MMFO: modified moth flame optimization algorithm for region based RGB color image segmentation
Region-based color image segmentation is elementary steps in image processing and computer vision. Color image segmentation is a region growing approach in which RGB color image is divided into the different cluster based on their pixel properties. The region-based color image segmentation has faced...
Saved in:
| Published in | International journal of electrical and computer engineering (Malacca, Malacca) Vol. 10; no. 1; p. 196 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Yogyakarta
IAES Institute of Advanced Engineering and Science
01.02.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2088-8708 2088-8708 |
| DOI | 10.11591/ijece.v10i1.pp196-201 |
Cover
| Abstract | Region-based color image segmentation is elementary steps in image processing and computer vision. Color image segmentation is a region growing approach in which RGB color image is divided into the different cluster based on their pixel properties. The region-based color image segmentation has faced the problem of multidimensionality. The color image is considered in five-dimensional problems, in which three dimensions in color (RGB) and two dimensions in geometry (luminosity layer and chromaticity layer). In this paper, L*a*b color space conversion has been used to reduce the one dimension and geometrically it converts in the array hence the further one dimension has been reduced. This paper introduced an improved algorithm MMFO (Modified Moth Flame Optimization) Algorithm for RGB color image Segmentation which is based on bio-inspired techniques for color image segmentation. The simulation results of MMFO for region based color image segmentation are performed better as compared to PSO and GA, in terms of computation times for all the images. The experiment results of this method gives clear segments based on the different color and the different no. of clusters is used during the segmentation process. |
|---|---|
| AbstractList | Region-based color image segmentation is elementary steps in image processing and computer vision. Color image segmentation is a region growing approach in which RGB color image is divided into the different cluster based on their pixel properties. The region-based color image segmentation has faced the problem of multidimensionality. The color image is considered in five-dimensional problems, in which three dimensions in color (RGB) and two dimensions in geometry (luminosity layer and chromaticity layer). In this paper, L*a*b color space conversion has been used to reduce the one dimension and geometrically it converts in the array hence the further one dimension has been reduced. This paper introduced an improved algorithm MMFO (Modified Moth Flame Optimization) Algorithm for RGB color image Segmentation which is based on bio-inspired techniques for color image segmentation. The simulation results of MMFO for region based color image segmentation are performed better as compared to PSO and GA, in terms of computation times for all the images. The experiment results of this method gives clear segments based on the different color and the different no. of clusters is used during the segmentation process. |
| Author | Jaiswal, Varshali Varma, Sunita Sharma, Varsha |
| Author_xml | – sequence: 1 givenname: Varshali surname: Jaiswal fullname: Jaiswal, Varshali – sequence: 2 givenname: Varsha surname: Sharma fullname: Sharma, Varsha – sequence: 3 givenname: Sunita surname: Varma fullname: Varma, Sunita |
| BookMark | eNqNkFFLwzAQx4NMcM59BSn43JlL07QVX3S4KWwMRF8NWXfZMtqmpp0yP72x80F80Xu548_9juN3SnqVrZCQc6AjgDiDS7PFHEdvQA2M6hoyETIKR6TPaJqGaULT3o_5hAybZkt9pUKwLO6Tl_l8srgKSrsy2uDKD-0m0IUqMbB1a0rzoVpjq0AVa-tMuykDbV3gcP0VLlXjkcfpbZDbwsemVGsMGlyXWLUdd0aOtSoaHH73AXme3D2N78PZYvowvpmFOeMCQqWZZpHm8RK4WEISp4mGFY-ihLJoSeMcQSMTQnPgWYKaYsIUZVxhFKmYZ9GAJIe7u6pW-3dVFLJ2_h23l0BlZ0p2pmRnSnampDflyYsDWTv7usOmlVu7c5V_VrIoAyY4xNxvicNW7mzTONT_P3_9C8zNQU3rlCn-wj8BjN2TMA |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2021_103324 crossref_primary_10_1007_s11831_022_09801_z |
| ContentType | Journal Article |
| Copyright | Copyright IAES Institute of Advanced Engineering and Science Feb 2020 |
| Copyright_xml | – notice: Copyright IAES Institute of Advanced Engineering and Science Feb 2020 |
| DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BVBZV CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY |
| DOI | 10.11591/ijece.v10i1.pp196-201 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology Collection (ProQuest) East & South Asia Database ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection East & South Asia Database Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Computer Science Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2088-8708 |
| ExternalDocumentID | 10.11591/ijece.v10i1.pp196-201 10_11591_ijece_v10i1_pp196_201 |
| GroupedDBID | .4S .DC 8FE 8FG AAKDD AAYXX ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ BPHCQ BVBZV CCPQU CITATION EOJEC HCIFZ I-F K6V K7- KWQ L6V M7S OBODZ OK1 P62 PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS PUEGO TUS AZQEC DWQXO GNUQQ JQ2 PKEHL PQEST PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2461-af2f23f45b146b17587f1d4337023b05ce1fe266f41497ef0e72a024ae33a5493 |
| IEDL.DBID | BENPR |
| ISSN | 2088-8708 |
| IngestDate | Sun Oct 26 04:06:27 EDT 2025 Fri Jul 25 12:00:58 EDT 2025 Wed Oct 01 02:05:12 EDT 2025 Thu Apr 24 22:53:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc/4.0 cc-by-sa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2461-af2f23f45b146b17587f1d4337023b05ce1fe266f41497ef0e72a024ae33a5493 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://ijece.iaescore.com/index.php/IJECE/article/download/15775/13853 |
| PQID | 2391264154 |
| PQPubID | 1686344 |
| ParticipantIDs | unpaywall_primary_10_11591_ijece_v10i1_pp196_201 proquest_journals_2391264154 crossref_primary_10_11591_ijece_v10i1_pp196_201 crossref_citationtrail_10_11591_ijece_v10i1_pp196_201 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200201 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 20200201 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Yogyakarta |
| PublicationPlace_xml | – name: Yogyakarta |
| PublicationTitle | International journal of electrical and computer engineering (Malacca, Malacca) |
| PublicationYear | 2020 |
| Publisher | IAES Institute of Advanced Engineering and Science |
| Publisher_xml | – name: IAES Institute of Advanced Engineering and Science |
| SSID | ssj0000866295 |
| Score | 2.204607 |
| Snippet | Region-based color image segmentation is elementary steps in image processing and computer vision. Color image segmentation is a region growing approach in... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 196 |
| SubjectTerms | Algorithms Chromaticity Color imagery Computer simulation Computer vision Image processing Image segmentation Luminosity Markov analysis Optimization |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9AA9QHmJQKn2wNWx1-tXeitVQlspBSEilQvWrnc2NcR2lAeo_fXMOptS1AOtuK68trzfPL6Rdr4BeFfYIdqZUZ69u-hFKLinMJIej1KpTaZ00nbIjc6S43F0eh6fb8Fmfmf5HQvslRIXaxFHitStaqCVivBPTgdHA9-dqK-tmHwjtc_jNI19LijxPIDtJCZO3oHt8dmnw692shy5Ebl8kLn2YErf3H3mJw9KClQzMkIyFv53ZvpDNx-u6pm8_CWn0xuZZ_gEJpv-nfWFkx-91VL1iqvbco7_-VO78NiRU3a4fuwpbGH9DHZuSBY-h2-j0fDjAasaXRpir8wizQyZFbKGok_l2jqZnE6aebm8qBixYmbHP9CiTZmaff7wnlmt7DkrK4pmbIGTynVA1S9gPBx8OTr23IwGr7BKdJ40oQmFiWJFIVcRF8lSw3UkREpkQAVxgdwgkQATUSmWogkwDSXxAolCSKpNxUvo1E2Nr4ARlZChEgmqBClLqr5KM6QFIqRZX-ugC_EGn7xwAuZ2jsY0bwsZwjVvTzpvcc1bXHPCtQv-9b7ZWsLjnzv2NvDnzqUXeSj6nNgjUc4uBNcmccc3vr7_ljfwKLS1fXtDfA86y_kK3xIBWqp9Z92_AR7CBcE priority: 102 providerName: Unpaywall |
| Title | MMFO: modified moth flame optimization algorithm for region based RGB color image segmentation |
| URI | https://www.proquest.com/docview/2391264154 http://ijece.iaescore.com/index.php/IJECE/article/download/15775/13853 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: East & South Asia Database customDbUrl: eissn: 2088-8708 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: BVBZV dateStart: 20110901 isFulltext: true titleUrlDefault: https://search.proquest.com/eastsouthasia providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2088-8708 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: BENPR dateStart: 20110901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2088-8708 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: 8FG dateStart: 20110901 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HtSD-MT6Yg9eY5NsXhVEVKwitIpY0IthNzurlSatWhX_vbNxU_WingILu5CZyXzfbOYBsJ2ZIdqJlo7JXXQC5J4jMRCOF8RC6USqqKyQa3ei025wdh1eT0CnqoUxaZWVTywdtRpk5o684fOmR-BNiL8_fHTM1Cjzd7UaoSHsaAW1V7YYm4Qp33TGqsHU4XHn4nJ860IEPvKboS0VJij3Gr0HzHDn1XN75LSGZJBkON5PlPqintMvxVC8v4l-_xsKteZhztJHdvCp7wWYwGIRZr81FVyC23a7db7L8oHqaeKXzOiCaVI8sgH5h9wWXjLRv6P3G93njHgrMwMaaNGAmmKXJ4fMdLN-Yr2c_A17xrvc1igVy9BtHV8dnTp2ioKTmV5xjtC-9rkOQklOURJbSGLtqYDzmOBaumGGnkaCaR1QsBSjdjH2BSG3QM4FRY98BWrFoMBVYCR94UseoYyQcEw2ZZwgLRBlTJpKuXUIK6mlmW0xbiZd9NMy1CBpp6W001LaaSntlKRdh8Z43_CzycafOzYqpaT2o3tOv0ykDu5YUf88ce33E9dhxjeRdpmvvQG10dMLbhIdGcktmExaJ1vW0ujZ7Vwc3HwA6l_iTQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9FA4VJSHCC3UBzgu2bX3FaQK0dKQ0iagqpV6wtjrcQnKbkKTUvXP8ds63nrTcgEuvXrlOXwznm_G65kBeFW4Idq51YF7uxjEKKJAY6yCKM6Usbk2aV0hNxim_eP400lysgS_m1oY96yy8Ym1ozaTwt2Rd7joRkTexPjvpj8DNzXK_V1tRmgoP1rBbNUtxnxhxz5eXlAKN9va-0D6fs15b_dopx_4KQNB4XqpBcpyy4WNE01OQxOb5pmNTCxERnSmw6TAyCLRmI0pmcjQhphxRcymUAhF2ZUgufdgORb0tQXL27vDL4eLWx5KGFLeTXxpMoUOUWf0Awt88ysKR-Qkp3QAyFCjP1nxJtRdOa-m6vJCjce3WK_3EFZ9uMreX9vXGixh9Qge3Gpi-Bi-Dga9z29ZOTEjS_Esc7pnlgwN2YT8UekLPZkanxKe8-8loziZuYEQtOhI1LDDj9vMdc8-Y6OS_Bub4Wnpa6KqJ3B8J3g-hVY1qfAZMNK24lqkqFMk3tRdneVICxSi5l1jwjYkDWqy8C3N3WSNsaxTG0Jb1mjLGm1Zoy0J7TZ0Fvum1009_rljo1GK9Id8Jm9Msg3hQlH_KfH53yVuwkr_aHAgD_aG--twn7ssv34rvgGt-dk5vqBQaK5fentj8O2uTfwKp1AawA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9AA9QHmJQKn2wNWx1-tXeitVQlspBSEilQvWrnc2NcR2lAeo_fXMOptS1AOtuK68trzfPL6Rdr4BeFfYIdqZUZ69u-hFKLinMJIej1KpTaZ00nbIjc6S43F0eh6fb8Fmfmf5HQvslRIXaxFHitStaqCVivBPTgdHA9-dqK-tmHwjtc_jNI19LijxPIDtJCZO3oHt8dmnw692shy5Ebl8kLn2YErf3H3mJw9KClQzMkIyFv53ZvpDNx-u6pm8_CWn0xuZZ_gEJpv-nfWFkx-91VL1iqvbco7_-VO78NiRU3a4fuwpbGH9DHZuSBY-h2-j0fDjAasaXRpir8wizQyZFbKGok_l2jqZnE6aebm8qBixYmbHP9CiTZmaff7wnlmt7DkrK4pmbIGTynVA1S9gPBx8OTr23IwGr7BKdJ40oQmFiWJFIVcRF8lSw3UkREpkQAVxgdwgkQATUSmWogkwDSXxAolCSKpNxUvo1E2Nr4ARlZChEgmqBClLqr5KM6QFIqRZX-ugC_EGn7xwAuZ2jsY0bwsZwjVvTzpvcc1bXHPCtQv-9b7ZWsLjnzv2NvDnzqUXeSj6nNgjUc4uBNcmccc3vr7_ljfwKLS1fXtDfA86y_kK3xIBWqp9Z92_AR7CBcE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MMFO%3A+modified+moth+flame+optimization+algorithm+for+region+based+RGB+color+image+segmentation&rft.jtitle=International+journal+of+electrical+and+computer+engineering+%28Malacca%2C+Malacca%29&rft.au=Jaiswal%2C+Varshali&rft.au=Sharma%2C+Varsha&rft.au=Varma%2C+Sunita&rft.date=2020-02-01&rft.pub=IAES+Institute+of+Advanced+Engineering+and+Science&rft.eissn=2088-8708&rft.volume=10&rft.issue=1&rft.spage=196&rft_id=info:doi/10.11591%2Fijece.v10i1.pp196-201 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2088-8708&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2088-8708&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2088-8708&client=summon |