Information system based on multi-value classification of fully connected neural network for construction management
This study is devoted to solving the problem to determine the professional adaptive capabilities of construction management staff using artificial intelligence systems. It is proposed fully connected feed-forward neural network (FCF-FNN) architecture and performed empirical modeling to create a data...
Saved in:
Published in | IAES International Journal of Artificial Intelligence Vol. 12; no. 2; p. 593 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Yogyakarta
IAES Institute of Advanced Engineering and Science
01.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2089-4872 2252-8938 2089-4872 |
DOI | 10.11591/ijai.v12.i2.pp593-601 |
Cover
Abstract | This study is devoted to solving the problem to determine the professional adaptive capabilities of construction management staff using artificial intelligence systems. It is proposed fully connected feed-forward neural network (FCF-FNN) architecture and performed empirical modeling to create a data set. Model of artificial intelligence system allows evaluating the processes in an FCF-FNN during the execution of multi-value classification of professional areas. A method has been developed for the training process of a machine learning model, which reflects the internal connections between the components of an artificial intelligence system that allow it to “learn” from training data. To train the neural network, a data set of 35 input parameters and 29 output parameters was used; the amount of data in the set is 936 data lines. Neural network training occurred in the proportion of 10% and 90%, respectively. Results of this study research can be used to further improve the knowledge and skills necessary for successful professional realization. |
---|---|
AbstractList | This study is devoted to solving the problem to determine the professional adaptive capabilities of construction management staff using artificial intelligence systems. It is proposed fully connected feed-forward neural network (FCF-FNN) architecture and performed empirical modeling to create a data set. Model of artificial intelligence system allows evaluating the processes in an FCF-FNN during the execution of multi-value classification of professional areas. A method has been developed for the training process of a machine learning model, which reflects the internal connections between the components of an artificial intelligence system that allow it to “learn” from training data. To train the neural network, a data set of 35 input parameters and 29 output parameters was used; the amount of data in the set is 936 data lines. Neural network training occurred in the proportion of 10% and 90%, respectively. Results of this study research can be used to further improve the knowledge and skills necessary for successful professional realization. |
Author | Akselrod, Roman Honcharenko, Tetyana Shpakov, Andrii Khomenko, Oleksandr |
Author_xml | – sequence: 1 givenname: Tetyana orcidid: 0000-0003-2577-6916 surname: Honcharenko fullname: Honcharenko, Tetyana – sequence: 2 givenname: Roman orcidid: 0000-0001-7643-7194 surname: Akselrod fullname: Akselrod, Roman – sequence: 3 givenname: Andrii orcidid: 0000-0002-7498-4271 surname: Shpakov fullname: Shpakov, Andrii – sequence: 4 givenname: Oleksandr orcidid: 0000-0001-5427-0389 surname: Khomenko fullname: Khomenko, Oleksandr |
BookMark | eNqFkE1LAzEQhoMoWGv_gix43ppkN9kEvEjxo1DwoueQTWcldTepSbbSf2_aevLiaWaY95mB5wqdO-8AoRuC54QwSe7sRtv5jtC5pfPtlsmq5JicoQmljJZCVuI891jIshYNvUSzGG2LCZFUMNlMUFq6zodBJ-tdEfcxwVC0OsK6yPMw9smWO92PUJheZ7Sz5hT1XdGNfb8vjHcOTMqAgzHoPpf07cNnkc8eljGF0RyRQTv9AQO4dI0uOt1HmP3WKXp_enxbvJSr1-fl4mFVGlpzUjIQhjSyAbmuasao5rUB0VJT84pIIfAakzWDFohoOa61wR1noqNUa121QKspuj3d3Qb_NUJMauPH4PJLRRvOGall1eQUP6VM8DEG6NQ22EGHvSJYHSWrg2SVJStL1VGyypIzeP8HNDYd9aSgbf8f_gNX1Yui |
CitedBy_id | crossref_primary_10_51483_IJARP_3_2_2023_92_124 |
ContentType | Journal Article |
Copyright | Copyright IAES Institute of Advanced Engineering and Science 2023 |
Copyright_xml | – notice: Copyright IAES Institute of Advanced Engineering and Science 2023 |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BVBZV CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.11591/ijai.v12.i2.pp593-601 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection East & South Asia Database ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection East & South Asia Database Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2252-8938 2089-4872 |
ExternalDocumentID | 10_11591_ijai_v12_i2_pp593_601 |
GroupedDBID | 8FE 8FG AAKDD AAYXX ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ BPHCQ BVBZV CCPQU CITATION DWQXO GNUQQ HCIFZ K6V K7- P62 PHGZM PHGZT PQQKQ PROAC RNS 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N M~E PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c2461-5e8c1797e9d34552a64ce8b2c46319880d01d5ebe18b604ac0f658f22aaa3be23 |
IEDL.DBID | 8FG |
ISSN | 2089-4872 |
IngestDate | Mon Jun 30 06:50:29 EDT 2025 Thu Apr 24 22:57:24 EDT 2025 Tue Jul 01 03:27:30 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://creativecommons.org/licenses/by-sa/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2461-5e8c1797e9d34552a64ce8b2c46319880d01d5ebe18b604ac0f658f22aaa3be23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2577-6916 0000-0002-7498-4271 0000-0001-5427-0389 0000-0001-7643-7194 |
OpenAccessLink | https://ijai.iaescore.com/index.php/IJAI/article/download/21864/13617 |
PQID | 2766514937 |
PQPubID | 1686339 |
ParticipantIDs | proquest_journals_2766514937 crossref_primary_10_11591_ijai_v12_i2_pp593_601 crossref_citationtrail_10_11591_ijai_v12_i2_pp593_601 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Yogyakarta |
PublicationPlace_xml | – name: Yogyakarta |
PublicationTitle | IAES International Journal of Artificial Intelligence |
PublicationYear | 2023 |
Publisher | IAES Institute of Advanced Engineering and Science |
Publisher_xml | – name: IAES Institute of Advanced Engineering and Science |
SSID | ssib011928597 ssib033899589 ssj0001341662 ssib044738854 |
Score | 2.3328571 |
Snippet | This study is devoted to solving the problem to determine the professional adaptive capabilities of construction management staff using artificial intelligence... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 593 |
SubjectTerms | Artificial intelligence Classification Construction management Datasets Machine learning Mathematical models Neural networks Parameters Training |
Title | Information system based on multi-value classification of fully connected neural network for construction management |
URI | https://www.proquest.com/docview/2766514937 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044738854 issn: 2089-4872 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: East & South Asia Database customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: BVBZV dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/eastsouthasia providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2252-8938 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: 8FG dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA7aXryIomK1lhy8pm1e-ziJSmsRWkQs9LZks1lY0bbSInjxtzuzm93iRY9LNjlMZuabJDPfEHLNpQ5TZ1JmcyuZikTMABQ4s7FVeSrAG4ZYOzydBZO5elzohb9w2_i0ytonlo46W1m8Ix-IMAgA3AFNb9YfDLtG4euqb6GxT9pcgCZhpfj4odYnDtFLpHevZBK55PSOXV2pUEaRVr5wGICdD4pXU_Q_uegXcOBc61iywPeLaTDrt8sucWh8RA59AElvqx0_JntueUK2vqoIpUwrcmaK-JRR-C5zBhmyejtqMVjG7KDq11VO8f79i1rMd7EQfVIkuIT1l1V6OIVlcbChmaXvTb7MKZmPRy_3E-b7KTCLrHFMu8iC_YUuzqTSWphAWRelwqoADBEMORvyTMOu8igNhsrYYQ7xSS6EMUamTsgz0lqulu6c0CyFY2RsuOA50vsYozOIO3JpgtxkgHgdomuJJdaTjWPPi7ekPHSApBOUNBzRRVKIpJR0ApLukEEzb13Rbfw7o1tvSOLNb5PslOXi7-FLcoD946vcry5pgTDdFUQZ27RXqlKPtO9Gs6dn-Jp-j34A7XnVNg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6V9AAXoAJEaaA-ADcnsdfex4FDC1Tp89RWFRdje71SeCSpmhaFH9W_wl9iZtebqD3QUw8cV15bsvezZ2bn8zcAb0WiMxes477yCVe5LDgaBcF94VXlJJ6GGd0dPjxKhydq70yfrcB1exeGaJXtmVgf1OXE0z_yvszSFI07WtPIoNwP818Yn1182P2EH_OdlDufjz8OeSwhwD0JpXEdco-Qy0JRJkpraVPlQ-6kVyliD7FbDkSpcSIid-lAWT-o0CRXUlprExdI1UC-n55zqlJF2dxYsuMBrOaUsO3A6vbp9pfTFsEC_aVcL_NyCanX6aWeu1JZkudaxavK6EqI_uibHfWuhOyNMMSd6iLhaaxQs7CSN41Ebfl2nsCfds0awsv33uXM9fzvW3KS_8-iPoXH0QlnW82uWYOVMH4Gs3gzi5DKGoFrRja-ZPhc8y45KaMH5ingIIZV8-qkYpTDmDNPnCGPHjwjkVAcf9xQ7BkOS40LqV72c8E5eg4n9zL3F9AZT8bhJbDSYSheWCFFRRJJ1uoSfbcqsWllS_Qa1kG3GDA-CrZT3ZAfpg7cEDuGsGMQO2YkTY0dg9hZh_6i37SRLLmzR7eFh4lH2IVZYuPVv5s34eHw-PDAHOwe7W_AI4leYMOl60IHFza8Rq9t5t7ErcLg631j6y_B11Kz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information+system+based+on+multi-value+classification+of+fully+connected+neural+network+for+construction+management&rft.jtitle=IAES+international+journal+of+artificial+intelligence&rft.au=Honcharenko%2C+Tetyana&rft.au=Akselrod%2C+Roman&rft.au=Shpakov%2C+Andrii&rft.au=Khomenko%2C+Oleksandr&rft.date=2023-06-01&rft.issn=2089-4872&rft.eissn=2252-8938&rft.volume=12&rft.issue=2&rft.spage=593&rft_id=info:doi/10.11591%2Fijai.v12.i2.pp593-601&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijai_v12_i2_pp593_601 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2089-4872&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2089-4872&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2089-4872&client=summon |