Cooperative Spectrum Sensing With Ensemble Empirical Mode Decomposition and Dual-Channel Composite Neural Network for Complex Environments
Conventional spectrum sensing (SS) algorithms demonstrate subpar detection performance in complex environments. In this study, we use a strategy that integrates deep learning (DL) with signal-denoising techniques. To improve detection performance and reduce noise interference, the ensemble empirical...
Saved in:
| Published in | IEEE sensors journal Vol. 25; no. 13; pp. 23416 - 23426 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1530-437X 1558-1748 |
| DOI | 10.1109/JSEN.2024.3493612 |
Cover
| Abstract | Conventional spectrum sensing (SS) algorithms demonstrate subpar detection performance in complex environments. In this study, we use a strategy that integrates deep learning (DL) with signal-denoising techniques. To improve detection performance and reduce noise interference, the ensemble empirical mode decomposition (EEMD) algorithm is used to eliminate noise components from the signal. Subsequently, a Riemannian mean-based algorithm is used to fuse multiple sensing data in a multiantenna system. The fused data serve as inputs to a dual-channel composite neural network (DCCNN), leading to the development of an EEMD-DCCNN-based SS algorithm. Experimental results demonstrate that the proposed algorithm significantly outperforms traditional algorithms regarding detection performance. In particular, the proposed algorithm achieves a detection probability of 94.6% and a false alarm probability of 3.5% at SNR <inline-formula> <tex-math notation="LaTeX">= -18 </tex-math></inline-formula> dB. |
|---|---|
| AbstractList | Conventional spectrum sensing (SS) algorithms demonstrate subpar detection performance in complex environments. In this study, we use a strategy that integrates deep learning (DL) with signal-denoising techniques. To improve detection performance and reduce noise interference, the ensemble empirical mode decomposition (EEMD) algorithm is used to eliminate noise components from the signal. Subsequently, a Riemannian mean-based algorithm is used to fuse multiple sensing data in a multiantenna system. The fused data serve as inputs to a dual-channel composite neural network (DCCNN), leading to the development of an EEMD-DCCNN-based SS algorithm. Experimental results demonstrate that the proposed algorithm significantly outperforms traditional algorithms regarding detection performance. In particular, the proposed algorithm achieves a detection probability of 94.6% and a false alarm probability of 3.5% at SNR [Formula Omitted] dB. Conventional spectrum sensing (SS) algorithms demonstrate subpar detection performance in complex environments. In this study, we use a strategy that integrates deep learning (DL) with signal-denoising techniques. To improve detection performance and reduce noise interference, the ensemble empirical mode decomposition (EEMD) algorithm is used to eliminate noise components from the signal. Subsequently, a Riemannian mean-based algorithm is used to fuse multiple sensing data in a multiantenna system. The fused data serve as inputs to a dual-channel composite neural network (DCCNN), leading to the development of an EEMD-DCCNN-based SS algorithm. Experimental results demonstrate that the proposed algorithm significantly outperforms traditional algorithms regarding detection performance. In particular, the proposed algorithm achieves a detection probability of 94.6% and a false alarm probability of 3.5% at SNR <inline-formula> <tex-math notation="LaTeX">= -18 </tex-math></inline-formula> dB. |
| Author | Xu, Guanghai Li, Jiawen Zheng, Bingfeng Wang, Yonghua |
| Author_xml | – sequence: 1 givenname: Bingfeng orcidid: 0009-0001-8855-4993 surname: Zheng fullname: Zheng, Bingfeng organization: School of Automation, Guangdong University of Technology, Guangzhou, China – sequence: 2 givenname: Yonghua orcidid: 0000-0002-0051-7224 surname: Wang fullname: Wang, Yonghua email: wangyonghua@gdut.edu.cn organization: School of Automation, Guangdong University of Technology, Guangzhou, China – sequence: 3 givenname: Guanghai orcidid: 0009-0003-2740-0581 surname: Xu fullname: Xu, Guanghai organization: School of Automation, Guangdong University of Technology, Guangzhou, China – sequence: 4 givenname: Jiawen surname: Li fullname: Li, Jiawen organization: School of Automation, Guangdong University of Technology, Guangzhou, China |
| BookMark | eNpNkMlOwzAURS0EElD4ACQWllineMq0RKFMgrIoCHaR7bxQQ2IHO2H4Bb6alHbB6l3pDk86-2jbOgsIHVEypZTkpzeL2XzKCBNTLnKeULaF9mgcZxFNRba90pxEgqfPu2g_hFdCaJ7G6R76KZzrwMvefABedKB7P7R4ATYY-4KfTL_EMxugVQ3gWdsZb7Rs8J2rAJ-Ddm3ngumNs1jaCp8PsomKpbQWGlxsTMBzGPxYmkP_6fwbrp3_Mxv4Grc_jHe2BduHA7RTyybA4eZO0OPF7KG4im7vL6-Ls9tIM5H0EdUi1xURBARRVaVVzFQmhBKKSa2yOk5jIvnoKgmcSpbLJKkywuqExiRTwCfoZL3befc-QOjLVzd4O74sOWMpyRnhfEzRdUp7F4KHuuy8aaX_LikpV8jLFfJyhbzcIB87x-uOAYB_-TRmWZrxX25Jgdk |
| CODEN | ISJEAZ |
| Cites_doi | 10.1109/SAFEPROCESS45799.2019.9213442 10.1109/SURV.2009.090109 10.1109/ISIE45552.2021.9576379 10.1109/WCNC.2016.7564840 10.1109/LCOMM.2020.3037273 10.1142/S1793536909000047 10.1109/LWC.2019.2939314 10.1016/j.dsp.2017.06.019 10.1080/0952813X.2020.1818291 10.1016/j.phycom.2023.102273 10.1109/JSYST.2021.3056547 10.1109/ACCESS.2020.3019422 10.1109/CISP-BMEI.2017.8302156 10.1145/3065386 10.1109/JSYST.2020.3001407 10.1109/ACCESS.2020.2995633 10.1109/TCSII.2022.3174342 10.1016/j.enbuild.2018.10.013 10.1109/JSEN.2014.2322034 10.3390/electronics11091379 10.1109/JSEN.2023.3346209 10.3390/e22010094 10.1109/JSAC.2019.2933892 10.1109/JSEN.2021.3128395 10.3390/s19010126 10.1109/JSYST.2023.3266225 10.1109/CVPR.2016.90 10.1109/JSEN.2019.2903408 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2024.3493612 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 23426 |
| ExternalDocumentID | 10_1109_JSEN_2024_3493612 10752878 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61971147 funderid: 10.13039/501100001809 – fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation grantid: 2023A1515011888 funderid: 10.13039/501100021171 – fundername: Guangdong Province Graduate Education Innovation Project grantid: 2024JGXM_049 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c246t-1c49cd040e40bddcb52b844b4b2acb8f5750a30e4bae31a29a66d802f61508be3 |
| IEDL.DBID | RIE |
| ISSN | 1530-437X |
| IngestDate | Sat Oct 25 08:47:02 EDT 2025 Wed Oct 01 05:51:14 EDT 2025 Wed Aug 27 02:12:59 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-1c49cd040e40bddcb52b844b4b2acb8f5750a30e4bae31a29a66d802f61508be3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0051-7224 0009-0003-2740-0581 0009-0001-8855-4993 |
| PQID | 3227092033 |
| PQPubID | 75733 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_JSEN_2024_3493612 ieee_primary_10752878 proquest_journals_3227092033 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 Kingma (ref29) ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Zhivomirov (ref30) 2018; 15 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref22 doi: 10.1109/SAFEPROCESS45799.2019.9213442 – ident: ref3 doi: 10.1109/SURV.2009.090109 – volume: 15 start-page: 14 issue: 1 year: 2018 ident: ref30 article-title: A method for colored noise generation publication-title: Romanian J. Acoust. Vib. – ident: ref26 doi: 10.1109/ISIE45552.2021.9576379 – ident: ref6 doi: 10.1109/WCNC.2016.7564840 – ident: ref15 doi: 10.1109/LCOMM.2020.3037273 – ident: ref24 doi: 10.1142/S1793536909000047 – ident: ref14 doi: 10.1109/LWC.2019.2939314 – ident: ref25 doi: 10.1016/j.dsp.2017.06.019 – ident: ref1 doi: 10.1080/0952813X.2020.1818291 – ident: ref20 doi: 10.1016/j.phycom.2023.102273 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref29 article-title: Adam: A method for stochastic optimization – ident: ref19 doi: 10.1109/JSYST.2021.3056547 – ident: ref21 doi: 10.1109/ACCESS.2020.3019422 – ident: ref5 doi: 10.1109/CISP-BMEI.2017.8302156 – ident: ref10 doi: 10.1145/3065386 – ident: ref17 doi: 10.1109/JSYST.2020.3001407 – ident: ref13 doi: 10.1109/ACCESS.2020.2995633 – ident: ref8 doi: 10.1109/TCSII.2022.3174342 – ident: ref23 doi: 10.1016/j.enbuild.2018.10.013 – ident: ref4 doi: 10.1109/JSEN.2014.2322034 – ident: ref27 doi: 10.3390/electronics11091379 – ident: ref16 doi: 10.1109/JSEN.2023.3346209 – ident: ref18 doi: 10.3390/e22010094 – ident: ref11 doi: 10.1109/JSAC.2019.2933892 – ident: ref12 doi: 10.1109/JSEN.2021.3128395 – ident: ref2 doi: 10.3390/s19010126 – ident: ref9 doi: 10.1109/JSYST.2023.3266225 – ident: ref28 doi: 10.1109/CVPR.2016.90 – ident: ref7 doi: 10.1109/JSEN.2019.2903408 |
| SSID | ssj0019757 |
| Score | 2.4405568 |
| Snippet | Conventional spectrum sensing (SS) algorithms demonstrate subpar detection performance in complex environments. In this study, we use a strategy that... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 23416 |
| SubjectTerms | Algorithms Classification algorithms Cognitive radio (CR) Cooperative communication cooperative spectrum sensing (CSS) Deep learning deep learning (DL) Empirical mode decomposition ensemble empirical mode decomposition (EEMD) False alarms Fuses Interference Machine learning Neural networks Radio spectrum management Riemannian mean Sensors Signal to noise ratio |
| Title | Cooperative Spectrum Sensing With Ensemble Empirical Mode Decomposition and Dual-Channel Composite Neural Network for Complex Environments |
| URI | https://ieeexplore.ieee.org/document/10752878 https://www.proquest.com/docview/3227092033 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH6CXrYdBuuY6CjIB06T0jmO88NH1AYhJHqBit4iO34ZaG1a0VQa_An7q7EdF3VMSNwiOY4sfX72c_y97wM4FRUPdazTwCT7VcDRHFhNFIUBmq1JcoWMSlvvfDVOLib8chpPfbG6q4VBREc-w4F9dHf5elGu7a8yE-FpbDL8bBd20yxpi7VergxE6mQ9TQTTgEfp1F9hhlT8vLzOx-YoyPgg4iJKQvbPJuRcVf5bit3-cr4H483IWlrJ78G6UYPy6ZVo47uHvg-ffaZJztqp8QV2sO7Cpy39wS588Bbod49f4e9wsVhiqwNOrCt987Cek2vLb69_kdv75o7k9QrnaoYkny_vnbQIsVZqZISWmO7ZX0TWmozWchbYwoUaZ2ToG5FYJRDTadxSz4nJl13jDP-QfKvg7gAm5_nN8CLwRg1ByXjSBGHJRanNcoCcKq1LFTOVca64YrJUWWVSQioj06okRqFkQiaJziirnBq9wugbdOpFjYdAuODafk5ItKpLXKS60nEipa6sBXnSgx8b5Iplq8dRuHMMFYWFubAwFx7mHhxYJLZebEHoQX8DduFDdlWYlS2lgtEo-v5GtyP4yKz7ryPr9qFjcMBjk5I06sRNxWczvd_0 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Bb9MwFH6CcRg7DBhDdAzwgRNSiuO8JPURdZnK2HLZJnqL7PiFTbRptaUS7CfsV2M7LiogJG6RHEeWPj_7Of7e9wG8kw3GJjV5ZJP9JkKyB1YbRXFEdmtSqElw5eqdz8pscokn03QaitV9LQwRefIZDd2jv8s3i3rlfpXZCM9Tm-GPHsKjFBHTvlzr16WBzL2wp41hHmGST8MlZszlh5PzorSHQYHDBGWSxeK3bcj7qvy1GPsd5vgJlOux9cSSb8NVp4f13R-yjf89-KewG3JN9rGfHM_gAbV7sLOhQLgH28EE_erHc7gfLxZL6pXAmfOl725Wc3buGO7tV_blurtiRXtLcz0jVsyX115chDkzNXZEjpoe-F9MtYYdrdQscqULLc3YODQSc1ogtlPZk8-ZzZh944y-s2Kj5G4fLo-Li_EkClYNUS0w66K4RlkbuyAQcm1MrVOhR4gatVC1HjU2KeQqsa1aURIrIVWWmREXjdej15S8gK120dJLYCjRuM9JRU53CWVuGpNmSpnGmZBnA3i_Rq5a9ooclT_JcFk5mCsHcxVgHsC-Q2LjxR6EARyuwa5C0N5Wdm3LuRQ8SQ7-0e0tbE8uzk6r00_l51fwWDgvYE_dPYQtiwm9tglKp9_4afkTEiPjQQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperative+Spectrum+Sensing+With+Ensemble+Empirical+Mode+Decomposition+and+Dual-Channel+Composite+Neural+Network+for+Complex+Environments&rft.jtitle=IEEE+sensors+journal&rft.au=Zheng%2C+Bingfeng&rft.au=Wang%2C+Yonghua&rft.au=Xu%2C+Guanghai&rft.au=Li%2C+Jiawen&rft.date=2025-07-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=13&rft.spage=23416&rft.epage=23426&rft_id=info:doi/10.1109%2FJSEN.2024.3493612&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2024_3493612 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |