EM-Based Algorithm for Unsupervised Clustering of Measurements from a Radar Sensor Network

This article deals with the problem of clustering data returned by a radar sensor network that monitors a region where multiple moving targets are present. The network is formed by nodes with limited functionalities that transmit the estimates of target positions (after a detection) to a fusion cent...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on aerospace and electronic systems Vol. 61; no. 1; pp. 787 - 801
Main Authors Yan, Linjie, Addabbo, Pia, Fiscante, Nicomino, Clemente, Carmine, Hao, Chengpeng, Giunta, Gaetano, Orlando, Danilo
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9251
1557-9603
DOI10.1109/TAES.2024.3448390

Cover

Abstract This article deals with the problem of clustering data returned by a radar sensor network that monitors a region where multiple moving targets are present. The network is formed by nodes with limited functionalities that transmit the estimates of target positions (after a detection) to a fusion center without any association between measurements and targets. To solve the problem at hand, we resort to model-based learning algorithms and instead of applying the plain maximum likelihood approach, due to the related computational requirements, we exploit the latent variable model coupled with the expectation–maximization algorithm. The devised estimation procedure returns posterior probabilities that are used to cluster the huge amount of data collected by the fusion center. Remarkably, we also consider challenging scenarios with an unknown number of targets and estimate it by means of the model-order selection rules. The clustering performance of the proposed strategy is compared to that of conventional data-driven methods over synthetic data. The numerical examples point out that the herein proposed solutions can provide reliable clustering performance overcoming the considered competitors.
AbstractList This article deals with the problem of clustering data returned by a radar sensor network that monitors a region where multiple moving targets are present. The network is formed by nodes with limited functionalities that transmit the estimates of target positions (after a detection) to a fusion center without any association between measurements and targets. To solve the problem at hand, we resort to model-based learning algorithms and instead of applying the plain maximum likelihood approach, due to the related computational requirements, we exploit the latent variable model coupled with the expectation–maximization algorithm. The devised estimation procedure returns posterior probabilities that are used to cluster the huge amount of data collected by the fusion center. Remarkably, we also consider challenging scenarios with an unknown number of targets and estimate it by means of the model-order selection rules. The clustering performance of the proposed strategy is compared to that of conventional data-driven methods over synthetic data. The numerical examples point out that the herein proposed solutions can provide reliable clustering performance overcoming the considered competitors.
Author Orlando, Danilo
Clemente, Carmine
Giunta, Gaetano
Hao, Chengpeng
Yan, Linjie
Addabbo, Pia
Fiscante, Nicomino
Author_xml – sequence: 1
  givenname: Linjie
  orcidid: 0000-0001-7904-8178
  surname: Yan
  fullname: Yan, Linjie
  email: yanlinjie16@163.com
  organization: Institute of Acoustics, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Pia
  orcidid: 0000-0002-2463-8733
  surname: Addabbo
  fullname: Addabbo, Pia
  email: p.addabbo@unifortunato.eu
  organization: Università degli Studi "Giustino Fortunato,", Benevento, Italy
– sequence: 3
  givenname: Nicomino
  orcidid: 0000-0001-8255-2615
  surname: Fiscante
  fullname: Fiscante, Nicomino
  email: nicomino.fiscante@virgilio.it
  organization: Industrial, Electronic and Mechanical Engineering Department, University of Roma Tre, Rome, Italy
– sequence: 4
  givenname: Carmine
  orcidid: 0000-0002-6665-693X
  surname: Clemente
  fullname: Clemente, Carmine
  email: carmine.clemente@strath.ac.uk
  organization: Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, Scotland
– sequence: 5
  givenname: Chengpeng
  orcidid: 0000-0001-9643-1099
  surname: Hao
  fullname: Hao, Chengpeng
  email: haochengp@mail.ioa.ac.cn
  organization: Institute of Acoustics, Chinese Academy of Sciences, Beijing, China
– sequence: 6
  givenname: Gaetano
  orcidid: 0000-0002-1514-2576
  surname: Giunta
  fullname: Giunta, Gaetano
  email: gaetano.giunta@uniroma3.it
  organization: Industrial, Electronic and Mechanical Engineering Department, University of Roma Tre, Rome, Italy
– sequence: 7
  givenname: Danilo
  orcidid: 0000-0001-8630-8505
  surname: Orlando
  fullname: Orlando, Danilo
  email: danilo.orlando@unipi.it
  organization: Dipartimento di Ingegneria dell'Informazione, Università di Pisa, Pisa, Italy
BookMark eNpNkE1PAjEQhhuDiYD-ABMPTTwvttsPukck-JGAJgIXL03pTnGR3WK7q_Hfuxs4eJq8meedSZ4B6lW-AoSuKRlRSrK71WS2HKUk5SPGuWIZOUN9KsQ4ySRhPdQnhKokSwW9QIMYd23kirM-ep8tknsTIceT_daHov4osfMBr6vYHCB8F91qum9iDaGottg7vAATmwAlVHXELvgSG_xmchPwEqrYdl-g_vHh8xKdO7OPcHWaQ7R-mK2mT8n89fF5OpknNuWyTniaukw5OXZiDIKoTW5ZLqixhjAmBLEyza3JqTQb7gwQIIrnQO3GOCtzK9gQ3R7vHoL_aiDWeuebULUvNaNSZJwooVqKHikbfIwBnD6EojThV1OiO4W6U6g7hfqksO3cHDsFAPzjJRdEKvYHdplwCQ
CODEN IEARAX
Cites_doi 10.1016/j.sigpro.2023.108973
10.1109/TAES.1981.309178
10.1109/TSP.2014.2359637
10.1109/LSP.2012.2206583
10.1109/TAES.2019.2929968
10.1109/TSP.2023.3250084
10.1109/TSP.2020.3000952
10.1109/LSENS.2023.3286805
10.1109/TAES.2016.150265
10.1109/TAES.2017.2780678
10.1049/iet-rsn.2011.0266
10.2307/2984875
10.3390/drones7010062
10.1049/ip-f-1.1983.0078
10.1109/JIOT.2022.3178265
10.1109/TSP.2017.2777394
10.1109/TSP.2022.3216372
10.1109/TII.2020.3015730
10.1109/JSTSP.2013.2250911
10.1109/TSP.2021.3101018
10.1201/9780203755228
10.1109/TSP.2021.3050985
10.1109/MSP.2004.1311138
10.1002/9781119701859.ch5
10.1109/LCOMM.2018.2863387
10.1109/TAES.2023.3322389
10.1109/TAES.2022.3183965
10.1109/IranianCEE.2016.7585817
10.1109/MCS.2009.934469
10.1109/LSP.2005.845590
10.1109/TAES.2009.5089551
10.1109/TAES.2005.1413765
10.1049/rsn2.12358
10.1109/7.625124
10.1109/TSP.2024.3352915
10.1109/TAES.2023.3298757
10.1109/TSP.2012.2203128
10.1109/TNNLS.2019.2920864
10.1109/JSTSP.2013.2286771
10.1109/TIT.2009.2032856
10.1109/JSEN.2015.2497464
10.1109/TGRS.2019.2902938
10.1049/iet-wss.2013.0116
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
DOI 10.1109/TAES.2024.3448390
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9603
EndPage 801
ExternalDocumentID 10_1109_TAES_2024_3448390
10645068
Genre orig-research
GrantInformation_xml – fundername: framework of the FoReLab project
– fundername: Italian Ministry of Education and Research
– fundername: European Union in the NextGenerationEU plan through the Italian program "Bando PRIN 2022
– fundername: National Natural Science Foundation of China
  grantid: 62201564; 61971412
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c246t-422f98f67f57e508bdc3d51aca033550c62dcad16ab4fae0e084de1cbafc6dc53
IEDL.DBID RIE
ISSN 0018-9251
IngestDate Tue Jul 22 15:12:41 EDT 2025
Wed Oct 01 06:54:29 EDT 2025
Wed Aug 27 01:51:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-422f98f67f57e508bdc3d51aca033550c62dcad16ab4fae0e084de1cbafc6dc53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7904-8178
0000-0002-6665-693X
0000-0001-9643-1099
0000-0001-8255-2615
0000-0002-2463-8733
0000-0002-1514-2576
0000-0001-8630-8505
PQID 3165940858
PQPubID 85477
PageCount 15
ParticipantIDs proquest_journals_3165940858
crossref_primary_10_1109_TAES_2024_3448390
ieee_primary_10645068
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on aerospace and electronic systems
PublicationTitleAbbrev T-AES
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
Yan (ref23) 2020; 55
ref53
ref52
ref11
ref55
ref54
Boutkhil (ref10) 2018; 22
Adamy (ref14) 2001
ref17
ref19
Scharf (ref38) 1991
ref18
Niu (ref21) 2006; 7
Theodoridis (ref2) 2015
ref50
ref46
ref45
ref48
Stimson (ref15) 2014
Bar-Shalom (ref25) 1995; 19
ref47
ref42
ref41
ref44
ref43
Javadi (ref16) 2020; 61
ref49
Murphy (ref1) 2012
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref24
ref26
ref20
ref22
ref28
ref27
ref29
Bishop (ref51) 2007
References_xml – ident: ref33
  doi: 10.1016/j.sigpro.2023.108973
– volume-title: Stimson’s Introduction to Airborne Radar, ser. Radar, Sonar and Navigation
  year: 2014
  ident: ref15
– ident: ref19
  doi: 10.1109/TAES.1981.309178
– volume-title: Pattern Recognition and Machine Learning (Information Science and Statistics)
  year: 2007
  ident: ref51
– ident: ref8
  doi: 10.1109/TSP.2014.2359637
– ident: ref47
  doi: 10.1109/LSP.2012.2206583
– ident: ref55
  doi: 10.1109/TAES.2019.2929968
– ident: ref40
  doi: 10.1109/TSP.2023.3250084
– ident: ref36
  doi: 10.1109/TSP.2020.3000952
– ident: ref5
  doi: 10.1109/LSENS.2023.3286805
– volume: 61
  start-page: 48
  volume-title: Inf. Fusion
  year: 2020
  ident: ref16
  article-title: Radar networks: A review of features and challenges
– ident: ref26
  doi: 10.1109/TAES.2016.150265
– ident: ref6
  doi: 10.1109/TAES.2017.2780678
– ident: ref4
  doi: 10.1049/iet-rsn.2011.0266
– ident: ref45
  doi: 10.2307/2984875
– ident: ref49
  doi: 10.3390/drones7010062
– volume: 55
  start-page: 173
  volume-title: Inf. Fusion
  year: 2020
  ident: ref23
  article-title: Collaborative detection and power allocation framework for target tracking in multiple radar system
– ident: ref18
  doi: 10.1049/ip-f-1.1983.0078
– ident: ref34
  doi: 10.1109/JIOT.2022.3178265
– ident: ref35
  doi: 10.1109/TSP.2017.2777394
– ident: ref37
  doi: 10.1109/TSP.2022.3216372
– ident: ref42
  doi: 10.1109/TII.2020.3015730
– ident: ref29
  doi: 10.1109/JSTSP.2013.2250911
– volume-title: Statistical Signal Processing: Detection, Estimation, and Time Series Analysis ( Addison-Wesley series in electrical and computer engineering)
  year: 1991
  ident: ref38
– ident: ref32
  doi: 10.1109/TSP.2021.3101018
– ident: ref3
  doi: 10.1201/9780203755228
– ident: ref39
  doi: 10.1109/TSP.2021.3050985
– volume-title: Machine Learning: A Bayesian and Optimization Perspective
  year: 2015
  ident: ref2
– volume: 19
  volume-title: Multitarget-Multisensor Tracking: Principles and Techniques
  year: 1995
  ident: ref25
– ident: ref44
  doi: 10.1109/MSP.2004.1311138
– ident: ref54
  doi: 10.1002/9781119701859.ch5
– ident: ref30
  doi: 10.1109/LCOMM.2018.2863387
– ident: ref41
  doi: 10.1109/TAES.2023.3322389
– ident: ref50
  doi: 10.1109/TAES.2022.3183965
– volume-title: Machine Learning: A Probabilistic Perspective (Adaptive Computation and Machine Learning series)
  year: 2012
  ident: ref1
– ident: ref17
  doi: 10.1109/IranianCEE.2016.7585817
– ident: ref24
  doi: 10.1109/MCS.2009.934469
– ident: ref43
  doi: 10.1109/LSP.2005.845590
– ident: ref12
  doi: 10.1109/TAES.2009.5089551
– ident: ref48
  doi: 10.1109/TAES.2005.1413765
– ident: ref11
  doi: 10.1049/rsn2.12358
– ident: ref28
  doi: 10.1109/7.625124
– volume: 22
  start-page: 455
  volume-title: Procedia Manuf.
  year: 2018
  ident: ref10
  article-title: Detecting and localizing moving targets using multistatic radar system
– ident: ref31
  doi: 10.1109/TSP.2024.3352915
– ident: ref13
  doi: 10.1109/TAES.2023.3298757
– ident: ref46
  doi: 10.1109/TSP.2012.2203128
– volume-title: EW101: A First Course in Electronic Warfare
  year: 2001
  ident: ref14
– ident: ref53
  doi: 10.1109/TNNLS.2019.2920864
– ident: ref52
  doi: 10.1109/LSP.2005.845590
– volume: 7
  start-page: 380
  issue: 4
  volume-title: Inf. Fusion
  year: 2006
  ident: ref21
  article-title: Distributed detection in a large wireless sensor network
– ident: ref9
  doi: 10.1109/JSTSP.2013.2286771
– ident: ref20
  doi: 10.1109/TIT.2009.2032856
– ident: ref27
  doi: 10.1109/JSEN.2015.2497464
– ident: ref7
  doi: 10.1109/TGRS.2019.2902938
– ident: ref22
  doi: 10.1049/iet-wss.2013.0116
SSID ssj0014843
Score 2.4602509
Snippet This article deals with the problem of clustering data returned by a radar sensor network that monitors a region where multiple moving targets are present. The...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 787
SubjectTerms Algorithms
Batch algorithms
Clustering
Clustering algorithms
Computational modeling
expectation–maximization (EM)
Machine learning
measurement clustering
Moving targets
multiple moving targets
Radar
Radar detection
Radar tracking
Random variables
sensor network
Synthetic data
Target detection
Target tracking
Time measurement
unsupervised learning
Title EM-Based Algorithm for Unsupervised Clustering of Measurements from a Radar Sensor Network
URI https://ieeexplore.ieee.org/document/10645068
https://www.proquest.com/docview/3165940858
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014843
  issn: 0018-9251
  databaseCode: RIE
  dateStart: 19650101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1Na9swVLQ5dYfuK6NZu6HDTgNntr4sH9OSUAbJYUkg7GKenuS1rLVLYl_66yvZzhZWBr0JpAfiPb0vvS9CvjChAdDYyHjtFgnOeJQB6Cg1NsM0Ri3TUDs8X6jrtfi-kZu-WL2thXHOtclnbhyWbSzfVtiErzLP4UrIWOljcpxq1RVr_QkZCN2nyCWeg73W7kOYSZx9W02mS-8KMjHm3hvhQf4eKKF2qsozUdzql9lrstjfrEsr-T1uajPGx3-aNr746m_IaW9p0kn3NN6SI1e-I68O-g--Jz-n8-jSqzFLJ3e_qu1tfXNPvRFL1-WueQhCJGxd3TWhmYIHoFVB53__FHc01KZQoD_AwpYuvUPsYRddXvmQrGfT1dV11A9biJAJVUeCsSLThUoLmTpvtRmL3MoEEGLubZIYFbMINlFgRAEudrEW1iVooEBlUfIPZFBWpTsjVCKkCOBMZlAYjuCsQ8mEPyhlUfAR-brHfv7Q9dTIW18kzvJAqjyQKu9JNSLDgM2Dgx0iR-RiT7C8Z7tdzhMls9CzTX_8D9g5OWFhgm-bd31BBvW2cZ-8WVGbz-1zegLwkcvM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1Nb9Mw9AnGATjAGEMrG8OHnSalJP5KcuymTgXWHrZWmrhEz8_OmLa1U5tc-PWzk3RUICRuluwnWe_5ffl9ARxxmSGSsZHx2i2SgosoR8yi1Nic0pgylYba4fFEj2by25W66orVm1oY51yTfOb6YdnE8u2C6vBV5jlcSxXr7Dm8UFJK1ZZrPQUNZNYlySWeh73e7oKYSZx_mQ6Gl94Z5LIvvD8iggTeUEPNXJW_hHGjYc7ewmR9tzax5LZfV6ZPv_5o2_jfl9-GN52tyQbt43gHz9x8B15vdCB8Dz-G4-jEKzLLBnfXi-VN9fOeeTOWzear-iGIkbB1eleHdgoegC1KNv79q7hioTqFIbtAi0t26V1iDztpM8t3YXY2nJ6Oom7cQkRc6iqSnJd5Vuq0VKnzdpuxJKxKkDAW3iqJSXNLaBONRpboYhdn0rqEDJakLSnxAbbmi7nbA6YIU0J0JjckjSB01pHi0h9UqixFD47X2C8e2q4aReONxHkRSFUEUhUdqXqwG7C5cbBFZA8O1gQrOsZbFSLRKg9d27KP_wD7DC9H0_F5cf518n0fXvEwz7fJwj6ArWpZu0_eyKjMYfO0HgHF0M8Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EM-Based+Algorithm+for+Unsupervised+Clustering+of+Measurements+from+a+Radar+Sensor+Network&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Yan%2C+Linjie&rft.au=Addabbo%2C+Pia&rft.au=Fiscante%2C+Nicomino&rft.au=Clemente%2C+Carmine&rft.date=2025-02-01&rft.issn=0018-9251&rft.eissn=1557-9603&rft.volume=61&rft.issue=1&rft.spage=787&rft.epage=801&rft_id=info:doi/10.1109%2FTAES.2024.3448390&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAES_2024_3448390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon