Do Algorithms and Barriers for Sparse Principal Component Analysis Extend to Other Structured Settings?

We study a principal component analysis problem under the spiked Wishart model in which the structure in the signal is captured by a class of union-of-subspace models. This general class includes vanilla sparse PCA as well as its variants with graph sparsity. With the goal of studying these problems...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 72; pp. 3187 - 3200
Main Authors Wang, Guanyi, Lou, Mengqi, Pananjady, Ashwin
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2024.3421618

Cover

Abstract We study a principal component analysis problem under the spiked Wishart model in which the structure in the signal is captured by a class of union-of-subspace models. This general class includes vanilla sparse PCA as well as its variants with graph sparsity. With the goal of studying these problems under a unified statistical and computational lens, we establish fundamental limits that depend on the geometry of the problem instance, and show that a natural projected power method exhibits local convergence to the statistically near-optimal neighborhood of the solution. We complement these results with end-to-end analyses of two important special cases given by path and tree sparsity in a general basis, showing initialization methods and matching evidence of computational hardness. Overall, our results indicate that several of the phenomena observed for vanilla sparse PCA extend in a natural fashion to its structured counterparts.
AbstractList We study a principal component analysis problem under the spiked Wishart model in which the structure in the signal is captured by a class of union-of-subspace models. This general class includes vanilla sparse PCA as well as its variants with graph sparsity. With the goal of studying these problems under a unified statistical and computational lens, we establish fundamental limits that depend on the geometry of the problem instance, and show that a natural projected power method exhibits local convergence to the statistically near-optimal neighborhood of the solution. We complement these results with end-to-end analyses of two important special cases given by path and tree sparsity in a general basis, showing initialization methods and matching evidence of computational hardness. Overall, our results indicate that several of the phenomena observed for vanilla sparse PCA extend in a natural fashion to its structured counterparts.
Author Lou, Mengqi
Wang, Guanyi
Pananjady, Ashwin
Author_xml – sequence: 1
  givenname: Guanyi
  orcidid: 0000-0002-5491-732X
  surname: Wang
  fullname: Wang, Guanyi
  email: guanyi.w@nus.edu.sg
  organization: Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore
– sequence: 2
  givenname: Mengqi
  orcidid: 0009-0005-5923-2935
  surname: Lou
  fullname: Lou, Mengqi
  email: mlou30@gatech.edu
  organization: H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 3
  givenname: Ashwin
  orcidid: 0000-0003-0824-9815
  surname: Pananjady
  fullname: Pananjady, Ashwin
  email: ashwinpm@gatech.edu
  organization: H. Milton Stewart School of Industrial and Systems Engineering, Atlanta, GA, USA
BookMark eNpNkE1rwkAQhpdioWp776GHhZ5jd7OfORVr7QcIClroLWziqJGYTXc3UP99V_TQ08zhfd4ZngHqNbYBhO4pGVFKsqfVcjFKScpHjKdUUn2F-jTjNCFcyV7ciWCJ0Or7Bg283xNCOc9kH21fLR7XW-uqsDt4bJo1fjHOVeA83liHl61xHvDCVU1ZtabGE3to4-Um4HFj6qOvPJ7-BohcsHgedhCZ4LoydA7WeAkhVM3WP9-i642pPdxd5hB9vU1Xk49kNn__nIxnSZlyEZK1ZoQywUojCqmkzITkkhQlKCEEUwpIodOUGy0zJYzSBSeKMeAKeEYlX7Mhejz3ts7-dOBDvredi5_6nBHNidRZqmKKnFOls9472OStqw7GHXNK8pPOPOrMTzrzi86IPJyRCgD-xYVOMyLZHzdWceQ
CODEN ITPRED
Cites_doi 10.1287/opre.2021.2153
10.1109/TIT.2010.2040894
10.1073/pnas.97.18.10101
10.1080/757584614
10.1137/18M1211350
10.1214/16-AOS1519
10.1109/ISIT.2008.4595432
10.1214/13-AOS1151
10.1109/LSP.2013.2278147
10.1093/biostatistics/kxp008
10.1007/s10107-022-01857-w
10.1007/s10107-014-0751-7
10.1007/s42452-020-2999-2
10.1080/00018732.2016.1211393
10.1117/12.2529595
10.1145/2897518.2897573
10.1111/j.1467-9868.2005.00503.x
10.1111/j.1467-9868.2005.00532.x
10.1017/9781108627771
10.3758/BF03197270
10.2139/ssrn.563524
10.1109/TNNLS.2019.2893190
10.1109/tsp.2024.3421618
10.1198/106186006X113430
10.1007/978-3-540-27868-9_73
10.1109/TSP.2022.3169957
10.1198/1061860032148
10.1007/978-0-387-84858-7
10.1016/b978-0-12-374370-1.x0001-8
10.1186/gb-2000-1-2-research0003
10.1007/978-1-4614-0769-0_31
10.1198/jasa.2009.0121
10.1214/13-AOS1097
10.1214/aos/1017939142
10.1287/ijoo.2019.0032
10.1214/13-AOS1178
10.1214/15-AOS1369
10.1214/12-AOS1014
10.1109/TIT.2015.2457942
10.1111/j.2517-6161.1996.tb02080.x
10.1109/18.335943
10.1007/978-1-4612-1880-7_29
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2024.3421618
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 3200
ExternalDocumentID 10_1109_TSP_2024_3421618
10582906
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: CCF-2107455; DMS-2210734
  funderid: 10.13039/100000001
– fundername: National University of Singapore
  grantid: AcRF Tier-1; A-8000607-00-00 22-5539-A0001
  funderid: 10.13039/501100001352
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-d8301353ca5b6766956460bce7555377e0b8224a86975a78b40733e47e49164d3
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Mon Jun 30 10:13:26 EDT 2025
Wed Oct 01 03:41:23 EDT 2025
Wed Aug 27 02:37:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-d8301353ca5b6766956460bce7555377e0b8224a86975a78b40733e47e49164d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5491-732X
0000-0003-0824-9815
0009-0005-5923-2935
PQID 3084068927
PQPubID 85478
PageCount 14
ParticipantIDs proquest_journals_3084068927
ieee_primary_10582906
crossref_primary_10_1109_TSP_2024_3421618
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref12
Deshpande (ref19) 2014
Yuan (ref59) 2013; 14
ref15
ref14
ref58
ref52
ref55
ref54
Vu (ref47) 2012
ref17
ref16
Liu (ref37) 2021
Mackey (ref40) 2008
ref51
ref50
Asteris (ref3) 2015
ref46
ref45
Kim (ref35) 2019
ref42
ref41
ref44
ref43
Berthet (ref6) 2013
ref49
ref8
ref7
Vu (ref48) 2013
ref5
Yi (ref56) 2020
Hegde (ref31) 2015
Ma (ref38) 2015
ref30
Journée (ref34) 2010; 11
ref33
ref32
Brennan (ref9) 2019
ref2
ref1
ref39
Deshpande (ref18) 2016; 17
Brennan (ref10) 2020
Li (ref36) 2020
Bandeira (ref4) 2019
ref24
ref23
ref26
Cai (ref13) 2021; 22
ref25
ref20
ref63
ref22
ref21
ref28
ref27
ref29
Brennan (ref11) 2018
Wang (ref53) 2021
ref60
ref62
ref61
References_xml – ident: ref20
  doi: 10.1287/opre.2021.2153
– ident: ref5
  doi: 10.1109/TIT.2010.2040894
– ident: ref1
  doi: 10.1073/pnas.97.18.10101
– ident: ref12
  doi: 10.1080/757584614
– ident: ref24
  doi: 10.1137/18M1211350
– ident: ref27
  doi: 10.1214/16-AOS1519
– volume: 17
  start-page: 4913
  issue: 1
  year: 2016
  ident: ref18
  article-title: Sparse PCA via covariance thresholding
  publication-title: J. Mach. Learn. Res.
– start-page: 1017
  volume-title: Proc. Adv. Neural Inf. Process. Syst. 21
  year: 2008
  ident: ref40
  article-title: Deflation methods for sparse PCA
– ident: ref2
  doi: 10.1109/ISIT.2008.4595432
– ident: ref49
  doi: 10.1214/13-AOS1151
– ident: ref15
  doi: 10.1109/LSP.2013.2278147
– ident: ref54
  doi: 10.1093/biostatistics/kxp008
– ident: ref21
  doi: 10.1007/s10107-022-01857-w
– ident: ref23
  doi: 10.1007/s10107-014-0751-7
– start-page: 928
  volume-title: Proc. Int. Conf. Mach. Learn., PMLR
  year: 2015
  ident: ref31
  article-title: A nearly-linear time framework for graph-structured sparsity
– ident: ref45
  doi: 10.1007/s42452-020-2999-2
– ident: ref60
  doi: 10.1080/00018732.2016.1211393
– start-page: 1046
  volume-title: Proc. Conf. Learn. Theory, PMLR
  year: 2013
  ident: ref6
  article-title: Complexity theoretic lower bounds for sparse principal component detection
– ident: ref26
  doi: 10.1117/12.2529595
– ident: ref42
  doi: 10.1145/2897518.2897573
– ident: ref62
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: ref58
  doi: 10.1111/j.1467-9868.2005.00532.x
– ident: ref50
  doi: 10.1017/9781108627771
– start-page: 48
  volume-title: Proc. Conf. Learn. Theory
  year: 2018
  ident: ref11
  article-title: Reducibility and computational lower bounds for problems with planted sparse structure
– ident: ref28
  doi: 10.3758/BF03197270
– ident: ref17
  doi: 10.2139/ssrn.563524
– ident: ref25
  doi: 10.1109/TNNLS.2019.2893190
– ident: ref51
  doi: 10.1109/tsp.2024.3421618
– ident: ref63
  doi: 10.1198/106186006X113430
– start-page: 648
  volume-title: Proc. Conf. Learn. Theory, PMLR
  year: 2020
  ident: ref10
  article-title: Reducibility and statistical-computational gaps from secret leakage
– year: 2019
  ident: ref35
  article-title: Convexification of permutation-invariant sets and applications
– start-page: 1728
  volume-title: Proc. Int. Conf. Mach. Learn., PMLR
  year: 2015
  ident: ref3
  article-title: Stay on path: PCA along graph paths
– ident: ref7
  doi: 10.1007/978-3-540-27868-9_73
– ident: ref22
  doi: 10.1109/TSP.2022.3169957
– ident: ref33
  doi: 10.1198/1061860032148
– ident: ref30
  doi: 10.1007/978-0-387-84858-7
– ident: ref41
  doi: 10.1016/b978-0-12-374370-1.x0001-8
– ident: ref29
  doi: 10.1186/gb-2000-1-2-research0003
– volume-title: Proc. Adv. Neural Inf. Process. Syst, 26
  year: 2013
  ident: ref48
  article-title: Fantope projection and selection: A near-optimal convex relaxation of sparse PCA
– ident: ref61
  doi: 10.1007/978-1-4614-0769-0_31
– start-page: 1278
  volume-title: Proc. Artif. Intell. Statist.
  year: 2012
  ident: ref47
  article-title: Minimax rates of estimation for sparse PCA in high dimensions
– year: 2019
  ident: ref4
  article-title: Computational hardness of certifying bounds on constrained pca problems
– year: 2020
  ident: ref56
  article-title: Non-sparse PCA in high dimensions via cone projected power iteration
– start-page: 469
  volume-title: Proc. Conf. Learn. Theory, PMLR
  year: 2019
  ident: ref9
  article-title: Optimal average-case reductions to sparse PCA: From weak assumptions to strong hardness
– ident: ref32
  doi: 10.1198/jasa.2009.0121
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2021
  ident: ref37
  article-title: Generative principal component analysis
– ident: ref39
  doi: 10.1214/13-AOS1097
– volume: 22
  start-page: 1
  issue: 46
  year: 2021
  ident: ref13
  article-title: Optimal structured principal subspace estimation: Metric entropy and minimax rates
  publication-title: J. Mach. Learn. Res.
– ident: ref55
  doi: 10.1214/aos/1017939142
– ident: ref16
  doi: 10.1287/ijoo.2019.0032
– ident: ref14
  doi: 10.1214/13-AOS1178
– year: 2020
  ident: ref36
  article-title: Exact and approximation algorithms for sparse PCA
– ident: ref52
  doi: 10.1214/15-AOS1369
– ident: ref8
  doi: 10.1214/12-AOS1014
– volume-title: Proc. Adv. Neural Inf. Process. Syst. 27
  year: 2014
  ident: ref19
  article-title: Cone-constrained principal component analysis
– ident: ref43
  doi: 10.1109/TIT.2015.2457942
– volume: 14
  start-page: 899
  issue: 28
  year: 2013
  ident: ref59
  article-title: Truncated power method for sparse eigenvalue problems
  publication-title: J. Mach. Learn. Res.
– ident: ref44
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 11
  issue: 2
  year: 2010
  ident: ref34
  article-title: Generalized power method for sparse principal component analysis
  publication-title: J. Mach. Learn. Res.
– year: 2021
  ident: ref53
  article-title: A manifold proximal linear method for sparse spectral clustering with application to single-cell RNA sequencing data analysis
  publication-title: INFORMS J. Optim.
– ident: ref46
  doi: 10.1109/18.335943
– ident: ref57
  doi: 10.1007/978-1-4612-1880-7_29
– volume-title: Proc. Adv. Neural Inf. Process. Syst. 28
  year: 2015
  ident: ref38
  article-title: Sum-of-squares lower bounds for sparse PCA
SSID ssj0014496
Score 2.4459763
Snippet We study a principal component analysis problem under the spiked Wishart model in which the structure in the signal is captured by a class of union-of-subspace...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 3187
SubjectTerms Algorithms
computational hardness
Computational modeling
Estimation
Indexes
Iterative methods
nonconvex iterative optimization
Principal component analysis
Principal components analysis
Signal processing algorithms
structured sparsity
Vectors
Title Do Algorithms and Barriers for Sparse Principal Component Analysis Extend to Other Structured Settings?
URI https://ieeexplore.ieee.org/document/10582906
https://www.proquest.com/docview/3084068927
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLaACQbOIsolDywMKSE-MyGOVggJqNRW6hbF8SsgIEFtuvDreXYSxCEktgy2Y_n5eN87vkfIEcSOsuCUBywGBChKTwKTShlMVIqPV2wmwFzu8O2dvB7xm7EY18nqPhcGAHzwGXTcp_fl2yKbO1MZnnDh_H5ykSwqLatkrU-XAee-GBe2YYHQatz4JMP4ZDjoIxKMeIfxyBHEf3uDfFGVXzexf156a-SumVgVVfLcmZemk73_4Gz898zXyWqtaNLzamdskAXIN8nKF_rBLfJwVdDzl4di-lQ-vs5omlt6kU5dCbsZRV2WDt4Q9QLtV_Z4HMxdHkWOf6INlwnteiM6LQt671RJOvB8tPMpWDoAH1M9O2uRUa87vLwO6sILQRZxUQZW47FngmWpMFJJiRiKy9BkoIQQTCkIjQs-TbWMlUiVNtyVfgSugKO2yS3bJks5TmeHUB1Zm2GPyGrNs4xhFwEh0wj9DNhQtclxI4rkreLXSDwuCeMExZY4sSW12Nqk5Vb2S7tqUdtkvxFeUp_AWcJChK5Sx5Ha_aPbHll2o1f2lH2yhOsDB6hhlObQ76wPYs7Luw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5ROLQ9FEpBpE1hD71wcGq8T5-qlILCK0VKkHKzvN4JINoYJc6lv76za7vioUrcfNj1rnb2Md88vgH4gqmnLDgQEU-RAIo208jmSkVTndPjldopcp87fDFUgytxOpGTJlk95MIgYgg-w57_DL58VxZLbyqjEy6930-9gjUphJB1utY_p4EQoRwXteKRNHrSeiXj9Ot4dElYMBE9LhJPEf_oFQplVZ7dxeGBOV6HYTu1Oq7krresbK_484S18cVz34B3jarJ-vXeeA8rONuEtw8ICD_A9Y-S9X9dl_Pb6ub3guUzx77nc1_EbsFIm2Wje8K9yC5rizz9zF8f5YxGYi2bCTsKZnRWleynVybZKDDSLufo2AhDVPXi2xZcHR-NDwdRU3ohKhIhq8gZOvhc8iKXVmmlCEUJFdsCtZSSa42x9eGnuVGplrk2Vvjijyg0CtI3hePbsDqj6ewAM4lzBfVInDGiKDh1kRhzQ-DPoot1B_ZbUWT3NcNGFpBJnGYktsyLLWvE1oEtv7IP2tWL2oFuK7ysOYOLjMcEXpVJE_3xP9324PVgfHGenZ8Mzz7BGz9SbV3pwiqtFX4mfaOyu2GX_QU67s8I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Do+Algorithms+and+Barriers+for+Sparse+Principal+Component+Analysis+Extend+to+Other+Structured+Settings%3F&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Wang%2C+Guanyi&rft.au=Lou%2C+Mengqi&rft.au=Pananjady%2C+Ashwin&rft.date=2024&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=72&rft.spage=3187&rft.epage=3200&rft_id=info:doi/10.1109%2FTSP.2024.3421618&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2024_3421618
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon