Improved Few-Shot Learning Based on Triplet Metric for Motor Imagery EEG Classification
Motor imagery-based brain-computer interface (MI-BCI) technology establishes a connection between human intention and external devices in active rehabilitation. However, obtaining a mass of labeled EEG data is often difficult due to the strict requirement of experimental environment and the necessit...
Saved in:
| Published in | IEEE transactions on cognitive and developmental systems Vol. 17; no. 4; pp. 987 - 999 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2379-8920 2379-8939 |
| DOI | 10.1109/TCDS.2025.3539398 |
Cover
| Abstract | Motor imagery-based brain-computer interface (MI-BCI) technology establishes a connection between human intention and external devices in active rehabilitation. However, obtaining a mass of labeled EEG data is often difficult due to the strict requirement of experimental environment and the necessity for highly cooperative subjects, which makes the application of few-shot learning of EEG classification particularly important. Therefore, we propose a method that combines few-shot learning with triplet metric learning, aiming to maintain strong generalization capabilities of the model with limited samples. First, we pretrain a base model using large auxiliary dataset, and then fine-tune it with a small number of labeled samples from the test subjects to obtain a specific model. During the training process, metric learning between anchor samples and positive/negative samples are employed to gradually converge similar samples, creating clearer class boundaries. Then the feature information of the samples is enhanced through an attention mechanism to obtain their essential features. The proposed framework was evaluated using two publicly available datasets and obtained classification accuracies of 68.29% and 84.40%, respectively, representing enhancements of 1.04% and 1.28% over existing state-of-the-art methods. In conclusion, experimental results indicate that our proposed approach can improve the effectiveness of MI-BCI rehabilitation training. |
|---|---|
| AbstractList | Motor imagery-based brain-computer interface (MI-BCI) technology establishes a connection between human intention and external devices in active rehabilitation. However, obtaining a mass of labeled EEG data is often difficult due to the strict requirement of experimental environment and the necessity for highly cooperative subjects, which makes the application of few-shot learning of EEG classification particularly important. Therefore, we propose a method that combines few-shot learning with triplet metric learning, aiming to maintain strong generalization capabilities of the model with limited samples. First, we pretrain a base model using large auxiliary dataset, and then fine-tune it with a small number of labeled samples from the test subjects to obtain a specific model. During the training process, metric learning between anchor samples and positive/negative samples are employed to gradually converge similar samples, creating clearer class boundaries. Then the feature information of the samples is enhanced through an attention mechanism to obtain their essential features. The proposed framework was evaluated using two publicly available datasets and obtained classification accuracies of 68.29% and 84.40%, respectively, representing enhancements of 1.04% and 1.28% over existing state-of-the-art methods. In conclusion, experimental results indicate that our proposed approach can improve the effectiveness of MI-BCI rehabilitation training. |
| Author | Zhang, Yingchun She, Qingshan Li, Chengjun Tan, Tongcai Fang, Feng |
| Author_xml | – sequence: 1 givenname: Qingshan orcidid: 0000-0001-5206-9833 surname: She fullname: She, Qingshan email: qsshe@hdu.edu.cn organization: School of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang, China – sequence: 2 givenname: Chengjun orcidid: 0009-0003-9807-8921 surname: Li fullname: Li, Chengjun organization: School of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang, China – sequence: 3 givenname: Tongcai orcidid: 0000-0002-1500-7905 surname: Tan fullname: Tan, Tongcai email: 29ttc@sina.com organization: Department of Rehabilitation, Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China – sequence: 4 givenname: Feng orcidid: 0000-0003-1004-7876 surname: Fang fullname: Fang, Feng email: ranjitfeng@gmail.com organization: Department of Biomedical Engineering, University of Houston, Houston, TX, USA – sequence: 5 givenname: Yingchun orcidid: 0000-0002-1927-4103 surname: Zhang fullname: Zhang, Yingchun email: y.zhang@miami.edu organization: Department of Biomedical Engineering, Desai Sethi Urology Institute, and Miami Project to Cure Paralysis University of Miami, Coral Gables, FL, USA |
| BookMark | eNpNUMtOAjEUbQwmIvIBJi6auB7sY6aPpSIgCcQFGJdN7bRYAlNsBw1_bwnEmJvcV865J_dcg04TGgvALUYDjJF8WA6fFwOCSDWgFZVUigvQJZTLQuSh89cTdAX6Ka0RQphRLkreBe_T7S6Gb1vDsf0pFp-hhTOrY-ObFXzSKe9DA5fR7za2hXPbRm-gCxHOQ5vzdKtXNh7gaDSBw41OyTtvdOtDcwMund4k2z_XHngbj5bDl2L2OpkOH2eFISVrixLxGhHNGP7In1RUkLqqCXfSSWEN58yKspSMV9iwmhGLGKOGU1diYZyWjPbA_elu_uJrb1Or1mEfmyypaFagJAfPKHxCmRhSitapXfRbHQ8KI3W0UB0tVEcL1dnCzLk7cby19h9ecIY5p78BaWy2 |
| CODEN | ITCDA4 |
| Cites_doi | 10.1109/access.2019.2939623 10.1109/tbme.2010.2093133 10.1016/j.jneumeth.2020.109037 10.1109/jbhi.2022.3218453 10.1109/tnsre.2012.2197221 10.1109/tnnls.2020.3015505 10.1016/j.compbiomed.2023.106887 10.3390/s19061423 10.1109/tnsre.2023.3241846 10.1109/CVPR52688.2022.01415 10.1016/j.rehab.2020.03.015 10.1109/tcds.2023.3314351 10.1109/tnsre.2019.2923315 10.1016/j.patrec.2008.01.030 10.1016/j.compbiomed.2023.106860 10.3389/fnbot.2022.958052 10.1002/hbm.23730 10.1109/tmm.2022.3165715 10.1007/978-3-319-60801-3_27 10.1109/CVPR42600.2020.00883 10.1109/iros45743.2020.9340933 10.1016/j.compbiomed.2021.104546 10.1007/s00521-010-0472-7 10.1088/1741-2552/aace8c 10.1109/tnsre.2020.3027004 10.1109/tnsre.2023.3269055 10.3389/fbioe.2022.925970 10.1109/rbme.2013.2290621 10.1109/tnnls.2023.3287181 10.1109/ijcnn.2008.4634130 10.1016/j.neunet.2020.12.013 10.1109/jbhi.2016.2532354 10.1109/tim.2023.3277985 10.1088/1741-2560/3/3/003 10.1109/iembs.2005.1615701 10.1016/j.engappai.2024.108879 10.1109/tnsre.2007.906956 10.1109/tcds.2022.3174660 10.3390/s22155865 10.1109/tnsre.2017.2766365 10.1016/j.neucom.2022.09.078 10.1109/tbme.2021.3137184 10.1016/j.bspc.2022.104435 10.1109/ner49283.2021.9441085 10.1038/s41598-022-26882-9 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TCDS.2025.3539398 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 2379-8939 |
| EndPage | 999 |
| ExternalDocumentID | 10_1109_TCDS_2025_3539398 10876177 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Wenzhou Major Scientific Research Project grantid: ZY2024025 – fundername: National Natural Science Foundation of China grantid: 62371172 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD AARMG JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c246t-407d02a661b1105382d5d27f9f98ec776e84496751c6d62e0663c73f418cfa963 |
| IEDL.DBID | RIE |
| ISSN | 2379-8920 |
| IngestDate | Thu Sep 04 12:11:08 EDT 2025 Wed Oct 01 05:41:10 EDT 2025 Sun Sep 28 03:48:02 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-407d02a661b1105382d5d27f9f98ec776e84496751c6d62e0663c73f418cfa963 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5206-9833 0000-0002-1927-4103 0009-0003-9807-8921 0000-0002-1500-7905 0000-0003-1004-7876 |
| PQID | 3246323237 |
| PQPubID | 85513 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_3246323237 crossref_primary_10_1109_TCDS_2025_3539398 ieee_primary_10876177 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on cognitive and developmental systems |
| PublicationTitleAbbrev | TCDS |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref37 ref14 ref31 ref30 ref33 ref10 ref32 Pati (ref11) 2023 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref48 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 Nichol (ref36) 2018 ref9 ref4 ref3 ref6 ref5 ref40 Finn (ref35) 2017; 70 |
| References_xml | – ident: ref9 doi: 10.1109/access.2019.2939623 – ident: ref14 doi: 10.1109/tbme.2010.2093133 – ident: ref25 doi: 10.1016/j.jneumeth.2020.109037 – ident: ref34 doi: 10.1109/jbhi.2022.3218453 – ident: ref22 doi: 10.1109/tnsre.2012.2197221 – ident: ref20 doi: 10.1109/tnnls.2020.3015505 – ident: ref6 doi: 10.1016/j.compbiomed.2023.106887 – ident: ref7 doi: 10.3390/s19061423 – ident: ref5 doi: 10.1109/tnsre.2023.3241846 – ident: ref45 doi: 10.1109/CVPR52688.2022.01415 – ident: ref1 doi: 10.1016/j.rehab.2020.03.015 – ident: ref28 doi: 10.1109/tcds.2023.3314351 – ident: ref29 doi: 10.1109/tnsre.2019.2923315 – ident: ref13 doi: 10.1016/j.patrec.2008.01.030 – ident: ref30 doi: 10.1016/j.compbiomed.2023.106860 – year: 2018 ident: ref36 article-title: On first-order meta-learning algorithms – ident: ref43 doi: 10.3389/fnbot.2022.958052 – volume-title: Proc. ICLR 2023 TinyPapers year: 2023 ident: ref11 article-title: Meta-learning for subject adaptation in low-data environments for EEG-based motor imagery brain-computer interfaces – ident: ref23 doi: 10.1002/hbm.23730 – volume: 70 start-page: 1126 volume-title: Proc. 34th Int. Conf. Mach. Learn. year: 2017 ident: ref35 article-title: Model-agnostic meta-learning for fast adaptation of deep networks – ident: ref37 doi: 10.1109/tmm.2022.3165715 – ident: ref42 doi: 10.1007/978-3-319-60801-3_27 – ident: ref44 doi: 10.1109/CVPR42600.2020.00883 – ident: ref39 doi: 10.1109/iros45743.2020.9340933 – ident: ref21 doi: 10.1016/j.compbiomed.2021.104546 – ident: ref15 doi: 10.1007/s00521-010-0472-7 – ident: ref12 doi: 10.1088/1741-2552/aace8c – ident: ref38 doi: 10.1109/tnsre.2020.3027004 – ident: ref8 doi: 10.1109/tnsre.2023.3269055 – ident: ref4 doi: 10.3389/fbioe.2022.925970 – ident: ref16 doi: 10.1109/rbme.2013.2290621 – ident: ref10 doi: 10.1109/tnnls.2023.3287181 – ident: ref18 doi: 10.1109/ijcnn.2008.4634130 – ident: ref27 doi: 10.1016/j.neunet.2020.12.013 – ident: ref3 doi: 10.1109/jbhi.2016.2532354 – ident: ref31 doi: 10.1109/tim.2023.3277985 – ident: ref40 doi: 10.1088/1741-2560/3/3/003 – ident: ref17 doi: 10.1109/iembs.2005.1615701 – ident: ref24 doi: 10.1016/j.engappai.2024.108879 – ident: ref41 doi: 10.1109/tnsre.2007.906956 – ident: ref33 doi: 10.1109/tcds.2022.3174660 – ident: ref2 doi: 10.3390/s22155865 – ident: ref19 doi: 10.1109/tnsre.2017.2766365 – ident: ref46 doi: 10.1016/j.neucom.2022.09.078 – ident: ref47 doi: 10.1109/tbme.2021.3137184 – ident: ref32 doi: 10.1016/j.bspc.2022.104435 – ident: ref48 doi: 10.1109/ner49283.2021.9441085 – ident: ref26 doi: 10.1038/s41598-022-26882-9 |
| SSID | ssj0001637847 |
| Score | 2.364953 |
| Snippet | Motor imagery-based brain-computer interface (MI-BCI) technology establishes a connection between human intention and external devices in active... Motor imagery-based brain–computer interface (MI-BCI) technology establishes a connection between human intention and external devices in active... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 987 |
| SubjectTerms | Brain modeling Brain–computer interface (BCI) Classification Classification algorithms Computational modeling Datasets electroencephalogram (EEG) Electroencephalography Feature extraction Few shot learning Human-computer interface Imagery Learning Measurement metric learning motor imagery (MI) Motors Rehabilitation Training Transfer learning |
| Title | Improved Few-Shot Learning Based on Triplet Metric for Motor Imagery EEG Classification |
| URI | https://ieeexplore.ieee.org/document/10876177 https://www.proquest.com/docview/3246323237 |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2379-8939 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001637847 issn: 2379-8920 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66Jy8-V1xf5CAehK7bpM3juOquD3Avu4veSpqkCrKtrF1Ef72TtMUXgvRSSlvCfJnMfJPJDEJHmrA0ZEoGMuuJIGIqChQY5kCljo9QRonxWb4jdjWNbu7j-_qwuj8LY631yWe26279Xr4p9MKFykDDQXdDzpfRMhesOqz1GVBhlAvfUIxQLgMhSbOLGfbk6eT8YgxskMRdGlNJpfhmh3xjlV-rsTcxwzU0agZXZZY8dRdl2tXvP-o2_nv062i1djZxv5odG2jJ5ptoq58D0Z694WPs0z99XH0L3VXhBWvw0L4G48eixHXt1Qd8BqbO4CLHk7mLy5f41vXh0hgcXnxbAGvH1zNXC-MNDwaX2PfZdBlIHvQ2mg4Hk_OroO66EGgSsRIIJTc9osBupyA5WA8BLUN4JjMprOacWRFFEnhGqJlhxDqfRXOaRaHQmQJ93katvMjtDsKZoQRcQmZjqiKdGiUUz8JYxQKe2FR00EmDQfJcFddIPCnpycQBljjAkhqwDmo7mX55sRJnB-03sCW1_r0k4CbCNIOL7_7x2R5acX-vcvn2UaucL-wB-Bdleujn1QdTPsm1 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROLQX3lWXpw9VD5Wy3diOH0eguyyU3QuLyi1ybKeVKhIEWSH49YydrOhDSFUuUZQo1nwez3zj8QzAR0tFkQqjE10OVMKF4YlBw5yYIvARJhh1Mct3KsZX_Pw6u-4Oq8ezMN77mHzm--E27uW72s5DqAw1HHU3lfINrGSc86w9rvUSUhFMqthSjDKpE6XpYh8zHegvs5Ovl8gHadZnGdNMqz8sUWyt8s96HI3MaA2mi-G1uSW_-vOm6Nunvyo3_vf412G1czfJUTs_NmDJV5uwdVQh1b55JJ9ITACNkfUt-N4GGLwjI_-QXP6sG9JVX_1BjtHYOVJXZHYXIvMNmYROXJagy0smNfJ2cnYTqmE8kuHwlMROmyEHKcK-DVej4exknHR9FxJLuWiQUko3oAYtd4GSwxUR8XJUlrrUylsphVeca2QaqRVOUB-8FitZyVNlS4Ma_R6Wq7ryH4CUjlF0CoXPmOG2cEYZWaaZyRQ-8YXqwecFBvltW14jj7RkoPMAWB4AyzvAerAdZPrbi604e7C3gC3vNPA-R0cRJxpecueVzw7h7Xg2ucgvzqbfduFd-FOb2bcHy83d3O-jt9EUB3GOPQMRFs0C |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Few-Shot+Learning+Based+on+Triplet+Metric+for+Motor+Imagery+EEG+Classification&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=She%2C+Qingshan&rft.au=Li%2C+Chengjun&rft.au=Tan%2C+Tongcai&rft.au=Fang%2C+Feng&rft.date=2025-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2379-8920&rft.eissn=2379-8939&rft.volume=17&rft.issue=4&rft.spage=987&rft.epage=999&rft_id=info:doi/10.1109%2FTCDS.2025.3539398&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon |