A hybrid approach for face recognition using a convolutional neural network combined with feature extraction techniques

Facial recognition technology has been used in many fields such as security, biometric identification, robotics, video surveillance, health, and commerce due to its ease of implementation and minimal data processing time. However, this technology is influenced by the presence of variations such as p...

Full description

Saved in:
Bibliographic Details
Published inIAES International Journal of Artificial Intelligence Vol. 12; no. 2; p. 627
Main Authors Benradi, Hicham, Chater, Ahmed, Lasfar, Abdelali
Format Journal Article
LanguageEnglish
Published Yogyakarta IAES Institute of Advanced Engineering and Science 01.06.2023
Subjects
Online AccessGet full text
ISSN2089-4872
2252-8938
2089-4872
DOI10.11591/ijai.v12.i2.pp627-640

Cover

Abstract Facial recognition technology has been used in many fields such as security, biometric identification, robotics, video surveillance, health, and commerce due to its ease of implementation and minimal data processing time. However, this technology is influenced by the presence of variations such as pose, lighting, or occlusion. In this paper, we propose a new approach to improve the accuracy rate of face recognition in the presence of variation or occlusion, by combining feature extraction with a histogram of oriented gradient (HOG), scale invariant feature transform (SIFT), Gabor, and the Canny contour detector techniques, as well as a convolutional neural network (CNN) architecture, tested with several combinations of the activation function used (Softmax and Segmoïd) and the optimization algorithm used during training (adam, Adamax, RMSprop, and stochastic gradient descent (SGD)). For this, a preprocessing was performed on two databases of our database of faces (ORL) and Sheffield faces used, then we perform a feature extraction operation with the mentioned techniques and then pass them to our used CNN architecture. The results of our simulations show a high performance of the SIFT+CNN combination, in the case of the presence of variations with an accuracy rate up to 100%.
AbstractList Facial recognition technology has been used in many fields such as security, biometric identification, robotics, video surveillance, health, and commerce due to its ease of implementation and minimal data processing time. However, this technology is influenced by the presence of variations such as pose, lighting, or occlusion. In this paper, we propose a new approach to improve the accuracy rate of face recognition in the presence of variation or occlusion, by combining feature extraction with a histogram of oriented gradient (HOG), scale invariant feature transform (SIFT), Gabor, and the Canny contour detector techniques, as well as a convolutional neural network (CNN) architecture, tested with several combinations of the activation function used (Softmax and Segmoïd) and the optimization algorithm used during training (adam, Adamax, RMSprop, and stochastic gradient descent (SGD)). For this, a preprocessing was performed on two databases of our database of faces (ORL) and Sheffield faces used, then we perform a feature extraction operation with the mentioned techniques and then pass them to our used CNN architecture. The results of our simulations show a high performance of the SIFT+CNN combination, in the case of the presence of variations with an accuracy rate up to 100%.
Author Chater, Ahmed
Lasfar, Abdelali
Benradi, Hicham
Author_xml – sequence: 1
  givenname: Hicham
  orcidid: 0000-0003-0012-919X
  surname: Benradi
  fullname: Benradi, Hicham
– sequence: 2
  givenname: Ahmed
  orcidid: 0000-0001-9902-2450
  surname: Chater
  fullname: Chater, Ahmed
– sequence: 3
  givenname: Abdelali
  orcidid: 0000-0002-2390-5377
  surname: Lasfar
  fullname: Lasfar, Abdelali
BookMark eNqFkF9PwyAUxYmZiXPuKxgSn1uBtpQmviyL_5IlvugzAQobc4NK2819e2nnky8-3ZvLPYdzf9dg4rzTANxilGJcVPjeboVND5iklqRNQ0mZ0BxdgCkhBUlYlbFJ7BGrkpyV5ArM29ZKhHFFWFGVU3BcwM1JBltD0TTBC7WBxgdohNIwaOXXznbWO9i31q2hgMq7g9_1w0zsoNN9GEt39OEzPu6ldbqGR9tFHy26Pmiov7sg1OjSabVx9qvX7Q24NGLX6vlvnYGPp8f35Uuyent-XS5WiSI5RYmuGUV5vMrU2GiFRMFUTjNmKDZEaiNVbUqNRVUbVWVZoerMVIaWUmWSSSKyGbg7-8bjhn87vvV9iNlbTkpKC0yznMWth_OWCr5tgzZc2U4MkWN0u-MY8ZE2H2jzSJtbwkfaPNKOcvpH3gS7F-H0n_AH6DON7g
CitedBy_id crossref_primary_10_21833_ijaas_2024_06_010
crossref_primary_10_53759_7669_jmc202404032
ContentType Journal Article
Copyright Copyright IAES Institute of Advanced Engineering and Science 2023
Copyright_xml – notice: Copyright IAES Institute of Advanced Engineering and Science 2023
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BVBZV
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.11591/ijai.v12.i2.pp627-640
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
East & South Asia Database
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
East & South Asia Database
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2252-8938
2089-4872
ExternalDocumentID 10_11591_ijai_v12_i2_pp627_640
GroupedDBID 8FE
8FG
AAKDD
AAYXX
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
BPHCQ
BVBZV
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K6V
K7-
P62
PHGZM
PHGZT
PQQKQ
PROAC
RNS
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
M~E
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c2460-ed8604627fd1fec0a58c4638f61f2befbcdf7e1a9dfc9335cd3f9f67bc3b8b2a3
IEDL.DBID BENPR
ISSN 2089-4872
IngestDate Mon Jun 30 04:31:50 EDT 2025
Thu Apr 24 23:10:46 EDT 2025
Tue Jul 01 03:27:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/by-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2460-ed8604627fd1fec0a58c4638f61f2befbcdf7e1a9dfc9335cd3f9f67bc3b8b2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0012-919X
0000-0002-2390-5377
0000-0001-9902-2450
OpenAccessLink https://ijai.iaescore.com/index.php/IJAI/article/download/21655/13621
PQID 2766516348
PQPubID 1686339
ParticipantIDs proquest_journals_2766516348
crossref_citationtrail_10_11591_ijai_v12_i2_pp627_640
crossref_primary_10_11591_ijai_v12_i2_pp627_640
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Yogyakarta
PublicationPlace_xml – name: Yogyakarta
PublicationTitle IAES International Journal of Artificial Intelligence
PublicationYear 2023
Publisher IAES Institute of Advanced Engineering and Science
Publisher_xml – name: IAES Institute of Advanced Engineering and Science
SSID ssib011928597
ssib033899589
ssj0001341662
ssib044738854
Score 2.40862
Snippet Facial recognition technology has been used in many fields such as security, biometric identification, robotics, video surveillance, health, and commerce due...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 627
SubjectTerms Algorithms
Artificial neural networks
Data processing
Face recognition
Facial recognition technology
Feature extraction
Histograms
Neural networks
Occlusion
Optimization
Robotics
Title A hybrid approach for face recognition using a convolutional neural network combined with feature extraction techniques
URI https://www.proquest.com/docview/2766516348
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2252-8938
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044738854
  issn: 2089-4872
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: East & South Asia Database
  customDbUrl:
  eissn: 2252-8938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001341662
  issn: 2089-4872
  databaseCode: BVBZV
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eastsouthasia
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2252-8938
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001341662
  issn: 2089-4872
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2252-8938
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001341662
  issn: 2089-4872
  databaseCode: 8FG
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA5aL15EUfFNDl7XNs9NDyIqrSJYRBS8LXlqRdv6xou_3ZntbqsXPS1LSA6TyWRm8s03hOwGh7RPupUF43wmhWaZSypmLRXBf07KmoCpgfOePr2WZzfqZob06loYhFXWNrE01GHoMUfe5LnWCpwHaQ5GTxl2jcLX1bqFhq1aK4T9kmJslsxx7KrcIHNHnd7FZa1hDPwZo6bvZgLZ5dSUb13KXBijZFVKDFc9a_bvbX_vnfG9PoSgI83zTGOm5Oct9tuIlzdTd5EsVC4lPRzrwBKZiYNl8nFI7z6xGovWrOEU3FOarI90AhoaDiji3m-ppYg-r7QQ1kKWy_JTYsRh8BEC6BgoZm1piiUZKAWz_jwui6ATJtiXFXLd7Vwdn2ZVk4XMcwl7FIPRWKCap8BS9C2rjJdwKJNmibuYnA8pj8y2Q_JtIZQPIrWTzp0XzjhuxSppDIaDuEYo10EwDj5GMFKGKF0IBjEgNra8Z1KtE1ULrfAVAzk2wngoykgEhF2gsCFu50WfF6WwCxD2OmlO5o3GHBz_ztiq96SozuRLMdWgjb-HN8k8NpUfA8K2SOP1-S1ug-vx6nbIrOme7FRaBX_nX51vav_dHQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT1sxELZYDnBBrQBB2Xxoj4_E6zOHCkVACGU5gcTNPG-Qqk1SQovyp_obmXlLUi70xOkdLFvW-HuexTPfEPI5OKR90u0sGOczKTTLXFIxa6sI9nNShQkYGri80r0b-e1W3c6Rv00tDKZVNndieVGHoccYeYvnWiswHqQ5HP3KsGsUvq42LTQqWJzHyTO4bOOvZ8dwvl84755cH_WyuqtA5rmETcVgNFZk5imwFH27UMZLQGHSLHEXk_Mh5ZEVByF58PaVDyIdJJ07L5xxvBCw7jxZlEII5Oo33dMGvwysJaNmr3ICuevUjM1dylwYo2RdqAyGBGv1vxf9_T-M7_fBwR3BrjKNcZh_deRrFVHqve4HslIbrLRTIewjmYuDVfLcoQ8TrPWiDSc5BeOXpsJHOk1JGg4oZtXf04JibnuNcVgLOTTLT5mBDoM_wT2PgWJMmKZYUo1SUBqPVdEFnfLMjtfIzbsIe50sDIaDuEEo10EwDhZMMFKGKF0IBjNMitj2nkm1SVQjNOtrfnNss_HDln4OCNuisC0I2_a5LYVtQdibpDWdN6oYPv47Y7s5E1v_8WM7w-ent4f3yFLv-vLCXpxdnW-RZWxfX6WebZOFp8ffcQeMnCe3WyKLkrv3hvILFkwTvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+approach+for+face+recognition+using+a+convolutional+neural+network+combined+with+feature+extraction+techniques&rft.jtitle=IAES+International+Journal+of+Artificial+Intelligence&rft.au=Benradi%2C+Hicham&rft.au=Chater%2C+Ahmed&rft.au=Lasfar%2C+Abdelali&rft.date=2023-06-01&rft.pub=IAES+Institute+of+Advanced+Engineering+and+Science&rft.eissn=2089-4872&rft.volume=12&rft.issue=2&rft.spage=627&rft_id=info:doi/10.11591%2Fijai.v12.i2.pp627-640
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2089-4872&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2089-4872&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2089-4872&client=summon