An Efficient Adaptive Multi-Kernel Learning With Safe Screening Rule for Outlier Detection
Recent advances in multi-kernel-based methods for outlier detection have positioned them as an attractive way to detect instances that are markedly different from the remaining data in a dataset. Currently, most outlier detection approaches based on multi-kernel learning are simply a convex combinat...
Saved in:
| Published in | IEEE transactions on knowledge and data engineering Vol. 36; no. 8; pp. 3656 - 3669 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.08.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1041-4347 1558-2191 |
| DOI | 10.1109/TKDE.2023.3330708 |
Cover
| Abstract | Recent advances in multi-kernel-based methods for outlier detection have positioned them as an attractive way to detect instances that are markedly different from the remaining data in a dataset. Currently, most outlier detection approaches based on multi-kernel learning are simply a convex combination of various kernels with handcrafted weights, meaning that these weights may not be suitable. Meanwhile, this combination of weights does not sufficiently consider the intrinsic correlations of instances when fusing different kernels. Thus, a key challenge is how to adaptively learn an appropriate combination of weights for capturing a new feature space in which outliers can be better detected than the original space. Simultaneously, it is still a burning issue to get the optimal combination of weights due to considerable computational cost and memory usage when the feature or instance size is large. In this paper, we propose a novel method for e fficient a daptive m ulti-kernel for o utlier d etection (EAMOD), which automatically learns the optimal weight for each training instance under different kernels using a non-negative function. In addition, we design a safe screening rule (SSR) for EAMOD to improve its training efficiency without any loss of accuracy. To the best of our knowledge, it is the first attempt to develop SSR for multi-kernel-based outlier detection methods. Extensive experiments show that EAMOD is effective and efficient. |
|---|---|
| AbstractList | Recent advances in multi-kernel-based methods for outlier detection have positioned them as an attractive way to detect instances that are markedly different from the remaining data in a dataset. Currently, most outlier detection approaches based on multi-kernel learning are simply a convex combination of various kernels with handcrafted weights, meaning that these weights may not be suitable. Meanwhile, this combination of weights does not sufficiently consider the intrinsic correlations of instances when fusing different kernels. Thus, a key challenge is how to adaptively learn an appropriate combination of weights for capturing a new feature space in which outliers can be better detected than the original space. Simultaneously, it is still a burning issue to get the optimal combination of weights due to considerable computational cost and memory usage when the feature or instance size is large. In this paper, we propose a novel method for e fficient a daptive m ulti-kernel for o utlier d etection (EAMOD), which automatically learns the optimal weight for each training instance under different kernels using a non-negative function. In addition, we design a safe screening rule (SSR) for EAMOD to improve its training efficiency without any loss of accuracy. To the best of our knowledge, it is the first attempt to develop SSR for multi-kernel-based outlier detection methods. Extensive experiments show that EAMOD is effective and efficient. |
| Author | He, Chengxin Chen, Yuanyuan Duan, Lei Wang, Xinye Wu, Xindong |
| Author_xml | – sequence: 1 givenname: Xinye orcidid: 0000-0003-2095-6117 surname: Wang fullname: Wang, Xinye email: wangxinye@stu.scu.edu.cn organization: School of Computer Science, Sichuan University, Chengdu, China – sequence: 2 givenname: Lei orcidid: 0000-0001-7254-1832 surname: Duan fullname: Duan, Lei email: leiduan@scu.edu.cn organization: School of Computer Science, Sichuan University, Chengdu, China – sequence: 3 givenname: Chengxin orcidid: 0000-0003-3759-3914 surname: He fullname: He, Chengxin email: hechengxin@stu.scu.edu.cn organization: School of Computer Science, Sichuan University, Chengdu, China – sequence: 4 givenname: Yuanyuan orcidid: 0000-0002-5358-9213 surname: Chen fullname: Chen, Yuanyuan email: chenyuanyuan@scu.edu.cn organization: School of Computer Science, Sichuan University, Chengdu, China – sequence: 5 givenname: Xindong orcidid: 0000-0003-2396-1704 surname: Wu fullname: Wu, Xindong email: xwu@hfut.edu.cn organization: Research Center for Knowledge Engineering, Zhejiang Lab, Hangzhou, China |
| BookMark | eNpNkNtKAzEQhoNUsFYfQPAi4PXWnDd7Wdp6oJWCrQjehD1MNGXN1mxW8O3d2l4IAzMM3z8D3zka-MYDQleUjCkl2e1mMZuPGWF8zDknKdEnaEil1AmjGR30MxE0EVykZ-i8bbeEEJ1qOkRvE4_n1rrSgY94UuW76L4BP3V1dMkCgocaLyEP3vl3_OriB17nFvC6DAB_u-euBmybgFddrB0EPIMIZXSNv0CnNq9buDz2EXq5m2-mD8lydf84nSyTkgkVE5mWRDEqtLSZSAtqS8tFXklaWJAUSi4yrbhUqmJFnlGrJQhGCgYqZYWqFB-hm8PdXWi-Omij2TZd8P1L05vQfalU9xQ9UGVo2jaANbvgPvPwYygxe4Vmr9DsFZqjwj5zfcg4APjHc0qYYPwX30Nttg |
| CODEN | ITKEEH |
| Cites_doi | 10.1109/TNNLS.2017.2688182 10.1609/aaai.v28i1.8983 10.1109/EAIT.2011.25 10.1016/S0167-8655(03)00003-5 10.1007/978-3-319-68474-1_13 10.1016/j.patcog.2016.07.027 10.1109/ICDM50108.2020.00135 10.1109/TCYB.2013.2248710 10.2139/ssrn.4313179 10.1145/375663.375668 10.1007/978-3-642-04180-8_39 10.1137/1.9781611973440.63 10.1007/s10115-012-0484-y 10.1109/TPAMI.2010.215 10.1016/j.knosys.2018.11.030 10.1109/TKDE.2019.2905606 10.1007/978-1-4614-6396-2 10.1109/ICDE51399.2021.00318 10.1016/j.eswa.2013.11.025 10.1109/TKDE.2020.3036524 10.1109/CVPR.2017.460 10.1109/ICDM.2018.00088 10.1016/j.csda.2022.107508 10.1145/3464423 10.1145/1401890.1401946 10.1023/B:MACH.0000008084.60811.49 10.1007/s00500-016-2317-5 10.1109/ICDE51399.2021.00317 10.1007/978-1-4614-6230-9_8 10.1109/TNNLS.2021.3129321 10.1145/342009.335437 10.1007/978-3-319-46128-1_11 10.1137/1.9781611975673.66 10.1109/BigData.2016.7840816 10.1007/978-3-642-01307-2_84 10.1080/00207721.2017.1381892 10.1145/1835804.1835813 10.1609/aaai.v36i6.20629 10.1145/1081870.1081891 10.1016/j.knosys.2019.105223 10.1016/j.patcog.2006.07.009 10.1016/S1570-579X(01)80028-8 10.1007/978-3-642-01307-2_86 10.1007/3-540-47887-6_53 10.1016/j.neucom.2014.11.078 10.1111/coin.12156 10.1109/ICDM.2008.17 10.1006/hmat.2000.2289 10.1109/ICDE48307.2020.00047 10.1155/2015/412957 10.1145/342009.335388 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TKDE.2023.3330708 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEL(IEEE/IET Electronic Library ) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 3669 |
| ExternalDocumentID | 10_1109_TKDE_2023_3330708 10310242 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61972268; 62120106008 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 1OL 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TAF TN5 UHB VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c246t-57c0621485f947b1fcf34ad51bfe51ec349863566d2ba91f85e420b2e672b6d63 |
| IEDL.DBID | RIE |
| ISSN | 1041-4347 |
| IngestDate | Mon Jun 30 07:10:28 EDT 2025 Wed Oct 01 02:06:30 EDT 2025 Wed Aug 27 02:05:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-57c0621485f947b1fcf34ad51bfe51ec349863566d2ba91f85e420b2e672b6d63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3759-3914 0000-0002-5358-9213 0000-0003-2396-1704 0000-0003-2095-6117 0000-0001-7254-1832 |
| PQID | 3078078678 |
| PQPubID | 85438 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_3078078678 crossref_primary_10_1109_TKDE_2023_3330708 ieee_primary_10310242 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 Atamtürk (ref35) ref57 ref12 ref15 ref59 ref14 ref58 Lauriola (ref61) 2020 ref53 ref52 ref11 ref55 ref54 ref17 ref16 ref19 ref18 Li (ref40) 2022 ref51 ref50 ref46 ref48 ref42 ref41 ref43 Shiju (ref30) 2017; 48 ref49 ref8 Lauriola (ref64) ref7 ref9 ref4 ref3 Ogawa (ref32) ref6 Bao (ref34) ref5 Ruff (ref22) Wang (ref27) ref37 ref36 ref31 ref33 ref2 ref1 Cortes (ref62) ref39 ref38 Wang (ref24) Schölkopf (ref45) ref23 Kingma (ref56) ref26 ref25 ref20 ref63 ref21 ref65 Arning (ref47) ref28 ref29 ref60 Sugiyama (ref44) Qin (ref10) |
| References_xml | – ident: ref33 doi: 10.1109/TNNLS.2017.2688182 – start-page: 421 volume-title: Proc. Int. Conf. Extending Database Technol. ident: ref10 article-title: Scalable kernel density estimation-based local outlier detection over large data streams – ident: ref8 doi: 10.1609/aaai.v28i1.8983 – ident: ref17 doi: 10.1109/EAIT.2011.25 – ident: ref48 doi: 10.1016/S0167-8655(03)00003-5 – ident: ref16 doi: 10.1007/978-3-319-68474-1_13 – ident: ref31 doi: 10.1016/j.patcog.2016.07.027 – start-page: 239 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref62 article-title: Two-stage learning kernel algorithms – ident: ref42 doi: 10.1109/ICDM50108.2020.00135 – ident: ref28 doi: 10.1109/TCYB.2013.2248710 – year: 2022 ident: ref40 article-title: ECOD: Unsupervised outlier detection using empirical cumulative distribution functions doi: 10.2139/ssrn.4313179 – ident: ref46 doi: 10.1145/375663.375668 – ident: ref65 doi: 10.1007/978-3-642-04180-8_39 – ident: ref13 doi: 10.1137/1.9781611973440.63 – start-page: 582 volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. ident: ref45 article-title: Support vector method for novelty detection – ident: ref60 doi: 10.1007/s10115-012-0484-y – ident: ref4 doi: 10.1109/TPAMI.2010.215 – ident: ref6 doi: 10.1016/j.knosys.2018.11.030 – ident: ref25 doi: 10.1109/TKDE.2019.2905606 – ident: ref7 doi: 10.1007/978-1-4614-6396-2 – ident: ref1 doi: 10.1109/ICDE51399.2021.00318 – start-page: 1382 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref32 article-title: Safe screening of non-support vectors in pathwise SVM computation – start-page: 1 volume-title: Proc. Eur. Symp. Artif. Neural Netw. ident: ref64 article-title: The minimum effort maximum output principle applied to multiple kernel learning – ident: ref58 doi: 10.1016/j.eswa.2013.11.025 – ident: ref51 doi: 10.1109/TKDE.2020.3036524 – ident: ref21 doi: 10.1109/CVPR.2017.460 – ident: ref23 doi: 10.1109/ICDM.2018.00088 – ident: ref37 doi: 10.1016/j.csda.2022.107508 – ident: ref20 doi: 10.1145/3464423 – ident: ref41 doi: 10.1145/1401890.1401946 – start-page: 164 volume-title: Proc. Int. Conf. Knowl. Discov. Data Mining ident: ref47 article-title: A linear method for deviation detection in large databases – ident: ref18 doi: 10.1023/B:MACH.0000008084.60811.49 – ident: ref59 doi: 10.1007/s00500-016-2317-5 – start-page: 467 volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. ident: ref44 article-title: Rapid distance-based outlier detection via sampling – ident: ref2 doi: 10.1109/ICDE51399.2021.00317 – ident: ref15 doi: 10.1007/978-1-4614-6230-9_8 – ident: ref19 doi: 10.1109/TNNLS.2021.3129321 – ident: ref49 doi: 10.1145/342009.335437 – volume-title: Proc. Int. Conf. Learn. Representations ident: ref56 article-title: Auto-encoding variational bayes – ident: ref29 doi: 10.1007/978-3-319-46128-1_11 – ident: ref55 doi: 10.1137/1.9781611975673.66 – year: 2020 ident: ref61 article-title: MKLpy: A python-based framework for multiple kernel learning – ident: ref9 doi: 10.1109/BigData.2016.7840816 – ident: ref14 doi: 10.1007/978-3-642-01307-2_84 – volume: 48 start-page: 3569 issue: 16 year: 2017 ident: ref30 article-title: Multiple kernel learning using single stage function approximation for binary classification problems publication-title: Int. J. Syst. Sci. doi: 10.1080/00207721.2017.1381892 – start-page: 653 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref34 article-title: Fast OSCAR and OWL regression via safe screening rules – ident: ref5 doi: 10.1145/1835804.1835813 – ident: ref26 doi: 10.1609/aaai.v36i6.20629 – ident: ref54 doi: 10.1145/1081870.1081891 – ident: ref36 doi: 10.1016/j.knosys.2019.105223 – ident: ref43 doi: 10.1016/j.patcog.2006.07.009 – ident: ref39 doi: 10.1016/S1570-579X(01)80028-8 – volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. ident: ref27 article-title: Further analysis of outlier detection with deep generative models – ident: ref50 doi: 10.1007/978-3-642-01307-2_86 – ident: ref12 doi: 10.1007/3-540-47887-6_53 – start-page: 4390 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref22 article-title: Deep one-class classification – ident: ref63 doi: 10.1016/j.neucom.2014.11.078 – start-page: 421 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref35 article-title: Safe screening rules for l0-regression from perspective relaxations – ident: ref53 doi: 10.1111/coin.12156 – ident: ref52 doi: 10.1109/ICDM.2008.17 – ident: ref38 doi: 10.1006/hmat.2000.2289 – ident: ref3 doi: 10.1109/ICDE48307.2020.00047 – start-page: 5960 volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. ident: ref24 article-title: Effective end-to-end unsupervised outlier detection via inlier priority of discriminative network – ident: ref57 doi: 10.1155/2015/412957 – ident: ref11 doi: 10.1145/342009.335388 |
| SSID | ssj0008781 |
| Score | 2.4531193 |
| Snippet | Recent advances in multi-kernel-based methods for outlier detection have positioned them as an attractive way to detect instances that are markedly different... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 3656 |
| SubjectTerms | Adaptation models Anomaly detection Computational efficiency Data analysis Data models Feature extraction Kernel Learning Linear programming Multi-kernel learning outlier detection Outliers (statistics) safe screening rule (SSR) Screening support vector data description (SVDD) Training |
| Title | An Efficient Adaptive Multi-Kernel Learning With Safe Screening Rule for Outlier Detection |
| URI | https://ieeexplore.ieee.org/document/10310242 https://www.proquest.com/docview/3078078678 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50T3pwfeL6IgdPQmvSpK_joiuiqOADxUtp0qmKS5W1vfjrnaRd8YHgLYRmCJnJPJqZbwB2KWggIyC1p7XhnlKSe2muJI1KXkgRmNiBJJ2dR8c36uQuvOuK1V0tDCK65DP07dC95RcvprG_yvZtSwJrU2Zhlki0xVqfajeJXUdSCi8oKJIq7p4wBU_3r08PR77tE-5LaWU8-WaEXFeVX6rY2ZejPpxPd9amlTz7Ta198_4DtPHfW1-Ehc7TZMNWNJZgBqtl6E-7OLDuUi_D_BdIwhW4H1Zs5GAliB4bFvmr1YfM1el6pzipcMw6TNYHdvtUP7KrvESiZvN37NxlM0ZGnjC7aGrybyfsEGuX7lWtws3R6Prg2Ov6L3gmUFHthbHhUUDxUlimKtaiNKVUeREKXWIo0EiVJhbeLioCnaeiTEJUAdcBRnGgoyKSa9CrXipcB5YHkSmEJCIUThrNc81VoZNEGJ2gUPEA9qYMyV5bmI3MhSc8zSz3Msu9rOPeAFbtAX_5sD3bAWxNeZh1N_EtoxUWUp9s8sYfyzZhjqirNqtvC3r1pMFt8jRqveMk7APkVs0- |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58HNSDb3F11Rw8Ca1Jk76Oi7uyurqCriheSpNOVZQqa3vx15ukXfGB4C2UZhoyk3k0M98A7OugQRsBLh0pFXWE4NSJU8H1KKcZZ54KLUjS-TDoX4vTW_-2KVa3tTCIaJPP0DVDe5efvajK_Co7NC0JjE2ZhllfCOHX5VqfijcKbU9SHWDosIiLsLnEZDQ-HA26Pdd0Cnc5N1IefTNDtq_KL2VsLczxEgwna6sTS57cqpSuev8B2_jvxS_DYuNrkk4tHCswhcUqLE36OJDmWK_CwhdQwjW46xSkZ4ElND3SydJXoxGJrdR1Bjgu8Jk0qKz35OaxfCBXaY6amsngMc8uq2ck2hcmF1WpPdwx6WJpE76Kdbg-7o2O-k7TgcFRnghKxw8VDTwdMfl5LELJcpVzkWY-kzn6DBUXcWQA7oLMk2nM8shH4VHpYRB6MsgCvgEzxUuBm0BSL1AZ45qIDiiVpKmkIpNRxJSMkImwBQcThiSvNdBGYgMUGieGe4nhXtJwrwXrZoO_vFjvbQvaEx4mzVl8S_QMA6qvrfLWH9P2YK4_Oj9Lzk6Gg22Y118SdY5fG2bKcYU72u8o5a6Vtg_P7NCL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Adaptive+Multi-Kernel+Learning+With+Safe+Screening+Rule+for+Outlier+Detection&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Wang%2C+Xinye&rft.au=Duan%2C+Lei&rft.au=He%2C+Chengxin&rft.au=Chen%2C+Yuanyuan&rft.date=2024-08-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=36&rft.issue=8&rft.spage=3656&rft.epage=3669&rft_id=info:doi/10.1109%2FTKDE.2023.3330708&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2023_3330708 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |