EM-Based Algorithm for Unsupervised Clustering of Measurements from a Radar Sensor Network
This article deals with the problem of clustering data returned by a radar sensor network that monitors a region where multiple moving targets are present. The network is formed by nodes with limited functionalities that transmit the estimates of target positions (after a detection) to a fusion cent...
Saved in:
| Published in | IEEE transactions on aerospace and electronic systems Vol. 61; no. 1; pp. 787 - 801 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9251 1557-9603 |
| DOI | 10.1109/TAES.2024.3448390 |
Cover
| Abstract | This article deals with the problem of clustering data returned by a radar sensor network that monitors a region where multiple moving targets are present. The network is formed by nodes with limited functionalities that transmit the estimates of target positions (after a detection) to a fusion center without any association between measurements and targets. To solve the problem at hand, we resort to model-based learning algorithms and instead of applying the plain maximum likelihood approach, due to the related computational requirements, we exploit the latent variable model coupled with the expectation–maximization algorithm. The devised estimation procedure returns posterior probabilities that are used to cluster the huge amount of data collected by the fusion center. Remarkably, we also consider challenging scenarios with an unknown number of targets and estimate it by means of the model-order selection rules. The clustering performance of the proposed strategy is compared to that of conventional data-driven methods over synthetic data. The numerical examples point out that the herein proposed solutions can provide reliable clustering performance overcoming the considered competitors. |
|---|---|
| AbstractList | This article deals with the problem of clustering data returned by a radar sensor network that monitors a region where multiple moving targets are present. The network is formed by nodes with limited functionalities that transmit the estimates of target positions (after a detection) to a fusion center without any association between measurements and targets. To solve the problem at hand, we resort to model-based learning algorithms and instead of applying the plain maximum likelihood approach, due to the related computational requirements, we exploit the latent variable model coupled with the expectation–maximization algorithm. The devised estimation procedure returns posterior probabilities that are used to cluster the huge amount of data collected by the fusion center. Remarkably, we also consider challenging scenarios with an unknown number of targets and estimate it by means of the model-order selection rules. The clustering performance of the proposed strategy is compared to that of conventional data-driven methods over synthetic data. The numerical examples point out that the herein proposed solutions can provide reliable clustering performance overcoming the considered competitors. |
| Author | Orlando, Danilo Clemente, Carmine Giunta, Gaetano Hao, Chengpeng Yan, Linjie Addabbo, Pia Fiscante, Nicomino |
| Author_xml | – sequence: 1 givenname: Linjie orcidid: 0000-0001-7904-8178 surname: Yan fullname: Yan, Linjie email: yanlinjie16@163.com organization: Institute of Acoustics, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Pia orcidid: 0000-0002-2463-8733 surname: Addabbo fullname: Addabbo, Pia email: p.addabbo@unifortunato.eu organization: Università degli Studi "Giustino Fortunato,", Benevento, Italy – sequence: 3 givenname: Nicomino orcidid: 0000-0001-8255-2615 surname: Fiscante fullname: Fiscante, Nicomino email: nicomino.fiscante@virgilio.it organization: Industrial, Electronic and Mechanical Engineering Department, University of Roma Tre, Rome, Italy – sequence: 4 givenname: Carmine orcidid: 0000-0002-6665-693X surname: Clemente fullname: Clemente, Carmine email: carmine.clemente@strath.ac.uk organization: Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, Scotland – sequence: 5 givenname: Chengpeng orcidid: 0000-0001-9643-1099 surname: Hao fullname: Hao, Chengpeng email: haochengp@mail.ioa.ac.cn organization: Institute of Acoustics, Chinese Academy of Sciences, Beijing, China – sequence: 6 givenname: Gaetano orcidid: 0000-0002-1514-2576 surname: Giunta fullname: Giunta, Gaetano email: gaetano.giunta@uniroma3.it organization: Industrial, Electronic and Mechanical Engineering Department, University of Roma Tre, Rome, Italy – sequence: 7 givenname: Danilo orcidid: 0000-0001-8630-8505 surname: Orlando fullname: Orlando, Danilo email: danilo.orlando@unipi.it organization: Dipartimento di Ingegneria dell'Informazione, Università di Pisa, Pisa, Italy |
| BookMark | eNpNkE1PAjEQhhuDiYD-ABMPTTwvttsPukck-JGAJgIXL03pTnGR3WK7q_Hfuxs4eJq8meedSZ4B6lW-AoSuKRlRSrK71WS2HKUk5SPGuWIZOUN9KsQ4ySRhPdQnhKokSwW9QIMYd23kirM-ep8tknsTIceT_daHov4osfMBr6vYHCB8F91qum9iDaGottg7vAATmwAlVHXELvgSG_xmchPwEqrYdl-g_vHh8xKdO7OPcHWaQ7R-mK2mT8n89fF5OpknNuWyTniaukw5OXZiDIKoTW5ZLqixhjAmBLEyza3JqTQb7gwQIIrnQO3GOCtzK9gQ3R7vHoL_aiDWeuebULUvNaNSZJwooVqKHikbfIwBnD6EojThV1OiO4W6U6g7hfqksO3cHDsFAPzjJRdEKvYHdplwCQ |
| CODEN | IEARAX |
| Cites_doi | 10.1016/j.sigpro.2023.108973 10.1109/TAES.1981.309178 10.1109/TSP.2014.2359637 10.1109/LSP.2012.2206583 10.1109/TAES.2019.2929968 10.1109/TSP.2023.3250084 10.1109/TSP.2020.3000952 10.1109/LSENS.2023.3286805 10.1109/TAES.2016.150265 10.1109/TAES.2017.2780678 10.1049/iet-rsn.2011.0266 10.2307/2984875 10.3390/drones7010062 10.1049/ip-f-1.1983.0078 10.1109/JIOT.2022.3178265 10.1109/TSP.2017.2777394 10.1109/TSP.2022.3216372 10.1109/TII.2020.3015730 10.1109/JSTSP.2013.2250911 10.1109/TSP.2021.3101018 10.1201/9780203755228 10.1109/TSP.2021.3050985 10.1109/MSP.2004.1311138 10.1002/9781119701859.ch5 10.1109/LCOMM.2018.2863387 10.1109/TAES.2023.3322389 10.1109/TAES.2022.3183965 10.1109/IranianCEE.2016.7585817 10.1109/MCS.2009.934469 10.1109/LSP.2005.845590 10.1109/TAES.2009.5089551 10.1109/TAES.2005.1413765 10.1049/rsn2.12358 10.1109/7.625124 10.1109/TSP.2024.3352915 10.1109/TAES.2023.3298757 10.1109/TSP.2012.2203128 10.1109/TNNLS.2019.2920864 10.1109/JSTSP.2013.2286771 10.1109/TIT.2009.2032856 10.1109/JSEN.2015.2497464 10.1109/TGRS.2019.2902938 10.1049/iet-wss.2013.0116 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M |
| DOI | 10.1109/TAES.2024.3448390 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9603 |
| EndPage | 801 |
| ExternalDocumentID | 10_1109_TAES_2024_3448390 10645068 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: framework of the FoReLab project – fundername: Italian Ministry of Education and Research – fundername: European Union in the NextGenerationEU plan through the Italian program "Bando PRIN 2022 – fundername: National Natural Science Foundation of China grantid: 62201564; 61971412 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M |
| ID | FETCH-LOGICAL-c246t-422f98f67f57e508bdc3d51aca033550c62dcad16ab4fae0e084de1cbafc6dc53 |
| IEDL.DBID | RIE |
| ISSN | 0018-9251 |
| IngestDate | Tue Jul 22 15:12:41 EDT 2025 Wed Oct 01 06:54:29 EDT 2025 Wed Aug 27 01:51:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-422f98f67f57e508bdc3d51aca033550c62dcad16ab4fae0e084de1cbafc6dc53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7904-8178 0000-0002-6665-693X 0000-0001-9643-1099 0000-0001-8255-2615 0000-0002-2463-8733 0000-0002-1514-2576 0000-0001-8630-8505 |
| PQID | 3165940858 |
| PQPubID | 85477 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_3165940858 crossref_primary_10_1109_TAES_2024_3448390 ieee_primary_10645068 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on aerospace and electronic systems |
| PublicationTitleAbbrev | T-AES |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 Yan (ref23) 2020; 55 ref53 ref52 ref11 ref55 ref54 Boutkhil (ref10) 2018; 22 Adamy (ref14) 2001 ref17 ref19 Scharf (ref38) 1991 ref18 Niu (ref21) 2006; 7 Theodoridis (ref2) 2015 ref50 ref46 ref45 ref48 Stimson (ref15) 2014 Bar-Shalom (ref25) 1995; 19 ref47 ref42 ref41 ref44 ref43 Javadi (ref16) 2020; 61 ref49 Murphy (ref1) 2012 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref24 ref26 ref20 ref22 ref28 ref27 ref29 Bishop (ref51) 2007 |
| References_xml | – ident: ref33 doi: 10.1016/j.sigpro.2023.108973 – volume-title: Stimson’s Introduction to Airborne Radar, ser. Radar, Sonar and Navigation year: 2014 ident: ref15 – ident: ref19 doi: 10.1109/TAES.1981.309178 – volume-title: Pattern Recognition and Machine Learning (Information Science and Statistics) year: 2007 ident: ref51 – ident: ref8 doi: 10.1109/TSP.2014.2359637 – ident: ref47 doi: 10.1109/LSP.2012.2206583 – ident: ref55 doi: 10.1109/TAES.2019.2929968 – ident: ref40 doi: 10.1109/TSP.2023.3250084 – ident: ref36 doi: 10.1109/TSP.2020.3000952 – ident: ref5 doi: 10.1109/LSENS.2023.3286805 – volume: 61 start-page: 48 volume-title: Inf. Fusion year: 2020 ident: ref16 article-title: Radar networks: A review of features and challenges – ident: ref26 doi: 10.1109/TAES.2016.150265 – ident: ref6 doi: 10.1109/TAES.2017.2780678 – ident: ref4 doi: 10.1049/iet-rsn.2011.0266 – ident: ref45 doi: 10.2307/2984875 – ident: ref49 doi: 10.3390/drones7010062 – volume: 55 start-page: 173 volume-title: Inf. Fusion year: 2020 ident: ref23 article-title: Collaborative detection and power allocation framework for target tracking in multiple radar system – ident: ref18 doi: 10.1049/ip-f-1.1983.0078 – ident: ref34 doi: 10.1109/JIOT.2022.3178265 – ident: ref35 doi: 10.1109/TSP.2017.2777394 – ident: ref37 doi: 10.1109/TSP.2022.3216372 – ident: ref42 doi: 10.1109/TII.2020.3015730 – ident: ref29 doi: 10.1109/JSTSP.2013.2250911 – volume-title: Statistical Signal Processing: Detection, Estimation, and Time Series Analysis ( Addison-Wesley series in electrical and computer engineering) year: 1991 ident: ref38 – ident: ref32 doi: 10.1109/TSP.2021.3101018 – ident: ref3 doi: 10.1201/9780203755228 – ident: ref39 doi: 10.1109/TSP.2021.3050985 – volume-title: Machine Learning: A Bayesian and Optimization Perspective year: 2015 ident: ref2 – volume: 19 volume-title: Multitarget-Multisensor Tracking: Principles and Techniques year: 1995 ident: ref25 – ident: ref44 doi: 10.1109/MSP.2004.1311138 – ident: ref54 doi: 10.1002/9781119701859.ch5 – ident: ref30 doi: 10.1109/LCOMM.2018.2863387 – ident: ref41 doi: 10.1109/TAES.2023.3322389 – ident: ref50 doi: 10.1109/TAES.2022.3183965 – volume-title: Machine Learning: A Probabilistic Perspective (Adaptive Computation and Machine Learning series) year: 2012 ident: ref1 – ident: ref17 doi: 10.1109/IranianCEE.2016.7585817 – ident: ref24 doi: 10.1109/MCS.2009.934469 – ident: ref43 doi: 10.1109/LSP.2005.845590 – ident: ref12 doi: 10.1109/TAES.2009.5089551 – ident: ref48 doi: 10.1109/TAES.2005.1413765 – ident: ref11 doi: 10.1049/rsn2.12358 – ident: ref28 doi: 10.1109/7.625124 – volume: 22 start-page: 455 volume-title: Procedia Manuf. year: 2018 ident: ref10 article-title: Detecting and localizing moving targets using multistatic radar system – ident: ref31 doi: 10.1109/TSP.2024.3352915 – ident: ref13 doi: 10.1109/TAES.2023.3298757 – ident: ref46 doi: 10.1109/TSP.2012.2203128 – volume-title: EW101: A First Course in Electronic Warfare year: 2001 ident: ref14 – ident: ref53 doi: 10.1109/TNNLS.2019.2920864 – ident: ref52 doi: 10.1109/LSP.2005.845590 – volume: 7 start-page: 380 issue: 4 volume-title: Inf. Fusion year: 2006 ident: ref21 article-title: Distributed detection in a large wireless sensor network – ident: ref9 doi: 10.1109/JSTSP.2013.2286771 – ident: ref20 doi: 10.1109/TIT.2009.2032856 – ident: ref27 doi: 10.1109/JSEN.2015.2497464 – ident: ref7 doi: 10.1109/TGRS.2019.2902938 – ident: ref22 doi: 10.1049/iet-wss.2013.0116 |
| SSID | ssj0014843 |
| Score | 2.4602509 |
| Snippet | This article deals with the problem of clustering data returned by a radar sensor network that monitors a region where multiple moving targets are present. The... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 787 |
| SubjectTerms | Algorithms Batch algorithms Clustering Clustering algorithms Computational modeling expectation–maximization (EM) Machine learning measurement clustering Moving targets multiple moving targets Radar Radar detection Radar tracking Random variables sensor network Synthetic data Target detection Target tracking Time measurement unsupervised learning |
| Title | EM-Based Algorithm for Unsupervised Clustering of Measurements from a Radar Sensor Network |
| URI | https://ieeexplore.ieee.org/document/10645068 https://www.proquest.com/docview/3165940858 |
| Volume | 61 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014843 issn: 0018-9251 databaseCode: RIE dateStart: 19650101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1Na9swVLQ5dYfuK6NZu6HDTgNntr4sH9OSUAbJYUkg7GKenuS1rLVLYl_66yvZzhZWBr0JpAfiPb0vvS9CvjChAdDYyHjtFgnOeJQB6Cg1NsM0Ri3TUDs8X6jrtfi-kZu-WL2thXHOtclnbhyWbSzfVtiErzLP4UrIWOljcpxq1RVr_QkZCN2nyCWeg73W7kOYSZx9W02mS-8KMjHm3hvhQf4eKKF2qsozUdzql9lrstjfrEsr-T1uajPGx3-aNr746m_IaW9p0kn3NN6SI1e-I68O-g--Jz-n8-jSqzFLJ3e_qu1tfXNPvRFL1-WueQhCJGxd3TWhmYIHoFVB53__FHc01KZQoD_AwpYuvUPsYRddXvmQrGfT1dV11A9biJAJVUeCsSLThUoLmTpvtRmL3MoEEGLubZIYFbMINlFgRAEudrEW1iVooEBlUfIPZFBWpTsjVCKkCOBMZlAYjuCsQ8mEPyhlUfAR-brHfv7Q9dTIW18kzvJAqjyQKu9JNSLDgM2Dgx0iR-RiT7C8Z7tdzhMls9CzTX_8D9g5OWFhgm-bd31BBvW2cZ-8WVGbz-1zegLwkcvM |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1Nb9Mw9AnGATjAGEMrG8OHnSalJP5KcuymTgXWHrZWmrhEz8_OmLa1U5tc-PWzk3RUICRuluwnWe_5ffl9ARxxmSGSsZHx2i2SgosoR8yi1Nic0pgylYba4fFEj2by25W66orVm1oY51yTfOb6YdnE8u2C6vBV5jlcSxXr7Dm8UFJK1ZZrPQUNZNYlySWeh73e7oKYSZx_mQ6Gl94Z5LIvvD8iggTeUEPNXJW_hHGjYc7ewmR9tzax5LZfV6ZPv_5o2_jfl9-GN52tyQbt43gHz9x8B15vdCB8Dz-G4-jEKzLLBnfXi-VN9fOeeTOWzear-iGIkbB1eleHdgoegC1KNv79q7hioTqFIbtAi0t26V1iDztpM8t3YXY2nJ6Oom7cQkRc6iqSnJd5Vuq0VKnzdpuxJKxKkDAW3iqJSXNLaBONRpboYhdn0rqEDJakLSnxAbbmi7nbA6YIU0J0JjckjSB01pHi0h9UqixFD47X2C8e2q4aReONxHkRSFUEUhUdqXqwG7C5cbBFZA8O1gQrOsZbFSLRKg9d27KP_wD7DC9H0_F5cf518n0fXvEwz7fJwj6ArWpZu0_eyKjMYfO0HgHF0M8Z |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EM-Based+Algorithm+for+Unsupervised+Clustering+of+Measurements+from+a+Radar+Sensor+Network&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Yan%2C+Linjie&rft.au=Addabbo%2C+Pia&rft.au=Fiscante%2C+Nicomino&rft.au=Clemente%2C+Carmine&rft.date=2025-02-01&rft.issn=0018-9251&rft.eissn=1557-9603&rft.volume=61&rft.issue=1&rft.spage=787&rft.epage=801&rft_id=info:doi/10.1109%2FTAES.2024.3448390&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAES_2024_3448390 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon |