Information system based on multi-value classification of fully connected neural network for construction management

This study is devoted to solving the problem to determine the professional adaptive capabilities of construction management staff using artificial intelligence systems. It is proposed fully connected feed-forward neural network (FCF-FNN) architecture and performed empirical modeling to create a data...

Full description

Saved in:
Bibliographic Details
Published inIAES International Journal of Artificial Intelligence Vol. 12; no. 2; p. 593
Main Authors Honcharenko, Tetyana, Akselrod, Roman, Shpakov, Andrii, Khomenko, Oleksandr
Format Journal Article
LanguageEnglish
Published Yogyakarta IAES Institute of Advanced Engineering and Science 01.06.2023
Subjects
Online AccessGet full text
ISSN2089-4872
2252-8938
2089-4872
DOI10.11591/ijai.v12.i2.pp593-601

Cover

Abstract This study is devoted to solving the problem to determine the professional adaptive capabilities of construction management staff using artificial intelligence systems. It is proposed fully connected feed-forward neural network (FCF-FNN) architecture and performed empirical modeling to create a data set. Model of artificial intelligence system allows evaluating the processes in an FCF-FNN during the execution of multi-value classification of professional areas. A method has been developed for the training process of a machine learning model, which reflects the internal connections between the components of an artificial intelligence system that allow it to “learn” from training data. To train the neural network, a data set of 35 input parameters and 29 output parameters was used; the amount of data in the set is 936 data lines. Neural network training occurred in the proportion of 10% and 90%, respectively. Results of this study research can be used to further improve the knowledge and skills necessary for successful professional realization.
AbstractList This study is devoted to solving the problem to determine the professional adaptive capabilities of construction management staff using artificial intelligence systems. It is proposed fully connected feed-forward neural network (FCF-FNN) architecture and performed empirical modeling to create a data set. Model of artificial intelligence system allows evaluating the processes in an FCF-FNN during the execution of multi-value classification of professional areas. A method has been developed for the training process of a machine learning model, which reflects the internal connections between the components of an artificial intelligence system that allow it to “learn” from training data. To train the neural network, a data set of 35 input parameters and 29 output parameters was used; the amount of data in the set is 936 data lines. Neural network training occurred in the proportion of 10% and 90%, respectively. Results of this study research can be used to further improve the knowledge and skills necessary for successful professional realization.
Author Akselrod, Roman
Honcharenko, Tetyana
Shpakov, Andrii
Khomenko, Oleksandr
Author_xml – sequence: 1
  givenname: Tetyana
  orcidid: 0000-0003-2577-6916
  surname: Honcharenko
  fullname: Honcharenko, Tetyana
– sequence: 2
  givenname: Roman
  orcidid: 0000-0001-7643-7194
  surname: Akselrod
  fullname: Akselrod, Roman
– sequence: 3
  givenname: Andrii
  orcidid: 0000-0002-7498-4271
  surname: Shpakov
  fullname: Shpakov, Andrii
– sequence: 4
  givenname: Oleksandr
  orcidid: 0000-0001-5427-0389
  surname: Khomenko
  fullname: Khomenko, Oleksandr
BookMark eNqFkE1LAzEQhoMoWGv_gix43ppkN9kEvEjxo1DwoueQTWcldTepSbbSf2_aevLiaWaY95mB5wqdO-8AoRuC54QwSe7sRtv5jtC5pfPtlsmq5JicoQmljJZCVuI891jIshYNvUSzGG2LCZFUMNlMUFq6zodBJ-tdEfcxwVC0OsK6yPMw9smWO92PUJheZ7Sz5hT1XdGNfb8vjHcOTMqAgzHoPpf07cNnkc8eljGF0RyRQTv9AQO4dI0uOt1HmP3WKXp_enxbvJSr1-fl4mFVGlpzUjIQhjSyAbmuasao5rUB0VJT84pIIfAakzWDFohoOa61wR1noqNUa121QKspuj3d3Qb_NUJMauPH4PJLRRvOGall1eQUP6VM8DEG6NQ22EGHvSJYHSWrg2SVJStL1VGyypIzeP8HNDYd9aSgbf8f_gNX1Yui
CitedBy_id crossref_primary_10_51483_IJARP_3_2_2023_92_124
ContentType Journal Article
Copyright Copyright IAES Institute of Advanced Engineering and Science 2023
Copyright_xml – notice: Copyright IAES Institute of Advanced Engineering and Science 2023
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BVBZV
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.11591/ijai.v12.i2.pp593-601
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
East & South Asia Database
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
East & South Asia Database
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2252-8938
2089-4872
ExternalDocumentID 10_11591_ijai_v12_i2_pp593_601
GroupedDBID 8FE
8FG
AAKDD
AAYXX
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
BPHCQ
BVBZV
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K6V
K7-
P62
PHGZM
PHGZT
PQQKQ
PROAC
RNS
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
M~E
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c2461-5e8c1797e9d34552a64ce8b2c46319880d01d5ebe18b604ac0f658f22aaa3be23
IEDL.DBID 8FG
ISSN 2089-4872
IngestDate Mon Jun 30 06:50:29 EDT 2025
Thu Apr 24 22:57:24 EDT 2025
Tue Jul 01 03:27:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/by-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2461-5e8c1797e9d34552a64ce8b2c46319880d01d5ebe18b604ac0f658f22aaa3be23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2577-6916
0000-0002-7498-4271
0000-0001-5427-0389
0000-0001-7643-7194
OpenAccessLink https://ijai.iaescore.com/index.php/IJAI/article/download/21864/13617
PQID 2766514937
PQPubID 1686339
ParticipantIDs proquest_journals_2766514937
crossref_primary_10_11591_ijai_v12_i2_pp593_601
crossref_citationtrail_10_11591_ijai_v12_i2_pp593_601
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Yogyakarta
PublicationPlace_xml – name: Yogyakarta
PublicationTitle IAES International Journal of Artificial Intelligence
PublicationYear 2023
Publisher IAES Institute of Advanced Engineering and Science
Publisher_xml – name: IAES Institute of Advanced Engineering and Science
SSID ssib011928597
ssib033899589
ssj0001341662
ssib044738854
Score 2.3328571
Snippet This study is devoted to solving the problem to determine the professional adaptive capabilities of construction management staff using artificial intelligence...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 593
SubjectTerms Artificial intelligence
Classification
Construction management
Datasets
Machine learning
Mathematical models
Neural networks
Parameters
Training
Title Information system based on multi-value classification of fully connected neural network for construction management
URI https://www.proquest.com/docview/2766514937
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2252-8938
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044738854
  issn: 2089-4872
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: East & South Asia Database
  customDbUrl:
  eissn: 2252-8938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001341662
  issn: 2089-4872
  databaseCode: BVBZV
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eastsouthasia
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2252-8938
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001341662
  issn: 2089-4872
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2252-8938
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001341662
  issn: 2089-4872
  databaseCode: 8FG
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA7aXryIomK1lhy8pm1e-ziJSmsRWkQs9LZks1lY0bbSInjxtzuzm93iRY9LNjlMZuabJDPfEHLNpQ5TZ1JmcyuZikTMABQ4s7FVeSrAG4ZYOzydBZO5elzohb9w2_i0ytonlo46W1m8Ix-IMAgA3AFNb9YfDLtG4euqb6GxT9pcgCZhpfj4odYnDtFLpHevZBK55PSOXV2pUEaRVr5wGICdD4pXU_Q_uegXcOBc61iywPeLaTDrt8sucWh8RA59AElvqx0_JntueUK2vqoIpUwrcmaK-JRR-C5zBhmyejtqMVjG7KDq11VO8f79i1rMd7EQfVIkuIT1l1V6OIVlcbChmaXvTb7MKZmPRy_3E-b7KTCLrHFMu8iC_YUuzqTSWphAWRelwqoADBEMORvyTMOu8igNhsrYYQ7xSS6EMUamTsgz0lqulu6c0CyFY2RsuOA50vsYozOIO3JpgtxkgHgdomuJJdaTjWPPi7ekPHSApBOUNBzRRVKIpJR0ApLukEEzb13Rbfw7o1tvSOLNb5PslOXi7-FLcoD946vcry5pgTDdFUQZ27RXqlKPtO9Gs6dn-Jp-j34A7XnVNg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6V9AAXoAJEaaA-ADcnsdfex4FDC1Tp89RWFRdje71SeCSpmhaFH9W_wl9iZtebqD3QUw8cV15bsvezZ2bn8zcAb0WiMxes477yCVe5LDgaBcF94VXlJJ6GGd0dPjxKhydq70yfrcB1exeGaJXtmVgf1OXE0z_yvszSFI07WtPIoNwP818Yn1182P2EH_OdlDufjz8OeSwhwD0JpXEdco-Qy0JRJkpraVPlQ-6kVyliD7FbDkSpcSIid-lAWT-o0CRXUlprExdI1UC-n55zqlJF2dxYsuMBrOaUsO3A6vbp9pfTFsEC_aVcL_NyCanX6aWeu1JZkudaxavK6EqI_uibHfWuhOyNMMSd6iLhaaxQs7CSN41Ebfl2nsCfds0awsv33uXM9fzvW3KS_8-iPoXH0QlnW82uWYOVMH4Gs3gzi5DKGoFrRja-ZPhc8y45KaMH5ingIIZV8-qkYpTDmDNPnCGPHjwjkVAcf9xQ7BkOS40LqV72c8E5eg4n9zL3F9AZT8bhJbDSYSheWCFFRRJJ1uoSfbcqsWllS_Qa1kG3GDA-CrZT3ZAfpg7cEDuGsGMQO2YkTY0dg9hZh_6i37SRLLmzR7eFh4lH2IVZYuPVv5s34eHw-PDAHOwe7W_AI4leYMOl60IHFza8Rq9t5t7ErcLg631j6y_B11Kz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information+system+based+on+multi-value+classification+of+fully+connected+neural+network+for+construction+management&rft.jtitle=IAES+international+journal+of+artificial+intelligence&rft.au=Honcharenko%2C+Tetyana&rft.au=Akselrod%2C+Roman&rft.au=Shpakov%2C+Andrii&rft.au=Khomenko%2C+Oleksandr&rft.date=2023-06-01&rft.issn=2089-4872&rft.eissn=2252-8938&rft.volume=12&rft.issue=2&rft.spage=593&rft_id=info:doi/10.11591%2Fijai.v12.i2.pp593-601&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijai_v12_i2_pp593_601
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2089-4872&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2089-4872&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2089-4872&client=summon