Toward a deep learning-based intrusion detection system for IoT against botnet attacks

The massive network traffic data between connected devices in the internet of things have taken a big challenge to many traditional intrusion detection systems (IDS) to find probable security breaches. However, security attacks lean towards unpredictability. There are numerous difficulties to build...

Full description

Saved in:
Bibliographic Details
Published inIAES International Journal of Artificial Intelligence Vol. 10; no. 1; p. 110
Main Authors Idrissi, Idriss, Boukabous, Mohammed, Azizi, Mostafa, Moussaoui, Omar, El Fadili, Hakim
Format Journal Article
LanguageEnglish
Published Yogyakarta IAES Institute of Advanced Engineering and Science 01.03.2021
Subjects
Online AccessGet full text
ISSN2089-4872
2252-8938
2089-4872
DOI10.11591/ijai.v10.i1.pp110-120

Cover

Abstract The massive network traffic data between connected devices in the internet of things have taken a big challenge to many traditional intrusion detection systems (IDS) to find probable security breaches. However, security attacks lean towards unpredictability. There are numerous difficulties to build up adaptable and powerful IDS for IoT in order to avoid false alerts and ensure a high recognition precision against attacks, especially with the rising of Botnet attacks. These attacks can even make harmless devices becoming zombies that send malicious traffic and disturb the network. In this paper, we propose a new IDS solution, baptized BotIDS, based on deep learning convolutional neural networks (CNN). The main interest of this work is to design, implement and test our IDS against some well-known Botnet attacks using a specific Bot-IoT dataset. Compared to other deep learning techniques, such as simple RNN, LSTM and GRU, the obtained results of our BotIDS are promising with 99.94% in validation accuracy, 0.58% in validation loss, and the prediction execution time is less than 0.34 ms.
AbstractList The massive network traffic data between connected devices in the internet of things have taken a big challenge to many traditional intrusion detection systems (IDS) to find probable security breaches. However, security attacks lean towards unpredictability. There are numerous difficulties to build up adaptable and powerful IDS for IoT in order to avoid false alerts and ensure a high recognition precision against attacks, especially with the rising of Botnet attacks. These attacks can even make harmless devices becoming zombies that send malicious traffic and disturb the network. In this paper, we propose a new IDS solution, baptized BotIDS, based on deep learning convolutional neural networks (CNN). The main interest of this work is to design, implement and test our IDS against some well-known Botnet attacks using a specific Bot-IoT dataset. Compared to other deep learning techniques, such as simple RNN, LSTM and GRU, the obtained results of our BotIDS are promising with 99.94% in validation accuracy, 0.58% in validation loss, and the prediction execution time is less than 0.34 ms.
Author Azizi, Mostafa
Moussaoui, Omar
Boukabous, Mohammed
El Fadili, Hakim
Idrissi, Idriss
Author_xml – sequence: 1
  givenname: Idriss
  surname: Idrissi
  fullname: Idrissi, Idriss
– sequence: 2
  givenname: Mohammed
  surname: Boukabous
  fullname: Boukabous, Mohammed
– sequence: 3
  givenname: Mostafa
  surname: Azizi
  fullname: Azizi, Mostafa
– sequence: 4
  givenname: Omar
  surname: Moussaoui
  fullname: Moussaoui, Omar
– sequence: 5
  givenname: Hakim
  surname: El Fadili
  fullname: El Fadili, Hakim
BookMark eNqFkEtLQzEQhYNUsNb-BQm4vjWP-0jAjRQfhYKb6jbMTdKSWpNrkir996bqyo2rOcOcMwe-czTywVuELimZUdpIeu224GYfZXV0NgyUkooycoLGjDWsEpKLUdFEyKoWHTtD05RcTyiVTDSyG6OXVfiEaDBgY-2Adxaid35T9ZCswc7nuE8u-HLNVuejSoeU7Rteh4gXYYVhA86njPuQvc0Ycgb9mi7Q6Rp2yU5_5wQ939-t5o_V8ulhMb9dVprVLak62bcUrBYWAFregjCsobazIKUB0hqujZaM97UUkvZci7oGJjkD0VkjGj5BVz9_hxje9zZltQ376EulYg3pOs54TYqr_XHpGFKKdq2G6N4gHhQl6hujOmJUBaNyVH1jVAVjCd78CWqX4YghR3C7_-Jf97p_NA
CitedBy_id crossref_primary_10_1007_s10207_023_00807_7
crossref_primary_10_1109_ACCESS_2023_3277397
crossref_primary_10_61186_jist_44521_12_47_197
crossref_primary_10_21923_jesd_1417622
crossref_primary_10_32604_cmc_2023_042386
crossref_primary_10_32604_cmc_2023_028796
crossref_primary_10_1109_COMST_2024_3365076
ContentType Journal Article
Copyright Copyright IAES Institute of Advanced Engineering and Science Mar 2021
Copyright_xml – notice: Copyright IAES Institute of Advanced Engineering and Science Mar 2021
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BVBZV
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.11591/ijai.v10.i1.pp110-120
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
East & South Asia Database
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
East & South Asia Database
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2252-8938
2089-4872
ExternalDocumentID 10_11591_ijai_v10_i1_pp110_120
GroupedDBID 8FE
8FG
AAKDD
AAYXX
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
BPHCQ
BVBZV
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K6V
K7-
P62
PHGZM
PHGZT
PQQKQ
PROAC
RNS
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
M~E
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c2460-79b61aec8eaaa636a8d251e7ea99da06d3cdc923b49891b3c844a2932a87ed853
IEDL.DBID 8FG
ISSN 2089-4872
IngestDate Mon Jun 30 16:59:55 EDT 2025
Thu Apr 24 23:07:09 EDT 2025
Tue Jul 01 03:27:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2460-79b61aec8eaaa636a8d251e7ea99da06d3cdc923b49891b3c844a2932a87ed853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://ijai.iaescore.com/index.php/IJAI/article/download/20631/13067
PQID 2507732340
PQPubID 1686339
ParticipantIDs proquest_journals_2507732340
crossref_primary_10_11591_ijai_v10_i1_pp110_120
crossref_citationtrail_10_11591_ijai_v10_i1_pp110_120
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 20210301
  day: 01
PublicationDecade 2020
PublicationPlace Yogyakarta
PublicationPlace_xml – name: Yogyakarta
PublicationTitle IAES International Journal of Artificial Intelligence
PublicationYear 2021
Publisher IAES Institute of Advanced Engineering and Science
Publisher_xml – name: IAES Institute of Advanced Engineering and Science
SSID ssib011928597
ssib033899589
ssj0001341662
ssib044738854
Score 2.4640994
Snippet The massive network traffic data between connected devices in the internet of things have taken a big challenge to many traditional intrusion detection systems...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 110
SubjectTerms Artificial neural networks
Communications traffic
Deep learning
Electronic devices
Internet of Things
Intrusion detection systems
Malware
Security
Security management
Title Toward a deep learning-based intrusion detection system for IoT against botnet attacks
URI https://www.proquest.com/docview/2507732340
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2252-8938
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044738854
  issn: 2089-4872
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: East & South Asia Database
  customDbUrl:
  eissn: 2252-8938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001341662
  issn: 2089-4872
  databaseCode: BVBZV
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eastsouthasia
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2252-8938
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001341662
  issn: 2089-4872
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2252-8938
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001341662
  issn: 2089-4872
  databaseCode: 8FG
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEA4-Ll5EUXF1lRy81m2bNElPorLrAxSRVbyVvLpUpK1s8ehvd5JNXfaixxJy-TKd75tkHgidiRKC5FLJSHJLIirADypmVcRjlSqmdWl9MubDI7t9ofdv2Vu4cJuHtMreJ3pHbRrt7shHQNWck5TQ-KL9jNzUKPe6GkZorKPNJAVLcpXik5venhJQLyJbvpIR10suW3ZXp5QTITIaCoeB2JNR9S6r8y_4rMCFtYlPXYhXOWvVZXsemuyg7SAg8eXixHfRmq330OvUZ79iiY21LQ6jIGaR4yiDq9pVVsABwGrnU69qvOjgjEGy4rtmiuVMViAUsWq62nZYdp2rvd9HL5Px9Po2ChMTIp1SFkc8VyyRVgsrpWSESWFAv1huZZ4bGTNDtNEg6RTNRZ4oogWlEgg_lYJbA8x9gDbqpraHCHPj2ryAekqEohC25KWNdUloaizVJRMDlPWYFDq0E3dTLT4KH1YAloXDEoLwuKiSwmNZAJYDNPrd1y4aavy7Y9hDXoQfbF4szeHo7-VjtJW6NBSfNjZEGwC4PQEd0alTbyynaPNq_Pj0DF8P3-MfU0jI5w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQPcAFtSqIZ_GhHMMmsWM7B1RVbbe7vE4L4mb8mKyCUHYrIlD_VH9jx96EFRc4cYwsXz5P5vvGngchX1WFQXJlTWIksIQr9INWgE1kanMrnKsgJmNeXIrRFT-9KW5WyL--FiakVfY-MTpqP3PhjnyAVC0lyxlPv83_JGFqVHhd7UdoLMziDP4-Ycj2cDL-ied7lOfDX5Mfo6SbKpC4nIs0kaUVmQGnwBgjmDDKI8eDBFOW3qTCM-cdyh7LS1VmljnFuUFSzI2S4FWYEoEu_wNnjIVe_Wr4u7ffDNWSKpavciz0riuW3dw5l0ypgneFyigkskF9Z-rjR_ys0WXOs5gqkb7kyJcUEXlv-JFsdIKVfl9Y2CeyAs1ncj2J2bbUUA8wp93oiWkSONHTugmVHHjguNrGVK-GLjpGU5TIdDybUDM1NQpTamdtAy01bRtq_TfJ1btguUVWm1kD24RKH9rKoFrLlOUYJpUVpK5iPPfAXSXUDil6TLTr2peHKRr3OoYxiKUOWGLQn-o60xFLjVjukMHzvvmigcebO_Z7yHX3Qz_opfntvr58SNZGk4tzfT6-PNsj63lIgYkpa_tkFcGHA9Qwrf0SDYeS2_e21P9HXwMn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+a+deep+learning-based+intrusion+detection+system+for+IoT+against+botnet+attacks&rft.jtitle=IAES+International+Journal+of+Artificial+Intelligence&rft.au=Idrissi%2C+Idriss&rft.au=Boukabous%2C+Mohammed&rft.au=Azizi%2C+Mostafa&rft.au=Moussaoui%2C+Omar&rft.date=2021-03-01&rft.pub=IAES+Institute+of+Advanced+Engineering+and+Science&rft.eissn=2089-4872&rft.volume=10&rft.issue=1&rft.spage=110&rft_id=info:doi/10.11591%2Fijai.v10.i1.pp110-120
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2089-4872&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2089-4872&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2089-4872&client=summon