Cooperative Spectrum Sensing With Ensemble Empirical Mode Decomposition and Dual-Channel Composite Neural Network for Complex Environments

Conventional spectrum sensing (SS) algorithms demonstrate subpar detection performance in complex environments. In this study, we use a strategy that integrates deep learning (DL) with signal-denoising techniques. To improve detection performance and reduce noise interference, the ensemble empirical...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 25; no. 13; pp. 23416 - 23426
Main Authors Zheng, Bingfeng, Wang, Yonghua, Xu, Guanghai, Li, Jiawen
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2024.3493612

Cover

Abstract Conventional spectrum sensing (SS) algorithms demonstrate subpar detection performance in complex environments. In this study, we use a strategy that integrates deep learning (DL) with signal-denoising techniques. To improve detection performance and reduce noise interference, the ensemble empirical mode decomposition (EEMD) algorithm is used to eliminate noise components from the signal. Subsequently, a Riemannian mean-based algorithm is used to fuse multiple sensing data in a multiantenna system. The fused data serve as inputs to a dual-channel composite neural network (DCCNN), leading to the development of an EEMD-DCCNN-based SS algorithm. Experimental results demonstrate that the proposed algorithm significantly outperforms traditional algorithms regarding detection performance. In particular, the proposed algorithm achieves a detection probability of 94.6% and a false alarm probability of 3.5% at SNR <inline-formula> <tex-math notation="LaTeX">= -18 </tex-math></inline-formula> dB.
AbstractList Conventional spectrum sensing (SS) algorithms demonstrate subpar detection performance in complex environments. In this study, we use a strategy that integrates deep learning (DL) with signal-denoising techniques. To improve detection performance and reduce noise interference, the ensemble empirical mode decomposition (EEMD) algorithm is used to eliminate noise components from the signal. Subsequently, a Riemannian mean-based algorithm is used to fuse multiple sensing data in a multiantenna system. The fused data serve as inputs to a dual-channel composite neural network (DCCNN), leading to the development of an EEMD-DCCNN-based SS algorithm. Experimental results demonstrate that the proposed algorithm significantly outperforms traditional algorithms regarding detection performance. In particular, the proposed algorithm achieves a detection probability of 94.6% and a false alarm probability of 3.5% at SNR [Formula Omitted] dB.
Conventional spectrum sensing (SS) algorithms demonstrate subpar detection performance in complex environments. In this study, we use a strategy that integrates deep learning (DL) with signal-denoising techniques. To improve detection performance and reduce noise interference, the ensemble empirical mode decomposition (EEMD) algorithm is used to eliminate noise components from the signal. Subsequently, a Riemannian mean-based algorithm is used to fuse multiple sensing data in a multiantenna system. The fused data serve as inputs to a dual-channel composite neural network (DCCNN), leading to the development of an EEMD-DCCNN-based SS algorithm. Experimental results demonstrate that the proposed algorithm significantly outperforms traditional algorithms regarding detection performance. In particular, the proposed algorithm achieves a detection probability of 94.6% and a false alarm probability of 3.5% at SNR <inline-formula> <tex-math notation="LaTeX">= -18 </tex-math></inline-formula> dB.
Author Xu, Guanghai
Li, Jiawen
Zheng, Bingfeng
Wang, Yonghua
Author_xml – sequence: 1
  givenname: Bingfeng
  orcidid: 0009-0001-8855-4993
  surname: Zheng
  fullname: Zheng, Bingfeng
  organization: School of Automation, Guangdong University of Technology, Guangzhou, China
– sequence: 2
  givenname: Yonghua
  orcidid: 0000-0002-0051-7224
  surname: Wang
  fullname: Wang, Yonghua
  email: wangyonghua@gdut.edu.cn
  organization: School of Automation, Guangdong University of Technology, Guangzhou, China
– sequence: 3
  givenname: Guanghai
  orcidid: 0009-0003-2740-0581
  surname: Xu
  fullname: Xu, Guanghai
  organization: School of Automation, Guangdong University of Technology, Guangzhou, China
– sequence: 4
  givenname: Jiawen
  surname: Li
  fullname: Li, Jiawen
  organization: School of Automation, Guangdong University of Technology, Guangzhou, China
BookMark eNpNkMlOwzAURS0EElD4ACQWllineMq0RKFMgrIoCHaR7bxQQ2IHO2H4Bb6alHbB6l3pDk86-2jbOgsIHVEypZTkpzeL2XzKCBNTLnKeULaF9mgcZxFNRba90pxEgqfPu2g_hFdCaJ7G6R76KZzrwMvefABedKB7P7R4ATYY-4KfTL_EMxugVQ3gWdsZb7Rs8J2rAJ-Ddm3ngumNs1jaCp8PsomKpbQWGlxsTMBzGPxYmkP_6fwbrp3_Mxv4Grc_jHe2BduHA7RTyybA4eZO0OPF7KG4im7vL6-Ls9tIM5H0EdUi1xURBARRVaVVzFQmhBKKSa2yOk5jIvnoKgmcSpbLJKkywuqExiRTwCfoZL3befc-QOjLVzd4O74sOWMpyRnhfEzRdUp7F4KHuuy8aaX_LikpV8jLFfJyhbzcIB87x-uOAYB_-TRmWZrxX25Jgdk
CODEN ISJEAZ
Cites_doi 10.1109/SAFEPROCESS45799.2019.9213442
10.1109/SURV.2009.090109
10.1109/ISIE45552.2021.9576379
10.1109/WCNC.2016.7564840
10.1109/LCOMM.2020.3037273
10.1142/S1793536909000047
10.1109/LWC.2019.2939314
10.1016/j.dsp.2017.06.019
10.1080/0952813X.2020.1818291
10.1016/j.phycom.2023.102273
10.1109/JSYST.2021.3056547
10.1109/ACCESS.2020.3019422
10.1109/CISP-BMEI.2017.8302156
10.1145/3065386
10.1109/JSYST.2020.3001407
10.1109/ACCESS.2020.2995633
10.1109/TCSII.2022.3174342
10.1016/j.enbuild.2018.10.013
10.1109/JSEN.2014.2322034
10.3390/electronics11091379
10.1109/JSEN.2023.3346209
10.3390/e22010094
10.1109/JSAC.2019.2933892
10.1109/JSEN.2021.3128395
10.3390/s19010126
10.1109/JSYST.2023.3266225
10.1109/CVPR.2016.90
10.1109/JSEN.2019.2903408
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2024.3493612
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 23426
ExternalDocumentID 10_1109_JSEN_2024_3493612
10752878
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61971147
  funderid: 10.13039/501100001809
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation
  grantid: 2023A1515011888
  funderid: 10.13039/501100021171
– fundername: Guangdong Province Graduate Education Innovation Project
  grantid: 2024JGXM_049
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c246t-1c49cd040e40bddcb52b844b4b2acb8f5750a30e4bae31a29a66d802f61508be3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Sat Oct 25 08:47:02 EDT 2025
Wed Oct 01 05:51:14 EDT 2025
Wed Aug 27 02:12:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-1c49cd040e40bddcb52b844b4b2acb8f5750a30e4bae31a29a66d802f61508be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0051-7224
0009-0003-2740-0581
0009-0001-8855-4993
PQID 3227092033
PQPubID 75733
PageCount 11
ParticipantIDs crossref_primary_10_1109_JSEN_2024_3493612
ieee_primary_10752878
proquest_journals_3227092033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
Kingma (ref29)
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Zhivomirov (ref30) 2018; 15
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref22
  doi: 10.1109/SAFEPROCESS45799.2019.9213442
– ident: ref3
  doi: 10.1109/SURV.2009.090109
– volume: 15
  start-page: 14
  issue: 1
  year: 2018
  ident: ref30
  article-title: A method for colored noise generation
  publication-title: Romanian J. Acoust. Vib.
– ident: ref26
  doi: 10.1109/ISIE45552.2021.9576379
– ident: ref6
  doi: 10.1109/WCNC.2016.7564840
– ident: ref15
  doi: 10.1109/LCOMM.2020.3037273
– ident: ref24
  doi: 10.1142/S1793536909000047
– ident: ref14
  doi: 10.1109/LWC.2019.2939314
– ident: ref25
  doi: 10.1016/j.dsp.2017.06.019
– ident: ref1
  doi: 10.1080/0952813X.2020.1818291
– ident: ref20
  doi: 10.1016/j.phycom.2023.102273
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref29
  article-title: Adam: A method for stochastic optimization
– ident: ref19
  doi: 10.1109/JSYST.2021.3056547
– ident: ref21
  doi: 10.1109/ACCESS.2020.3019422
– ident: ref5
  doi: 10.1109/CISP-BMEI.2017.8302156
– ident: ref10
  doi: 10.1145/3065386
– ident: ref17
  doi: 10.1109/JSYST.2020.3001407
– ident: ref13
  doi: 10.1109/ACCESS.2020.2995633
– ident: ref8
  doi: 10.1109/TCSII.2022.3174342
– ident: ref23
  doi: 10.1016/j.enbuild.2018.10.013
– ident: ref4
  doi: 10.1109/JSEN.2014.2322034
– ident: ref27
  doi: 10.3390/electronics11091379
– ident: ref16
  doi: 10.1109/JSEN.2023.3346209
– ident: ref18
  doi: 10.3390/e22010094
– ident: ref11
  doi: 10.1109/JSAC.2019.2933892
– ident: ref12
  doi: 10.1109/JSEN.2021.3128395
– ident: ref2
  doi: 10.3390/s19010126
– ident: ref9
  doi: 10.1109/JSYST.2023.3266225
– ident: ref28
  doi: 10.1109/CVPR.2016.90
– ident: ref7
  doi: 10.1109/JSEN.2019.2903408
SSID ssj0019757
Score 2.4405568
Snippet Conventional spectrum sensing (SS) algorithms demonstrate subpar detection performance in complex environments. In this study, we use a strategy that...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 23416
SubjectTerms Algorithms
Classification algorithms
Cognitive radio (CR)
Cooperative communication
cooperative spectrum sensing (CSS)
Deep learning
deep learning (DL)
Empirical mode decomposition
ensemble empirical mode decomposition (EEMD)
False alarms
Fuses
Interference
Machine learning
Neural networks
Radio spectrum management
Riemannian mean
Sensors
Signal to noise ratio
Title Cooperative Spectrum Sensing With Ensemble Empirical Mode Decomposition and Dual-Channel Composite Neural Network for Complex Environments
URI https://ieeexplore.ieee.org/document/10752878
https://www.proquest.com/docview/3227092033
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH6CXrYdBuuY6CjIB06T0jmO88NH1AYhJHqBit4iO34ZaG1a0VQa_An7q7EdF3VMSNwiOY4sfX72c_y97wM4FRUPdazTwCT7VcDRHFhNFIUBmq1JcoWMSlvvfDVOLib8chpPfbG6q4VBREc-w4F9dHf5elGu7a8yE-FpbDL8bBd20yxpi7VergxE6mQ9TQTTgEfp1F9hhlT8vLzOx-YoyPgg4iJKQvbPJuRcVf5bit3-cr4H483IWlrJ78G6UYPy6ZVo47uHvg-ffaZJztqp8QV2sO7Cpy39wS588Bbod49f4e9wsVhiqwNOrCt987Cek2vLb69_kdv75o7k9QrnaoYkny_vnbQIsVZqZISWmO7ZX0TWmozWchbYwoUaZ2ToG5FYJRDTadxSz4nJl13jDP-QfKvg7gAm5_nN8CLwRg1ByXjSBGHJRanNcoCcKq1LFTOVca64YrJUWWVSQioj06okRqFkQiaJziirnBq9wugbdOpFjYdAuODafk5ItKpLXKS60nEipa6sBXnSgx8b5Iplq8dRuHMMFYWFubAwFx7mHhxYJLZebEHoQX8DduFDdlWYlS2lgtEo-v5GtyP4yKz7ryPr9qFjcMBjk5I06sRNxWczvd_0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Bb9MwFH6CcRg7DBhDdAzwgRNSiuO8JPURdZnK2HLZJnqL7PiFTbRptaUS7CfsV2M7LiogJG6RHEeWPj_7Of7e9wG8kw3GJjV5ZJP9JkKyB1YbRXFEdmtSqElw5eqdz8pscokn03QaitV9LQwRefIZDd2jv8s3i3rlfpXZCM9Tm-GPHsKjFBHTvlzr16WBzL2wp41hHmGST8MlZszlh5PzorSHQYHDBGWSxeK3bcj7qvy1GPsd5vgJlOux9cSSb8NVp4f13R-yjf89-KewG3JN9rGfHM_gAbV7sLOhQLgH28EE_erHc7gfLxZL6pXAmfOl725Wc3buGO7tV_blurtiRXtLcz0jVsyX115chDkzNXZEjpoe-F9MtYYdrdQscqULLc3YODQSc1ogtlPZk8-ZzZh944y-s2Kj5G4fLo-Li_EkClYNUS0w66K4RlkbuyAQcm1MrVOhR4gatVC1HjU2KeQqsa1aURIrIVWWmREXjdej15S8gK120dJLYCjRuM9JRU53CWVuGpNmSpnGmZBnA3i_Rq5a9ooclT_JcFk5mCsHcxVgHsC-Q2LjxR6EARyuwa5C0N5Wdm3LuRQ8SQ7-0e0tbE8uzk6r00_l51fwWDgvYE_dPYQtiwm9tglKp9_4afkTEiPjQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperative+Spectrum+Sensing+With+Ensemble+Empirical+Mode+Decomposition+and+Dual-Channel+Composite+Neural+Network+for+Complex+Environments&rft.jtitle=IEEE+sensors+journal&rft.au=Zheng%2C+Bingfeng&rft.au=Wang%2C+Yonghua&rft.au=Xu%2C+Guanghai&rft.au=Li%2C+Jiawen&rft.date=2025-07-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=13&rft.spage=23416&rft.epage=23426&rft_id=info:doi/10.1109%2FJSEN.2024.3493612&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2024_3493612
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon