Do Algorithms and Barriers for Sparse Principal Component Analysis Extend to Other Structured Settings?
We study a principal component analysis problem under the spiked Wishart model in which the structure in the signal is captured by a class of union-of-subspace models. This general class includes vanilla sparse PCA as well as its variants with graph sparsity. With the goal of studying these problems...
Saved in:
| Published in | IEEE transactions on signal processing Vol. 72; pp. 3187 - 3200 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-587X 1941-0476 |
| DOI | 10.1109/TSP.2024.3421618 |
Cover
| Abstract | We study a principal component analysis problem under the spiked Wishart model in which the structure in the signal is captured by a class of union-of-subspace models. This general class includes vanilla sparse PCA as well as its variants with graph sparsity. With the goal of studying these problems under a unified statistical and computational lens, we establish fundamental limits that depend on the geometry of the problem instance, and show that a natural projected power method exhibits local convergence to the statistically near-optimal neighborhood of the solution. We complement these results with end-to-end analyses of two important special cases given by path and tree sparsity in a general basis, showing initialization methods and matching evidence of computational hardness. Overall, our results indicate that several of the phenomena observed for vanilla sparse PCA extend in a natural fashion to its structured counterparts. |
|---|---|
| AbstractList | We study a principal component analysis problem under the spiked Wishart model in which the structure in the signal is captured by a class of union-of-subspace models. This general class includes vanilla sparse PCA as well as its variants with graph sparsity. With the goal of studying these problems under a unified statistical and computational lens, we establish fundamental limits that depend on the geometry of the problem instance, and show that a natural projected power method exhibits local convergence to the statistically near-optimal neighborhood of the solution. We complement these results with end-to-end analyses of two important special cases given by path and tree sparsity in a general basis, showing initialization methods and matching evidence of computational hardness. Overall, our results indicate that several of the phenomena observed for vanilla sparse PCA extend in a natural fashion to its structured counterparts. |
| Author | Lou, Mengqi Wang, Guanyi Pananjady, Ashwin |
| Author_xml | – sequence: 1 givenname: Guanyi orcidid: 0000-0002-5491-732X surname: Wang fullname: Wang, Guanyi email: guanyi.w@nus.edu.sg organization: Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore – sequence: 2 givenname: Mengqi orcidid: 0009-0005-5923-2935 surname: Lou fullname: Lou, Mengqi email: mlou30@gatech.edu organization: H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA – sequence: 3 givenname: Ashwin orcidid: 0000-0003-0824-9815 surname: Pananjady fullname: Pananjady, Ashwin email: ashwinpm@gatech.edu organization: H. Milton Stewart School of Industrial and Systems Engineering, Atlanta, GA, USA |
| BookMark | eNpNkE1rwkAQhpdioWp776GHhZ5jd7OfORVr7QcIClroLWziqJGYTXc3UP99V_TQ08zhfd4ZngHqNbYBhO4pGVFKsqfVcjFKScpHjKdUUn2F-jTjNCFcyV7ciWCJ0Or7Bg283xNCOc9kH21fLR7XW-uqsDt4bJo1fjHOVeA83liHl61xHvDCVU1ZtabGE3to4-Um4HFj6qOvPJ7-BohcsHgedhCZ4LoydA7WeAkhVM3WP9-i642pPdxd5hB9vU1Xk49kNn__nIxnSZlyEZK1ZoQywUojCqmkzITkkhQlKCEEUwpIodOUGy0zJYzSBSeKMeAKeEYlX7Mhejz3ts7-dOBDvredi5_6nBHNidRZqmKKnFOls9472OStqw7GHXNK8pPOPOrMTzrzi86IPJyRCgD-xYVOMyLZHzdWceQ |
| CODEN | ITPRED |
| Cites_doi | 10.1287/opre.2021.2153 10.1109/TIT.2010.2040894 10.1073/pnas.97.18.10101 10.1080/757584614 10.1137/18M1211350 10.1214/16-AOS1519 10.1109/ISIT.2008.4595432 10.1214/13-AOS1151 10.1109/LSP.2013.2278147 10.1093/biostatistics/kxp008 10.1007/s10107-022-01857-w 10.1007/s10107-014-0751-7 10.1007/s42452-020-2999-2 10.1080/00018732.2016.1211393 10.1117/12.2529595 10.1145/2897518.2897573 10.1111/j.1467-9868.2005.00503.x 10.1111/j.1467-9868.2005.00532.x 10.1017/9781108627771 10.3758/BF03197270 10.2139/ssrn.563524 10.1109/TNNLS.2019.2893190 10.1109/tsp.2024.3421618 10.1198/106186006X113430 10.1007/978-3-540-27868-9_73 10.1109/TSP.2022.3169957 10.1198/1061860032148 10.1007/978-0-387-84858-7 10.1016/b978-0-12-374370-1.x0001-8 10.1186/gb-2000-1-2-research0003 10.1007/978-1-4614-0769-0_31 10.1198/jasa.2009.0121 10.1214/13-AOS1097 10.1214/aos/1017939142 10.1287/ijoo.2019.0032 10.1214/13-AOS1178 10.1214/15-AOS1369 10.1214/12-AOS1014 10.1109/TIT.2015.2457942 10.1111/j.2517-6161.1996.tb02080.x 10.1109/18.335943 10.1007/978-1-4612-1880-7_29 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TSP.2024.3421618 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0476 |
| EndPage | 3200 |
| ExternalDocumentID | 10_1109_TSP_2024_3421618 10582906 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF grantid: CCF-2107455; DMS-2210734 funderid: 10.13039/100000001 – fundername: National University of Singapore grantid: AcRF Tier-1; A-8000607-00-00 22-5539-A0001 funderid: 10.13039/501100001352 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c245t-d8301353ca5b6766956460bce7555377e0b8224a86975a78b40733e47e49164d3 |
| IEDL.DBID | RIE |
| ISSN | 1053-587X |
| IngestDate | Mon Jun 30 10:13:26 EDT 2025 Wed Oct 01 03:41:23 EDT 2025 Wed Aug 27 02:37:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c245t-d8301353ca5b6766956460bce7555377e0b8224a86975a78b40733e47e49164d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5491-732X 0000-0003-0824-9815 0009-0005-5923-2935 |
| PQID | 3084068927 |
| PQPubID | 85478 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_3084068927 ieee_primary_10582906 crossref_primary_10_1109_TSP_2024_3421618 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref12 Deshpande (ref19) 2014 Yuan (ref59) 2013; 14 ref15 ref14 ref58 ref52 ref55 ref54 Vu (ref47) 2012 ref17 ref16 Liu (ref37) 2021 Mackey (ref40) 2008 ref51 ref50 Asteris (ref3) 2015 ref46 ref45 Kim (ref35) 2019 ref42 ref41 ref44 ref43 Berthet (ref6) 2013 ref49 ref8 ref7 Vu (ref48) 2013 ref5 Yi (ref56) 2020 Hegde (ref31) 2015 Ma (ref38) 2015 ref30 Journée (ref34) 2010; 11 ref33 ref32 Brennan (ref9) 2019 ref2 ref1 ref39 Deshpande (ref18) 2016; 17 Brennan (ref10) 2020 Li (ref36) 2020 Bandeira (ref4) 2019 ref24 ref23 ref26 Cai (ref13) 2021; 22 ref25 ref20 ref63 ref22 ref21 ref28 ref27 ref29 Brennan (ref11) 2018 Wang (ref53) 2021 ref60 ref62 ref61 |
| References_xml | – ident: ref20 doi: 10.1287/opre.2021.2153 – ident: ref5 doi: 10.1109/TIT.2010.2040894 – ident: ref1 doi: 10.1073/pnas.97.18.10101 – ident: ref12 doi: 10.1080/757584614 – ident: ref24 doi: 10.1137/18M1211350 – ident: ref27 doi: 10.1214/16-AOS1519 – volume: 17 start-page: 4913 issue: 1 year: 2016 ident: ref18 article-title: Sparse PCA via covariance thresholding publication-title: J. Mach. Learn. Res. – start-page: 1017 volume-title: Proc. Adv. Neural Inf. Process. Syst. 21 year: 2008 ident: ref40 article-title: Deflation methods for sparse PCA – ident: ref2 doi: 10.1109/ISIT.2008.4595432 – ident: ref49 doi: 10.1214/13-AOS1151 – ident: ref15 doi: 10.1109/LSP.2013.2278147 – ident: ref54 doi: 10.1093/biostatistics/kxp008 – ident: ref21 doi: 10.1007/s10107-022-01857-w – ident: ref23 doi: 10.1007/s10107-014-0751-7 – start-page: 928 volume-title: Proc. Int. Conf. Mach. Learn., PMLR year: 2015 ident: ref31 article-title: A nearly-linear time framework for graph-structured sparsity – ident: ref45 doi: 10.1007/s42452-020-2999-2 – ident: ref60 doi: 10.1080/00018732.2016.1211393 – start-page: 1046 volume-title: Proc. Conf. Learn. Theory, PMLR year: 2013 ident: ref6 article-title: Complexity theoretic lower bounds for sparse principal component detection – ident: ref26 doi: 10.1117/12.2529595 – ident: ref42 doi: 10.1145/2897518.2897573 – ident: ref62 doi: 10.1111/j.1467-9868.2005.00503.x – ident: ref58 doi: 10.1111/j.1467-9868.2005.00532.x – ident: ref50 doi: 10.1017/9781108627771 – start-page: 48 volume-title: Proc. Conf. Learn. Theory year: 2018 ident: ref11 article-title: Reducibility and computational lower bounds for problems with planted sparse structure – ident: ref28 doi: 10.3758/BF03197270 – ident: ref17 doi: 10.2139/ssrn.563524 – ident: ref25 doi: 10.1109/TNNLS.2019.2893190 – ident: ref51 doi: 10.1109/tsp.2024.3421618 – ident: ref63 doi: 10.1198/106186006X113430 – start-page: 648 volume-title: Proc. Conf. Learn. Theory, PMLR year: 2020 ident: ref10 article-title: Reducibility and statistical-computational gaps from secret leakage – year: 2019 ident: ref35 article-title: Convexification of permutation-invariant sets and applications – start-page: 1728 volume-title: Proc. Int. Conf. Mach. Learn., PMLR year: 2015 ident: ref3 article-title: Stay on path: PCA along graph paths – ident: ref7 doi: 10.1007/978-3-540-27868-9_73 – ident: ref22 doi: 10.1109/TSP.2022.3169957 – ident: ref33 doi: 10.1198/1061860032148 – ident: ref30 doi: 10.1007/978-0-387-84858-7 – ident: ref41 doi: 10.1016/b978-0-12-374370-1.x0001-8 – ident: ref29 doi: 10.1186/gb-2000-1-2-research0003 – volume-title: Proc. Adv. Neural Inf. Process. Syst, 26 year: 2013 ident: ref48 article-title: Fantope projection and selection: A near-optimal convex relaxation of sparse PCA – ident: ref61 doi: 10.1007/978-1-4614-0769-0_31 – start-page: 1278 volume-title: Proc. Artif. Intell. Statist. year: 2012 ident: ref47 article-title: Minimax rates of estimation for sparse PCA in high dimensions – year: 2019 ident: ref4 article-title: Computational hardness of certifying bounds on constrained pca problems – year: 2020 ident: ref56 article-title: Non-sparse PCA in high dimensions via cone projected power iteration – start-page: 469 volume-title: Proc. Conf. Learn. Theory, PMLR year: 2019 ident: ref9 article-title: Optimal average-case reductions to sparse PCA: From weak assumptions to strong hardness – ident: ref32 doi: 10.1198/jasa.2009.0121 – volume-title: Proc. Int. Conf. Learn. Representations year: 2021 ident: ref37 article-title: Generative principal component analysis – ident: ref39 doi: 10.1214/13-AOS1097 – volume: 22 start-page: 1 issue: 46 year: 2021 ident: ref13 article-title: Optimal structured principal subspace estimation: Metric entropy and minimax rates publication-title: J. Mach. Learn. Res. – ident: ref55 doi: 10.1214/aos/1017939142 – ident: ref16 doi: 10.1287/ijoo.2019.0032 – ident: ref14 doi: 10.1214/13-AOS1178 – year: 2020 ident: ref36 article-title: Exact and approximation algorithms for sparse PCA – ident: ref52 doi: 10.1214/15-AOS1369 – ident: ref8 doi: 10.1214/12-AOS1014 – volume-title: Proc. Adv. Neural Inf. Process. Syst. 27 year: 2014 ident: ref19 article-title: Cone-constrained principal component analysis – ident: ref43 doi: 10.1109/TIT.2015.2457942 – volume: 14 start-page: 899 issue: 28 year: 2013 ident: ref59 article-title: Truncated power method for sparse eigenvalue problems publication-title: J. Mach. Learn. Res. – ident: ref44 doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 11 issue: 2 year: 2010 ident: ref34 article-title: Generalized power method for sparse principal component analysis publication-title: J. Mach. Learn. Res. – year: 2021 ident: ref53 article-title: A manifold proximal linear method for sparse spectral clustering with application to single-cell RNA sequencing data analysis publication-title: INFORMS J. Optim. – ident: ref46 doi: 10.1109/18.335943 – ident: ref57 doi: 10.1007/978-1-4612-1880-7_29 – volume-title: Proc. Adv. Neural Inf. Process. Syst. 28 year: 2015 ident: ref38 article-title: Sum-of-squares lower bounds for sparse PCA |
| SSID | ssj0014496 |
| Score | 2.4459763 |
| Snippet | We study a principal component analysis problem under the spiked Wishart model in which the structure in the signal is captured by a class of union-of-subspace... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 3187 |
| SubjectTerms | Algorithms computational hardness Computational modeling Estimation Indexes Iterative methods nonconvex iterative optimization Principal component analysis Principal components analysis Signal processing algorithms structured sparsity Vectors |
| Title | Do Algorithms and Barriers for Sparse Principal Component Analysis Extend to Other Structured Settings? |
| URI | https://ieeexplore.ieee.org/document/10582906 https://www.proquest.com/docview/3084068927 |
| Volume | 72 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLaACQbOIsolDywMKSE-MyGOVggJqNRW6hbF8SsgIEFtuvDreXYSxCEktgy2Y_n5eN87vkfIEcSOsuCUBywGBChKTwKTShlMVIqPV2wmwFzu8O2dvB7xm7EY18nqPhcGAHzwGXTcp_fl2yKbO1MZnnDh_H5ykSwqLatkrU-XAee-GBe2YYHQatz4JMP4ZDjoIxKMeIfxyBHEf3uDfFGVXzexf156a-SumVgVVfLcmZemk73_4Gz898zXyWqtaNLzamdskAXIN8nKF_rBLfJwVdDzl4di-lQ-vs5omlt6kU5dCbsZRV2WDt4Q9QLtV_Z4HMxdHkWOf6INlwnteiM6LQt671RJOvB8tPMpWDoAH1M9O2uRUa87vLwO6sILQRZxUQZW47FngmWpMFJJiRiKy9BkoIQQTCkIjQs-TbWMlUiVNtyVfgSugKO2yS3bJks5TmeHUB1Zm2GPyGrNs4xhFwEh0wj9DNhQtclxI4rkreLXSDwuCeMExZY4sSW12Nqk5Vb2S7tqUdtkvxFeUp_AWcJChK5Sx5Ha_aPbHll2o1f2lH2yhOsDB6hhlObQ76wPYs7Luw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5ROLQ9FEpBpE1hD71wcGq8T5-qlILCK0VKkHKzvN4JINoYJc6lv76za7vioUrcfNj1rnb2Md88vgH4gqmnLDgQEU-RAIo208jmSkVTndPjldopcp87fDFUgytxOpGTJlk95MIgYgg-w57_DL58VxZLbyqjEy6930-9gjUphJB1utY_p4EQoRwXteKRNHrSeiXj9Ot4dElYMBE9LhJPEf_oFQplVZ7dxeGBOV6HYTu1Oq7krresbK_484S18cVz34B3jarJ-vXeeA8rONuEtw8ICD_A9Y-S9X9dl_Pb6ub3guUzx77nc1_EbsFIm2Wje8K9yC5rizz9zF8f5YxGYi2bCTsKZnRWleynVybZKDDSLufo2AhDVPXi2xZcHR-NDwdRU3ohKhIhq8gZOvhc8iKXVmmlCEUJFdsCtZSSa42x9eGnuVGplrk2Vvjijyg0CtI3hePbsDqj6ewAM4lzBfVInDGiKDh1kRhzQ-DPoot1B_ZbUWT3NcNGFpBJnGYktsyLLWvE1oEtv7IP2tWL2oFuK7ysOYOLjMcEXpVJE_3xP9324PVgfHGenZ8Mzz7BGz9SbV3pwiqtFX4mfaOyu2GX_QU67s8I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Do+Algorithms+and+Barriers+for+Sparse+Principal+Component+Analysis+Extend+to+Other+Structured+Settings%3F&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Wang%2C+Guanyi&rft.au=Lou%2C+Mengqi&rft.au=Pananjady%2C+Ashwin&rft.date=2024&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=72&rft.spage=3187&rft.epage=3200&rft_id=info:doi/10.1109%2FTSP.2024.3421618&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2024_3421618 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |