Toward a deep learning-based intrusion detection system for IoT against botnet attacks
The massive network traffic data between connected devices in the internet of things have taken a big challenge to many traditional intrusion detection systems (IDS) to find probable security breaches. However, security attacks lean towards unpredictability. There are numerous difficulties to build...
Saved in:
Published in | IAES International Journal of Artificial Intelligence Vol. 10; no. 1; p. 110 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Yogyakarta
IAES Institute of Advanced Engineering and Science
01.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2089-4872 2252-8938 2089-4872 |
DOI | 10.11591/ijai.v10.i1.pp110-120 |
Cover
Abstract | The massive network traffic data between connected devices in the internet of things have taken a big challenge to many traditional intrusion detection systems (IDS) to find probable security breaches. However, security attacks lean towards unpredictability. There are numerous difficulties to build up adaptable and powerful IDS for IoT in order to avoid false alerts and ensure a high recognition precision against attacks, especially with the rising of Botnet attacks. These attacks can even make harmless devices becoming zombies that send malicious traffic and disturb the network. In this paper, we propose a new IDS solution, baptized BotIDS, based on deep learning convolutional neural networks (CNN). The main interest of this work is to design, implement and test our IDS against some well-known Botnet attacks using a specific Bot-IoT dataset. Compared to other deep learning techniques, such as simple RNN, LSTM and GRU, the obtained results of our BotIDS are promising with 99.94% in validation accuracy, 0.58% in validation loss, and the prediction execution time is less than 0.34 ms. |
---|---|
AbstractList | The massive network traffic data between connected devices in the internet of things have taken a big challenge to many traditional intrusion detection systems (IDS) to find probable security breaches. However, security attacks lean towards unpredictability. There are numerous difficulties to build up adaptable and powerful IDS for IoT in order to avoid false alerts and ensure a high recognition precision against attacks, especially with the rising of Botnet attacks. These attacks can even make harmless devices becoming zombies that send malicious traffic and disturb the network. In this paper, we propose a new IDS solution, baptized BotIDS, based on deep learning convolutional neural networks (CNN). The main interest of this work is to design, implement and test our IDS against some well-known Botnet attacks using a specific Bot-IoT dataset. Compared to other deep learning techniques, such as simple RNN, LSTM and GRU, the obtained results of our BotIDS are promising with 99.94% in validation accuracy, 0.58% in validation loss, and the prediction execution time is less than 0.34 ms. |
Author | Azizi, Mostafa Moussaoui, Omar Boukabous, Mohammed El Fadili, Hakim Idrissi, Idriss |
Author_xml | – sequence: 1 givenname: Idriss surname: Idrissi fullname: Idrissi, Idriss – sequence: 2 givenname: Mohammed surname: Boukabous fullname: Boukabous, Mohammed – sequence: 3 givenname: Mostafa surname: Azizi fullname: Azizi, Mostafa – sequence: 4 givenname: Omar surname: Moussaoui fullname: Moussaoui, Omar – sequence: 5 givenname: Hakim surname: El Fadili fullname: El Fadili, Hakim |
BookMark | eNqFkEtLQzEQhYNUsNb-BQm4vjWP-0jAjRQfhYKb6jbMTdKSWpNrkir996bqyo2rOcOcMwe-czTywVuELimZUdpIeu224GYfZXV0NgyUkooycoLGjDWsEpKLUdFEyKoWHTtD05RcTyiVTDSyG6OXVfiEaDBgY-2Adxaid35T9ZCswc7nuE8u-HLNVuejSoeU7Rteh4gXYYVhA86njPuQvc0Ycgb9mi7Q6Rp2yU5_5wQ939-t5o_V8ulhMb9dVprVLak62bcUrBYWAFregjCsobazIKUB0hqujZaM97UUkvZci7oGJjkD0VkjGj5BVz9_hxje9zZltQ376EulYg3pOs54TYqr_XHpGFKKdq2G6N4gHhQl6hujOmJUBaNyVH1jVAVjCd78CWqX4YghR3C7_-Jf97p_NA |
CitedBy_id | crossref_primary_10_1007_s10207_023_00807_7 crossref_primary_10_1109_ACCESS_2023_3277397 crossref_primary_10_61186_jist_44521_12_47_197 crossref_primary_10_21923_jesd_1417622 crossref_primary_10_32604_cmc_2023_042386 crossref_primary_10_32604_cmc_2023_028796 crossref_primary_10_1109_COMST_2024_3365076 |
ContentType | Journal Article |
Copyright | Copyright IAES Institute of Advanced Engineering and Science Mar 2021 |
Copyright_xml | – notice: Copyright IAES Institute of Advanced Engineering and Science Mar 2021 |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BVBZV CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.11591/ijai.v10.i1.pp110-120 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) East & South Asia Database ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection East & South Asia Database Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2252-8938 2089-4872 |
ExternalDocumentID | 10_11591_ijai_v10_i1_pp110_120 |
GroupedDBID | 8FE 8FG AAKDD AAYXX ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ BPHCQ BVBZV CCPQU CITATION DWQXO GNUQQ HCIFZ K6V K7- P62 PHGZM PHGZT PQQKQ PROAC RNS 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N M~E PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c2460-79b61aec8eaaa636a8d251e7ea99da06d3cdc923b49891b3c844a2932a87ed853 |
IEDL.DBID | 8FG |
ISSN | 2089-4872 |
IngestDate | Mon Jun 30 16:59:55 EDT 2025 Thu Apr 24 23:07:09 EDT 2025 Tue Jul 01 03:27:29 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://creativecommons.org/licenses/by-sa/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2460-79b61aec8eaaa636a8d251e7ea99da06d3cdc923b49891b3c844a2932a87ed853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://ijai.iaescore.com/index.php/IJAI/article/download/20631/13067 |
PQID | 2507732340 |
PQPubID | 1686339 |
ParticipantIDs | proquest_journals_2507732340 crossref_primary_10_11591_ijai_v10_i1_pp110_120 crossref_citationtrail_10_11591_ijai_v10_i1_pp110_120 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210301 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 20210301 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Yogyakarta |
PublicationPlace_xml | – name: Yogyakarta |
PublicationTitle | IAES International Journal of Artificial Intelligence |
PublicationYear | 2021 |
Publisher | IAES Institute of Advanced Engineering and Science |
Publisher_xml | – name: IAES Institute of Advanced Engineering and Science |
SSID | ssib011928597 ssib033899589 ssj0001341662 ssib044738854 |
Score | 2.4640994 |
Snippet | The massive network traffic data between connected devices in the internet of things have taken a big challenge to many traditional intrusion detection systems... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 110 |
SubjectTerms | Artificial neural networks Communications traffic Deep learning Electronic devices Internet of Things Intrusion detection systems Malware Security Security management |
Title | Toward a deep learning-based intrusion detection system for IoT against botnet attacks |
URI | https://www.proquest.com/docview/2507732340 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044738854 issn: 2089-4872 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: East & South Asia Database customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: BVBZV dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/eastsouthasia providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2252-8938 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: 8FG dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEA4-Ll5EUXF1lRy81m2bNElPorLrAxSRVbyVvLpUpK1s8ehvd5JNXfaixxJy-TKd75tkHgidiRKC5FLJSHJLIirADypmVcRjlSqmdWl9MubDI7t9ofdv2Vu4cJuHtMreJ3pHbRrt7shHQNWck5TQ-KL9jNzUKPe6GkZorKPNJAVLcpXik5venhJQLyJbvpIR10suW3ZXp5QTITIaCoeB2JNR9S6r8y_4rMCFtYlPXYhXOWvVZXsemuyg7SAg8eXixHfRmq330OvUZ79iiY21LQ6jIGaR4yiDq9pVVsABwGrnU69qvOjgjEGy4rtmiuVMViAUsWq62nZYdp2rvd9HL5Px9Po2ChMTIp1SFkc8VyyRVgsrpWSESWFAv1huZZ4bGTNDtNEg6RTNRZ4oogWlEgg_lYJbA8x9gDbqpraHCHPj2ryAekqEohC25KWNdUloaizVJRMDlPWYFDq0E3dTLT4KH1YAloXDEoLwuKiSwmNZAJYDNPrd1y4aavy7Y9hDXoQfbF4szeHo7-VjtJW6NBSfNjZEGwC4PQEd0alTbyynaPNq_Pj0DF8P3-MfU0jI5w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQPcAFtSqIZ_GhHMMmsWM7B1RVbbe7vE4L4mb8mKyCUHYrIlD_VH9jx96EFRc4cYwsXz5P5vvGngchX1WFQXJlTWIksIQr9INWgE1kanMrnKsgJmNeXIrRFT-9KW5WyL--FiakVfY-MTpqP3PhjnyAVC0lyxlPv83_JGFqVHhd7UdoLMziDP4-Ycj2cDL-ied7lOfDX5Mfo6SbKpC4nIs0kaUVmQGnwBgjmDDKI8eDBFOW3qTCM-cdyh7LS1VmljnFuUFSzI2S4FWYEoEu_wNnjIVe_Wr4u7ffDNWSKpavciz0riuW3dw5l0ypgneFyigkskF9Z-rjR_ys0WXOs5gqkb7kyJcUEXlv-JFsdIKVfl9Y2CeyAs1ncj2J2bbUUA8wp93oiWkSONHTugmVHHjguNrGVK-GLjpGU5TIdDybUDM1NQpTamdtAy01bRtq_TfJ1btguUVWm1kD24RKH9rKoFrLlOUYJpUVpK5iPPfAXSXUDil6TLTr2peHKRr3OoYxiKUOWGLQn-o60xFLjVjukMHzvvmigcebO_Z7yHX3Qz_opfntvr58SNZGk4tzfT6-PNsj63lIgYkpa_tkFcGHA9Qwrf0SDYeS2_e21P9HXwMn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+a+deep+learning-based+intrusion+detection+system+for+IoT+against+botnet+attacks&rft.jtitle=IAES+International+Journal+of+Artificial+Intelligence&rft.au=Idrissi%2C+Idriss&rft.au=Boukabous%2C+Mohammed&rft.au=Azizi%2C+Mostafa&rft.au=Moussaoui%2C+Omar&rft.date=2021-03-01&rft.pub=IAES+Institute+of+Advanced+Engineering+and+Science&rft.eissn=2089-4872&rft.volume=10&rft.issue=1&rft.spage=110&rft_id=info:doi/10.11591%2Fijai.v10.i1.pp110-120 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2089-4872&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2089-4872&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2089-4872&client=summon |