Improved Few-Shot Learning Based on Triplet Metric for Motor Imagery EEG Classification

Motor imagery-based brain-computer interface (MI-BCI) technology establishes a connection between human intention and external devices in active rehabilitation. However, obtaining a mass of labeled EEG data is often difficult due to the strict requirement of experimental environment and the necessit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive and developmental systems Vol. 17; no. 4; pp. 987 - 999
Main Authors She, Qingshan, Li, Chengjun, Tan, Tongcai, Fang, Feng, Zhang, Yingchun
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2379-8920
2379-8939
DOI10.1109/TCDS.2025.3539398

Cover

Abstract Motor imagery-based brain-computer interface (MI-BCI) technology establishes a connection between human intention and external devices in active rehabilitation. However, obtaining a mass of labeled EEG data is often difficult due to the strict requirement of experimental environment and the necessity for highly cooperative subjects, which makes the application of few-shot learning of EEG classification particularly important. Therefore, we propose a method that combines few-shot learning with triplet metric learning, aiming to maintain strong generalization capabilities of the model with limited samples. First, we pretrain a base model using large auxiliary dataset, and then fine-tune it with a small number of labeled samples from the test subjects to obtain a specific model. During the training process, metric learning between anchor samples and positive/negative samples are employed to gradually converge similar samples, creating clearer class boundaries. Then the feature information of the samples is enhanced through an attention mechanism to obtain their essential features. The proposed framework was evaluated using two publicly available datasets and obtained classification accuracies of 68.29% and 84.40%, respectively, representing enhancements of 1.04% and 1.28% over existing state-of-the-art methods. In conclusion, experimental results indicate that our proposed approach can improve the effectiveness of MI-BCI rehabilitation training.
AbstractList Motor imagery-based brain-computer interface (MI-BCI) technology establishes a connection between human intention and external devices in active rehabilitation. However, obtaining a mass of labeled EEG data is often difficult due to the strict requirement of experimental environment and the necessity for highly cooperative subjects, which makes the application of few-shot learning of EEG classification particularly important. Therefore, we propose a method that combines few-shot learning with triplet metric learning, aiming to maintain strong generalization capabilities of the model with limited samples. First, we pretrain a base model using large auxiliary dataset, and then fine-tune it with a small number of labeled samples from the test subjects to obtain a specific model. During the training process, metric learning between anchor samples and positive/negative samples are employed to gradually converge similar samples, creating clearer class boundaries. Then the feature information of the samples is enhanced through an attention mechanism to obtain their essential features. The proposed framework was evaluated using two publicly available datasets and obtained classification accuracies of 68.29% and 84.40%, respectively, representing enhancements of 1.04% and 1.28% over existing state-of-the-art methods. In conclusion, experimental results indicate that our proposed approach can improve the effectiveness of MI-BCI rehabilitation training.
Author Zhang, Yingchun
She, Qingshan
Li, Chengjun
Tan, Tongcai
Fang, Feng
Author_xml – sequence: 1
  givenname: Qingshan
  orcidid: 0000-0001-5206-9833
  surname: She
  fullname: She, Qingshan
  email: qsshe@hdu.edu.cn
  organization: School of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
– sequence: 2
  givenname: Chengjun
  orcidid: 0009-0003-9807-8921
  surname: Li
  fullname: Li, Chengjun
  organization: School of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
– sequence: 3
  givenname: Tongcai
  orcidid: 0000-0002-1500-7905
  surname: Tan
  fullname: Tan, Tongcai
  email: 29ttc@sina.com
  organization: Department of Rehabilitation, Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
– sequence: 4
  givenname: Feng
  orcidid: 0000-0003-1004-7876
  surname: Fang
  fullname: Fang, Feng
  email: ranjitfeng@gmail.com
  organization: Department of Biomedical Engineering, University of Houston, Houston, TX, USA
– sequence: 5
  givenname: Yingchun
  orcidid: 0000-0002-1927-4103
  surname: Zhang
  fullname: Zhang, Yingchun
  email: y.zhang@miami.edu
  organization: Department of Biomedical Engineering, Desai Sethi Urology Institute, and Miami Project to Cure Paralysis University of Miami, Coral Gables, FL, USA
BookMark eNpNUMtOAjEUbQwmIvIBJi6auB7sY6aPpSIgCcQFGJdN7bRYAlNsBw1_bwnEmJvcV865J_dcg04TGgvALUYDjJF8WA6fFwOCSDWgFZVUigvQJZTLQuSh89cTdAX6Ka0RQphRLkreBe_T7S6Gb1vDsf0pFp-hhTOrY-ObFXzSKe9DA5fR7za2hXPbRm-gCxHOQ5vzdKtXNh7gaDSBw41OyTtvdOtDcwMund4k2z_XHngbj5bDl2L2OpkOH2eFISVrixLxGhHNGP7In1RUkLqqCXfSSWEN58yKspSMV9iwmhGLGKOGU1diYZyWjPbA_elu_uJrb1Or1mEfmyypaFagJAfPKHxCmRhSitapXfRbHQ8KI3W0UB0tVEcL1dnCzLk7cby19h9ecIY5p78BaWy2
CODEN ITCDA4
Cites_doi 10.1109/access.2019.2939623
10.1109/tbme.2010.2093133
10.1016/j.jneumeth.2020.109037
10.1109/jbhi.2022.3218453
10.1109/tnsre.2012.2197221
10.1109/tnnls.2020.3015505
10.1016/j.compbiomed.2023.106887
10.3390/s19061423
10.1109/tnsre.2023.3241846
10.1109/CVPR52688.2022.01415
10.1016/j.rehab.2020.03.015
10.1109/tcds.2023.3314351
10.1109/tnsre.2019.2923315
10.1016/j.patrec.2008.01.030
10.1016/j.compbiomed.2023.106860
10.3389/fnbot.2022.958052
10.1002/hbm.23730
10.1109/tmm.2022.3165715
10.1007/978-3-319-60801-3_27
10.1109/CVPR42600.2020.00883
10.1109/iros45743.2020.9340933
10.1016/j.compbiomed.2021.104546
10.1007/s00521-010-0472-7
10.1088/1741-2552/aace8c
10.1109/tnsre.2020.3027004
10.1109/tnsre.2023.3269055
10.3389/fbioe.2022.925970
10.1109/rbme.2013.2290621
10.1109/tnnls.2023.3287181
10.1109/ijcnn.2008.4634130
10.1016/j.neunet.2020.12.013
10.1109/jbhi.2016.2532354
10.1109/tim.2023.3277985
10.1088/1741-2560/3/3/003
10.1109/iembs.2005.1615701
10.1016/j.engappai.2024.108879
10.1109/tnsre.2007.906956
10.1109/tcds.2022.3174660
10.3390/s22155865
10.1109/tnsre.2017.2766365
10.1016/j.neucom.2022.09.078
10.1109/tbme.2021.3137184
10.1016/j.bspc.2022.104435
10.1109/ner49283.2021.9441085
10.1038/s41598-022-26882-9
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCDS.2025.3539398
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2379-8939
EndPage 999
ExternalDocumentID 10_1109_TCDS_2025_3539398
10876177
Genre orig-research
GrantInformation_xml – fundername: Wenzhou Major Scientific Research Project
  grantid: ZY2024025
– fundername: National Natural Science Foundation of China
  grantid: 62371172
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
AARMG
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c246t-407d02a661b1105382d5d27f9f98ec776e84496751c6d62e0663c73f418cfa963
IEDL.DBID RIE
ISSN 2379-8920
IngestDate Thu Sep 04 12:11:08 EDT 2025
Wed Oct 01 05:41:10 EDT 2025
Sun Sep 28 03:48:02 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-407d02a661b1105382d5d27f9f98ec776e84496751c6d62e0663c73f418cfa963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5206-9833
0000-0002-1927-4103
0009-0003-9807-8921
0000-0002-1500-7905
0000-0003-1004-7876
PQID 3246323237
PQPubID 85513
PageCount 13
ParticipantIDs proquest_journals_3246323237
crossref_primary_10_1109_TCDS_2025_3539398
ieee_primary_10876177
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cognitive and developmental systems
PublicationTitleAbbrev TCDS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref33
ref10
ref32
Pati (ref11) 2023
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref48
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
Nichol (ref36) 2018
ref9
ref4
ref3
ref6
ref5
ref40
Finn (ref35) 2017; 70
References_xml – ident: ref9
  doi: 10.1109/access.2019.2939623
– ident: ref14
  doi: 10.1109/tbme.2010.2093133
– ident: ref25
  doi: 10.1016/j.jneumeth.2020.109037
– ident: ref34
  doi: 10.1109/jbhi.2022.3218453
– ident: ref22
  doi: 10.1109/tnsre.2012.2197221
– ident: ref20
  doi: 10.1109/tnnls.2020.3015505
– ident: ref6
  doi: 10.1016/j.compbiomed.2023.106887
– ident: ref7
  doi: 10.3390/s19061423
– ident: ref5
  doi: 10.1109/tnsre.2023.3241846
– ident: ref45
  doi: 10.1109/CVPR52688.2022.01415
– ident: ref1
  doi: 10.1016/j.rehab.2020.03.015
– ident: ref28
  doi: 10.1109/tcds.2023.3314351
– ident: ref29
  doi: 10.1109/tnsre.2019.2923315
– ident: ref13
  doi: 10.1016/j.patrec.2008.01.030
– ident: ref30
  doi: 10.1016/j.compbiomed.2023.106860
– year: 2018
  ident: ref36
  article-title: On first-order meta-learning algorithms
– ident: ref43
  doi: 10.3389/fnbot.2022.958052
– volume-title: Proc. ICLR 2023 TinyPapers
  year: 2023
  ident: ref11
  article-title: Meta-learning for subject adaptation in low-data environments for EEG-based motor imagery brain-computer interfaces
– ident: ref23
  doi: 10.1002/hbm.23730
– volume: 70
  start-page: 1126
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  year: 2017
  ident: ref35
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
– ident: ref37
  doi: 10.1109/tmm.2022.3165715
– ident: ref42
  doi: 10.1007/978-3-319-60801-3_27
– ident: ref44
  doi: 10.1109/CVPR42600.2020.00883
– ident: ref39
  doi: 10.1109/iros45743.2020.9340933
– ident: ref21
  doi: 10.1016/j.compbiomed.2021.104546
– ident: ref15
  doi: 10.1007/s00521-010-0472-7
– ident: ref12
  doi: 10.1088/1741-2552/aace8c
– ident: ref38
  doi: 10.1109/tnsre.2020.3027004
– ident: ref8
  doi: 10.1109/tnsre.2023.3269055
– ident: ref4
  doi: 10.3389/fbioe.2022.925970
– ident: ref16
  doi: 10.1109/rbme.2013.2290621
– ident: ref10
  doi: 10.1109/tnnls.2023.3287181
– ident: ref18
  doi: 10.1109/ijcnn.2008.4634130
– ident: ref27
  doi: 10.1016/j.neunet.2020.12.013
– ident: ref3
  doi: 10.1109/jbhi.2016.2532354
– ident: ref31
  doi: 10.1109/tim.2023.3277985
– ident: ref40
  doi: 10.1088/1741-2560/3/3/003
– ident: ref17
  doi: 10.1109/iembs.2005.1615701
– ident: ref24
  doi: 10.1016/j.engappai.2024.108879
– ident: ref41
  doi: 10.1109/tnsre.2007.906956
– ident: ref33
  doi: 10.1109/tcds.2022.3174660
– ident: ref2
  doi: 10.3390/s22155865
– ident: ref19
  doi: 10.1109/tnsre.2017.2766365
– ident: ref46
  doi: 10.1016/j.neucom.2022.09.078
– ident: ref47
  doi: 10.1109/tbme.2021.3137184
– ident: ref32
  doi: 10.1016/j.bspc.2022.104435
– ident: ref48
  doi: 10.1109/ner49283.2021.9441085
– ident: ref26
  doi: 10.1038/s41598-022-26882-9
SSID ssj0001637847
Score 2.364953
Snippet Motor imagery-based brain-computer interface (MI-BCI) technology establishes a connection between human intention and external devices in active...
Motor imagery-based brain–computer interface (MI-BCI) technology establishes a connection between human intention and external devices in active...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 987
SubjectTerms Brain modeling
Brain–computer interface (BCI)
Classification
Classification algorithms
Computational modeling
Datasets
electroencephalogram (EEG)
Electroencephalography
Feature extraction
Few shot learning
Human-computer interface
Imagery
Learning
Measurement
metric learning
motor imagery (MI)
Motors
Rehabilitation
Training
Transfer learning
Title Improved Few-Shot Learning Based on Triplet Metric for Motor Imagery EEG Classification
URI https://ieeexplore.ieee.org/document/10876177
https://www.proquest.com/docview/3246323237
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2379-8939
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001637847
  issn: 2379-8920
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66Jy8-V1xf5CAehK7bpM3juOquD3Avu4veSpqkCrKtrF1Ef72TtMUXgvRSSlvCfJnMfJPJDEJHmrA0ZEoGMuuJIGIqChQY5kCljo9QRonxWb4jdjWNbu7j-_qwuj8LY631yWe26279Xr4p9MKFykDDQXdDzpfRMhesOqz1GVBhlAvfUIxQLgMhSbOLGfbk6eT8YgxskMRdGlNJpfhmh3xjlV-rsTcxwzU0agZXZZY8dRdl2tXvP-o2_nv062i1djZxv5odG2jJ5ptoq58D0Z694WPs0z99XH0L3VXhBWvw0L4G48eixHXt1Qd8BqbO4CLHk7mLy5f41vXh0hgcXnxbAGvH1zNXC-MNDwaX2PfZdBlIHvQ2mg4Hk_OroO66EGgSsRIIJTc9osBupyA5WA8BLUN4JjMprOacWRFFEnhGqJlhxDqfRXOaRaHQmQJ93katvMjtDsKZoQRcQmZjqiKdGiUUz8JYxQKe2FR00EmDQfJcFddIPCnpycQBljjAkhqwDmo7mX55sRJnB-03sCW1_r0k4CbCNIOL7_7x2R5acX-vcvn2UaucL-wB-Bdleujn1QdTPsm1
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROLQX3lWXpw9VD5Wy3diOH0eguyyU3QuLyi1ybKeVKhIEWSH49YydrOhDSFUuUZQo1nwez3zj8QzAR0tFkQqjE10OVMKF4YlBw5yYIvARJhh1Mct3KsZX_Pw6u-4Oq8ezMN77mHzm--E27uW72s5DqAw1HHU3lfINrGSc86w9rvUSUhFMqthSjDKpE6XpYh8zHegvs5Ovl8gHadZnGdNMqz8sUWyt8s96HI3MaA2mi-G1uSW_-vOm6Nunvyo3_vf412G1czfJUTs_NmDJV5uwdVQh1b55JJ9ITACNkfUt-N4GGLwjI_-QXP6sG9JVX_1BjtHYOVJXZHYXIvMNmYROXJagy0smNfJ2cnYTqmE8kuHwlMROmyEHKcK-DVej4exknHR9FxJLuWiQUko3oAYtd4GSwxUR8XJUlrrUylsphVeca2QaqRVOUB-8FitZyVNlS4Ma_R6Wq7ryH4CUjlF0CoXPmOG2cEYZWaaZyRQ-8YXqwecFBvltW14jj7RkoPMAWB4AyzvAerAdZPrbi604e7C3gC3vNPA-R0cRJxpecueVzw7h7Xg2ucgvzqbfduFd-FOb2bcHy83d3O-jt9EUB3GOPQMRFs0C
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Few-Shot+Learning+Based+on+Triplet+Metric+for+Motor+Imagery+EEG+Classification&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=She%2C+Qingshan&rft.au=Li%2C+Chengjun&rft.au=Tan%2C+Tongcai&rft.au=Fang%2C+Feng&rft.date=2025-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2379-8920&rft.eissn=2379-8939&rft.volume=17&rft.issue=4&rft.spage=987&rft.epage=999&rft_id=info:doi/10.1109%2FTCDS.2025.3539398&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon