulative distribution functions
  doi: 10.2139/ssrn.4313179
– ident: ref46
  doi: 10.1145/375663.375668
– ident: ref65
  doi: 10.1007/978-3-642-04180-8_39
– ident: ref13
  doi: 10.1137/1.9781611973440.63
– start-page: 582
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  ident: ref45
  article-title: Support vector method for novelty detection
– ident: ref60
  doi: 10.1007/s10115-012-0484-y
– ident: ref4
  doi: 10.1109/TPAMI.2010.215
– ident: ref6
  doi: 10.1016/j.knosys.2018.11.030
– ident: ref25
  doi: 10.1109/TKDE.2019.2905606
– ident: ref7
  doi: 10.1007/978-1-4614-6396-2
– ident: ref1
  doi: 10.1109/ICDE51399.2021.00318
– start-page: 1382
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref32
  article-title: Safe screening of non-support vectors in pathwise SVM computation
– start-page: 1
  volume-title: Proc. Eur. Symp. Artif. Neural Netw.
  ident: ref64
  article-title: The minimum effort maximum output principle applied to multiple kernel learning
– ident: ref58
  doi: 10.1016/j.eswa.2013.11.025
– ident: ref51
  doi: 10.1109/TKDE.2020.3036524
– ident: ref21
  doi: 10.1109/CVPR.2017.460
– ident: ref23
  doi: 10.1109/ICDM.2018.00088
– ident: ref37
  doi: 10.1016/j.csda.2022.107508
– ident: ref20
  doi: 10.1145/3464423
– ident: ref41
  doi: 10.1145/1401890.1401946
– start-page: 164
  volume-title: Proc. Int. Conf. Knowl. Discov. Data Mining
  ident: ref47
  article-title: A linear method for deviation detection in large databases
– ident: ref18
  doi: 10.1023/B:MACH.0000008084.60811.49
– ident: ref59
  doi: 10.1007/s00500-016-2317-5
– start-page: 467
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  ident: ref44
  article-title: Rapid distance-based outlier detection via sampling
– ident: ref2
  doi: 10.1109/ICDE51399.2021.00317
– ident: ref15
  doi: 10.1007/978-1-4614-6230-9_8
– ident: ref19
  doi: 10.1109/TNNLS.2021.3129321
– ident: ref49
  doi: 10.1145/342009.335437
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref56
  article-title: Auto-encoding variational bayes
– ident: ref29
  doi: 10.1007/978-3-319-46128-1_11
– ident: ref55
  doi: 10.1137/1.9781611975673.66
– year: 2020
  ident: ref61
  article-title: MKLpy: A python-based framework for multiple kernel learning
– ident: ref9
  doi: 10.1109/BigData.2016.7840816
– ident: ref14
  doi: 10.1007/978-3-642-01307-2_84
– volume: 48
  start-page: 3569
  issue: 16
  year: 2017
  ident: ref30
  article-title: Multiple kernel learning using single stage function approximation for binary classification problems
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207721.2017.1381892
– start-page: 653
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref34
  article-title: Fast OSCAR and OWL regression via safe screening rules
– ident: ref5
  doi: 10.1145/1835804.1835813
– ident: ref26
  doi: 10.1609/aaai.v36i6.20629
– ident: ref54
  doi: 10.1145/1081870.1081891
– ident: ref36
  doi: 10.1016/j.knosys.2019.105223
– ident: ref43
  doi: 10.1016/j.patcog.2006.07.009
– ident: ref39
  doi: 10.1016/S1570-579X(01)80028-8
– volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  ident: ref27
  article-title: Further analysis of outlier detection with deep generative models
– ident: ref50
  doi: 10.1007/978-3-642-01307-2_86
– ident: ref12
  doi: 10.1007/3-540-47887-6_53
– start-page: 4390
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref22
  article-title: Deep one-class classification
– ident: ref63
  doi: 10.1016/j.neucom.2014.11.078
– start-page: 421
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref35
  article-title: Safe screening rules for l0-regression from perspective relaxations
– ident: ref53
  doi: 10.1111/coin.12156
– ident: ref52
  doi: 10.1109/ICDM.2008.17
– ident: ref38
  doi: 10.1006/hmat.2000.2289
– ident: ref3
  doi: 10.1109/ICDE48307.2020.00047
– start-page: 5960
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  ident: ref24
  article-title: Effective end-to-end unsupervised outlier detection via inlier priority of discriminative network
– ident: ref57
  doi: 10.1155/2015/412957
– ident: ref11
  doi: 10.1145/342009.335388
SSID ssj0008781
Score 2.4531193
Snippet Recent advances in multi-kernel-based methods for outlier detection have positioned them as an attractive way to detect instances that are markedly different...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 3656
SubjectTerms Adaptation models
Anomaly detection
Computational efficiency
Data analysis
Data models
Feature extraction
Kernel
Learning
Linear programming
Multi-kernel learning
outlier detection
Outliers (statistics)
safe screening rule (SSR)
Screening
support vector data description (SVDD)
Training
Title An Efficient Adaptive Multi-Kernel Learning With Safe Screening Rule for Outlier Detection
URI https://ieeexplore.ieee.org/document/10310242
https://www.proquest.com/docview/3078078678
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50T3pwfeL6IgdPQmvSpK_joiuiqOADxUtp0qmKS5W1vfjrnaRd8YHgLYRmCJnJPJqZbwB2KWggIyC1p7XhnlKSe2muJI1KXkgRmNiBJJ2dR8c36uQuvOuK1V0tDCK65DP07dC95RcvprG_yvZtSwJrU2Zhlki0xVqfajeJXUdSCi8oKJIq7p4wBU_3r08PR77tE-5LaWU8-WaEXFeVX6rY2ZejPpxPd9amlTz7Ta198_4DtPHfW1-Ehc7TZMNWNJZgBqtl6E-7OLDuUi_D_BdIwhW4H1Zs5GAliB4bFvmr1YfM1el6pzipcMw6TNYHdvtUP7KrvESiZvN37NxlM0ZGnjC7aGrybyfsEGuX7lWtws3R6Prg2Ov6L3gmUFHthbHhUUDxUlimKtaiNKVUeREKXWIo0EiVJhbeLioCnaeiTEJUAdcBRnGgoyKSa9CrXipcB5YHkSmEJCIUThrNc81VoZNEGJ2gUPEA9qYMyV5bmI3MhSc8zSz3Msu9rOPeAFbtAX_5sD3bAWxNeZh1N_EtoxUWUp9s8sYfyzZhjqirNqtvC3r1pMFt8jRqveMk7APkVs0-
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58HNSDb3F11Rw8Ca1Jk76Oi7uyurqCriheSpNOVZQqa3vx15ukXfGB4C2UZhoyk3k0M98A7OugQRsBLh0pFXWE4NSJU8H1KKcZZ54KLUjS-TDoX4vTW_-2KVa3tTCIaJPP0DVDe5efvajK_Co7NC0JjE2ZhllfCOHX5VqfijcKbU9SHWDosIiLsLnEZDQ-HA26Pdd0Cnc5N1IefTNDtq_KL2VsLczxEgwna6sTS57cqpSuev8B2_jvxS_DYuNrkk4tHCswhcUqLE36OJDmWK_CwhdQwjW46xSkZ4ElND3SydJXoxGJrdR1Bjgu8Jk0qKz35OaxfCBXaY6amsngMc8uq2ck2hcmF1WpPdwx6WJpE76Kdbg-7o2O-k7TgcFRnghKxw8VDTwdMfl5LELJcpVzkWY-kzn6DBUXcWQA7oLMk2nM8shH4VHpYRB6MsgCvgEzxUuBm0BSL1AZ45qIDiiVpKmkIpNRxJSMkImwBQcThiSvNdBGYgMUGieGe4nhXtJwrwXrZoO_vFjvbQvaEx4mzVl8S_QMA6qvrfLWH9P2YK4_Oj9Lzk6Gg22Y118SdY5fG2bKcYU72u8o5a6Vtg_P7NCL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Adaptive+Multi-Kernel+Learning+With+Safe+Screening+Rule+for+Outlier+Detection&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Wang%2C+Xinye&rft.au=Duan%2C+Lei&rft.au=He%2C+Chengxin&rft.au=Chen%2C+Yuanyuan&rft.date=2024-08-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=36&rft.issue=8&rft.spage=3656&rft.epage=3669&rft_id=info:doi/10.1109%2FTKDE.2023.3330708&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2023_3330708
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon