A hybrid approach for face recognition using a convolutional neural network combined with feature extraction techniques
Facial recognition technology has been used in many fields such as security, biometric identification, robotics, video surveillance, health, and commerce due to its ease of implementation and minimal data processing time. However, this technology is influenced by the presence of variations such as p...
Saved in:
Published in | IAES International Journal of Artificial Intelligence Vol. 12; no. 2; p. 627 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Yogyakarta
IAES Institute of Advanced Engineering and Science
01.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2089-4872 2252-8938 2089-4872 |
DOI | 10.11591/ijai.v12.i2.pp627-640 |
Cover
Abstract | Facial recognition technology has been used in many fields such as security, biometric identification, robotics, video surveillance, health, and commerce due to its ease of implementation and minimal data processing time. However, this technology is influenced by the presence of variations such as pose, lighting, or occlusion. In this paper, we propose a new approach to improve the accuracy rate of face recognition in the presence of variation or occlusion, by combining feature extraction with a histogram of oriented gradient (HOG), scale invariant feature transform (SIFT), Gabor, and the Canny contour detector techniques, as well as a convolutional neural network (CNN) architecture, tested with several combinations of the activation function used (Softmax and Segmoïd) and the optimization algorithm used during training (adam, Adamax, RMSprop, and stochastic gradient descent (SGD)). For this, a preprocessing was performed on two databases of our database of faces (ORL) and Sheffield faces used, then we perform a feature extraction operation with the mentioned techniques and then pass them to our used CNN architecture. The results of our simulations show a high performance of the SIFT+CNN combination, in the case of the presence of variations with an accuracy rate up to 100%. |
---|---|
AbstractList | Facial recognition technology has been used in many fields such as security, biometric identification, robotics, video surveillance, health, and commerce due to its ease of implementation and minimal data processing time. However, this technology is influenced by the presence of variations such as pose, lighting, or occlusion. In this paper, we propose a new approach to improve the accuracy rate of face recognition in the presence of variation or occlusion, by combining feature extraction with a histogram of oriented gradient (HOG), scale invariant feature transform (SIFT), Gabor, and the Canny contour detector techniques, as well as a convolutional neural network (CNN) architecture, tested with several combinations of the activation function used (Softmax and Segmoïd) and the optimization algorithm used during training (adam, Adamax, RMSprop, and stochastic gradient descent (SGD)). For this, a preprocessing was performed on two databases of our database of faces (ORL) and Sheffield faces used, then we perform a feature extraction operation with the mentioned techniques and then pass them to our used CNN architecture. The results of our simulations show a high performance of the SIFT+CNN combination, in the case of the presence of variations with an accuracy rate up to 100%. |
Author | Chater, Ahmed Lasfar, Abdelali Benradi, Hicham |
Author_xml | – sequence: 1 givenname: Hicham orcidid: 0000-0003-0012-919X surname: Benradi fullname: Benradi, Hicham – sequence: 2 givenname: Ahmed orcidid: 0000-0001-9902-2450 surname: Chater fullname: Chater, Ahmed – sequence: 3 givenname: Abdelali orcidid: 0000-0002-2390-5377 surname: Lasfar fullname: Lasfar, Abdelali |
BookMark | eNqFkF9PwyAUxYmZiXPuKxgSn1uBtpQmviyL_5IlvugzAQobc4NK2819e2nnky8-3ZvLPYdzf9dg4rzTANxilGJcVPjeboVND5iklqRNQ0mZ0BxdgCkhBUlYlbFJ7BGrkpyV5ArM29ZKhHFFWFGVU3BcwM1JBltD0TTBC7WBxgdohNIwaOXXznbWO9i31q2hgMq7g9_1w0zsoNN9GEt39OEzPu6ldbqGR9tFHy26Pmiov7sg1OjSabVx9qvX7Q24NGLX6vlvnYGPp8f35Uuyent-XS5WiSI5RYmuGUV5vMrU2GiFRMFUTjNmKDZEaiNVbUqNRVUbVWVZoerMVIaWUmWSSSKyGbg7-8bjhn87vvV9iNlbTkpKC0yznMWth_OWCr5tgzZc2U4MkWN0u-MY8ZE2H2jzSJtbwkfaPNKOcvpH3gS7F-H0n_AH6DON7g |
CitedBy_id | crossref_primary_10_21833_ijaas_2024_06_010 crossref_primary_10_53759_7669_jmc202404032 |
ContentType | Journal Article |
Copyright | Copyright IAES Institute of Advanced Engineering and Science 2023 |
Copyright_xml | – notice: Copyright IAES Institute of Advanced Engineering and Science 2023 |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BVBZV CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.11591/ijai.v12.i2.pp627-640 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection East & South Asia Database ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection East & South Asia Database Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2252-8938 2089-4872 |
ExternalDocumentID | 10_11591_ijai_v12_i2_pp627_640 |
GroupedDBID | 8FE 8FG AAKDD AAYXX ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ BPHCQ BVBZV CCPQU CITATION DWQXO GNUQQ HCIFZ K6V K7- P62 PHGZM PHGZT PQQKQ PROAC RNS 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N M~E PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c2460-ed8604627fd1fec0a58c4638f61f2befbcdf7e1a9dfc9335cd3f9f67bc3b8b2a3 |
IEDL.DBID | BENPR |
ISSN | 2089-4872 |
IngestDate | Mon Jun 30 04:31:50 EDT 2025 Thu Apr 24 23:10:46 EDT 2025 Tue Jul 01 03:27:30 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://creativecommons.org/licenses/by-sa/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2460-ed8604627fd1fec0a58c4638f61f2befbcdf7e1a9dfc9335cd3f9f67bc3b8b2a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0012-919X 0000-0002-2390-5377 0000-0001-9902-2450 |
OpenAccessLink | https://ijai.iaescore.com/index.php/IJAI/article/download/21655/13621 |
PQID | 2766516348 |
PQPubID | 1686339 |
ParticipantIDs | proquest_journals_2766516348 crossref_citationtrail_10_11591_ijai_v12_i2_pp627_640 crossref_primary_10_11591_ijai_v12_i2_pp627_640 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Yogyakarta |
PublicationPlace_xml | – name: Yogyakarta |
PublicationTitle | IAES International Journal of Artificial Intelligence |
PublicationYear | 2023 |
Publisher | IAES Institute of Advanced Engineering and Science |
Publisher_xml | – name: IAES Institute of Advanced Engineering and Science |
SSID | ssib011928597 ssib033899589 ssj0001341662 ssib044738854 |
Score | 2.40862 |
Snippet | Facial recognition technology has been used in many fields such as security, biometric identification, robotics, video surveillance, health, and commerce due... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 627 |
SubjectTerms | Algorithms Artificial neural networks Data processing Face recognition Facial recognition technology Feature extraction Histograms Neural networks Occlusion Optimization Robotics |
Title | A hybrid approach for face recognition using a convolutional neural network combined with feature extraction techniques |
URI | https://www.proquest.com/docview/2766516348 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044738854 issn: 2089-4872 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: East & South Asia Database customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: BVBZV dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/eastsouthasia providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2252-8938 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: 8FG dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA5aL15EUfFNDl7XNs9NDyIqrSJYRBS8LXlqRdv6xou_3ZntbqsXPS1LSA6TyWRm8s03hOwGh7RPupUF43wmhWaZSypmLRXBf07KmoCpgfOePr2WZzfqZob06loYhFXWNrE01GHoMUfe5LnWCpwHaQ5GTxl2jcLX1bqFhq1aK4T9kmJslsxx7KrcIHNHnd7FZa1hDPwZo6bvZgLZ5dSUb13KXBijZFVKDFc9a_bvbX_vnfG9PoSgI83zTGOm5Oct9tuIlzdTd5EsVC4lPRzrwBKZiYNl8nFI7z6xGovWrOEU3FOarI90AhoaDiji3m-ppYg-r7QQ1kKWy_JTYsRh8BEC6BgoZm1piiUZKAWz_jwui6ATJtiXFXLd7Vwdn2ZVk4XMcwl7FIPRWKCap8BS9C2rjJdwKJNmibuYnA8pj8y2Q_JtIZQPIrWTzp0XzjhuxSppDIaDuEYo10EwDj5GMFKGKF0IBjEgNra8Z1KtE1ULrfAVAzk2wngoykgEhF2gsCFu50WfF6WwCxD2OmlO5o3GHBz_ztiq96SozuRLMdWgjb-HN8k8NpUfA8K2SOP1-S1ug-vx6nbIrOme7FRaBX_nX51vav_dHQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT1sxELZYDnBBrQBB2Xxoj4_E6zOHCkVACGU5gcTNPG-Qqk1SQovyp_obmXlLUi70xOkdLFvW-HuexTPfEPI5OKR90u0sGOczKTTLXFIxa6sI9nNShQkYGri80r0b-e1W3c6Rv00tDKZVNndieVGHoccYeYvnWiswHqQ5HP3KsGsUvq42LTQqWJzHyTO4bOOvZ8dwvl84755cH_WyuqtA5rmETcVgNFZk5imwFH27UMZLQGHSLHEXk_Mh5ZEVByF58PaVDyIdJJ07L5xxvBCw7jxZlEII5Oo33dMGvwysJaNmr3ICuevUjM1dylwYo2RdqAyGBGv1vxf9_T-M7_fBwR3BrjKNcZh_deRrFVHqve4HslIbrLRTIewjmYuDVfLcoQ8TrPWiDSc5BeOXpsJHOk1JGg4oZtXf04JibnuNcVgLOTTLT5mBDoM_wT2PgWJMmKZYUo1SUBqPVdEFnfLMjtfIzbsIe50sDIaDuEEo10EwDhZMMFKGKF0IBjNMitj2nkm1SVQjNOtrfnNss_HDln4OCNuisC0I2_a5LYVtQdibpDWdN6oYPv47Y7s5E1v_8WM7w-ent4f3yFLv-vLCXpxdnW-RZWxfX6WebZOFp8ffcQeMnCe3WyKLkrv3hvILFkwTvA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+approach+for+face+recognition+using+a+convolutional+neural+network+combined+with+feature+extraction+techniques&rft.jtitle=IAES+International+Journal+of+Artificial+Intelligence&rft.au=Benradi%2C+Hicham&rft.au=Chater%2C+Ahmed&rft.au=Lasfar%2C+Abdelali&rft.date=2023-06-01&rft.pub=IAES+Institute+of+Advanced+Engineering+and+Science&rft.eissn=2089-4872&rft.volume=12&rft.issue=2&rft.spage=627&rft_id=info:doi/10.11591%2Fijai.v12.i2.pp627-640 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2089-4872&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2089-4872&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2089-4872&client=summon |