Cooperative Sensing in Uplink ISAC System: A Multi-User Waveform Optimization Approach
Integrated sensing and communication (ISAC) is expected to become a crucial component of the sixth-generation (6G) networks owing to its outstanding spectrum management capability. However, improving the cooperative sensing capabilities of multiple ISAC user equipments (ISAC-UEs) in complex interfer...
        Saved in:
      
    
          | Published in | IEEE transactions on vehicular technology Vol. 74; no. 7; pp. 10943 - 10957 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.07.2025
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0018-9545 1939-9359  | 
| DOI | 10.1109/TVT.2025.3548138 | 
Cover
| Abstract | Integrated sensing and communication (ISAC) is expected to become a crucial component of the sixth-generation (6G) networks owing to its outstanding spectrum management capability. However, improving the cooperative sensing capabilities of multiple ISAC user equipments (ISAC-UEs) in complex interference environment presents a significant research challenge. This paper focuses on the multi-user cooperative sensing in uplink orthogonal frequency division multiplexing (OFDM) ISAC system. By utilizing the stochastic geometry, we model the distribution of communication UEs (COM-UEs) as a one-dimensional Matern hard-core point process (1-D MHCP), and derive a closed-form expression for interference power. To further enhance cooperative sensing accuracy while maintaining quality of service (QoS) in communication, we perform waveform optimization by jointly optimizing the weighted range-velocity Cramer-Rao lower bound (CRLB) subject to communication data rate (CDR) and subcarrier power ratio (SPR) constraints. This approach involves selecting the optimal subcarriers for sensing and allocating the corresponding power on each subcarrier for communication and sensing subsystems. By employing the convex relaxation and the cyclic minimization algorithm (CMA), we decompose the complex optimization problem into three sub-problems, simplifying the original NP-hard problem into a solvable one via a cyclic optimization framework. The simulation results validate the effectiveness of our optimization strategy, and evaluate the influence of CDR and SPR constraints using the CRLB and root mean square error (RMSE). | 
    
|---|---|
| AbstractList | Integrated sensing and communication (ISAC) is expected to become a crucial component of the sixth-generation (6G) networks owing to its outstanding spectrum management capability. However, improving the cooperative sensing capabilities of multiple ISAC user equipments (ISAC-UEs) in complex interference environment presents a significant research challenge. This paper focuses on the multi-user cooperative sensing in uplink orthogonal frequency division multiplexing (OFDM) ISAC system. By utilizing the stochastic geometry, we model the distribution of communication UEs (COM-UEs) as a one-dimensional Matern hard-core point process (1-D MHCP), and derive a closed-form expression for interference power. To further enhance cooperative sensing accuracy while maintaining quality of service (QoS) in communication, we perform waveform optimization by jointly optimizing the weighted range-velocity Cramer-Rao lower bound (CRLB) subject to communication data rate (CDR) and subcarrier power ratio (SPR) constraints. This approach involves selecting the optimal subcarriers for sensing and allocating the corresponding power on each subcarrier for communication and sensing subsystems. By employing the convex relaxation and the cyclic minimization algorithm (CMA), we decompose the complex optimization problem into three sub-problems, simplifying the original NP-hard problem into a solvable one via a cyclic optimization framework. The simulation results validate the effectiveness of our optimization strategy, and evaluate the influence of CDR and SPR constraints using the CRLB and root mean square error (RMSE). | 
    
| Author | Wang, Yi Wei, Zhiqing Feng, Zhiyong Li, Yiheng Liu, Haoming  | 
    
| Author_xml | – sequence: 1 givenname: Yiheng orcidid: 0000-0001-5868-2276 surname: Li fullname: Li, Yiheng email: liyiheng@bupt.edu.cn organization: Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 2 givenname: Zhiqing orcidid: 0000-0001-7940-2739 surname: Wei fullname: Wei, Zhiqing email: weizhiqing@bupt.edu.cn organization: Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 3 givenname: Yi orcidid: 0000-0002-4654-1668 surname: Wang fullname: Wang, Yi email: wangyi@csj.uestc.edu.cn organization: Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China – sequence: 4 givenname: Haoming orcidid: 0009-0004-9434-1478 surname: Liu fullname: Liu, Haoming email: haomingliu@cuhk.edu.hk organization: Department of Systems Engineering and Engineering Management, the Chinese University of Hong Kong, Hong Kong – sequence: 5 givenname: Zhiyong orcidid: 0000-0001-5322-222X surname: Feng fullname: Feng, Zhiyong email: fengzy@bupt.edu.cn organization: Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China  | 
    
| BookMark | eNpNkDtPwzAUhS1UJNrCzsBgiTnFjziJ2aKIR6WiDn0wWm5ig0tjBzutVH49Ru3AdHWk87j6RmBgnVUA3GI0wRjxh-V6OSGIsAllaYFpcQGGmFOecMr4AAwRwkXCWcquwCiEbZRpyvEQrCvnOuVlbw4KLpQNxn5AY-Gq2xn7BaeLsoKLY-hV-whL-Lbf9SZZBeXhuzwo7XwL511vWvMTG5yFZdd5J-vPa3Cp5S6om_Mdg9Xz07J6TWbzl2lVzpKapKxP6gLFT7DGukaoIBvMecNJk2e54lrlNCO65lRzJFlGKJZpTjdyk1HesFo3DadjcH_qjbPfexV6sXV7b-OkoCTNKEEFy6ILnVy1dyF4pUXnTSv9UWAk_uiJSE_80RNnejFyd4oYpdQ_O8ckLxD9BYKvbFc | 
    
| CODEN | ITVTAB | 
    
| Cites_doi | 10.1109/TAES.2023.3267336 10.1109/TAES.2018.2818579 10.1109/TAES.2019.2908739 10.1109/TWC.2019.2936021 10.1109/TCOMM.2021.3126741 10.1109/TSP.2015.2488584 10.1109/TSP.2023.3302622 10.1109/TVT.2020.2968929 10.1109/TSP.2023.3244326 10.1109/TSP.2014.2315169 10.1109/TAES.2017.2775898 10.1109/GLOBECOM48099.2022.10001144 10.1109/TWC.2015.2501817 10.1109/SPAWC.2016.7536783 10.1109/TEMC.2006.890223 10.1109/LCOMM.2022.3216865 10.1109/TCOMM.2020.3044616 10.1109/JIOT.2023.3244566 10.1109/MWC.001.2000220 10.1109/TVT.2022.3222448 10.1109/JSYST.2020.2984637 10.1109/JIOT.2023.3328313 10.1109/TWC.2021.3091806 10.1109/MVT.2020.3037430 10.1109/TWC.2024.3353336 10.1109/TVT.2020.3002899 10.1109/LCOMM.2022.3178193 10.1109/JSEN.2023.3330936 10.1109/TVT.2020.3042466 10.1109/TITS.2016.2632309 10.1109/JIOT.2023.3303137 10.1109/SPAWC60668.2024.10694260 10.1109/radarconf2043947.2020.9266343 10.1109/TSP.2015.2510978 10.1109/TSP.2015.2505681 10.1109/TSP.2021.3057499 10.1109/TGRS.2017.2680321 10.1109/TWC.2023.3244195 10.1109/JIOT.2023.3235618 10.1109/TSP.2023.3278858 10.1109/LWC.2023.3303949 10.1109/JSYST.2020.2986020 10.1109/JIOT.2024.3406930 10.1109/TWC.2022.3219463 10.1109/TVT.2023.3294502 10.1109/LCOMM.2018.2869742 10.3390/s21123962 10.1109/TWC.2018.2832134 10.1109/COMST.2022.3149272  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M  | 
    
| DOI | 10.1109/TVT.2025.3548138 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Civil Engineering Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1939-9359 | 
    
| EndPage | 10957 | 
    
| ExternalDocumentID | 10_1109_TVT_2025_3548138 10912780  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2020YFA0711302 – fundername: Fundamental Research Funds for the Central Universities grantid: 2024ZCJH01 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 62321001; 92267202 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SP 8FD FR3 KR7 L7M  | 
    
| ID | FETCH-LOGICAL-c245t-c800011f1fc0082b199d92d767e9fe7362fc93f90a56231a473bab639d5cfdd93 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0018-9545 | 
    
| IngestDate | Sun Oct 19 00:17:13 EDT 2025 Wed Oct 01 05:50:39 EDT 2025 Wed Aug 27 02:13:29 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c245t-c800011f1fc0082b199d92d767e9fe7362fc93f90a56231a473bab639d5cfdd93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0009-0004-9434-1478 0000-0001-7940-2739 0000-0001-5868-2276 0000-0002-4654-1668 0000-0001-5322-222X  | 
    
| PQID | 3246320856 | 
    
| PQPubID | 85454 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | ieee_primary_10912780 proquest_journals_3246320856 crossref_primary_10_1109_TVT_2025_3548138  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-07-01 | 
    
| PublicationDateYYYYMMDD | 2025-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on vehicular technology | 
    
| PublicationTitleAbbrev | TVT | 
    
| PublicationYear | 2025 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 Chen (ref44) 2023 ref27 ref29  | 
    
| References_xml | – ident: ref46 doi: 10.1109/TAES.2023.3267336 – ident: ref45 doi: 10.1109/TAES.2018.2818579 – ident: ref34 doi: 10.1109/TAES.2019.2908739 – ident: ref27 doi: 10.1109/TWC.2019.2936021 – ident: ref6 doi: 10.1109/TCOMM.2021.3126741 – ident: ref33 doi: 10.1109/TSP.2015.2488584 – ident: ref50 doi: 10.1109/TSP.2023.3302622 – ident: ref23 doi: 10.1109/TVT.2020.2968929 – ident: ref48 doi: 10.1109/TSP.2023.3244326 – ident: ref26 doi: 10.1109/TSP.2014.2315169 – ident: ref35 doi: 10.1109/TAES.2017.2775898 – ident: ref37 doi: 10.1109/GLOBECOM48099.2022.10001144 – ident: ref25 doi: 10.1109/TWC.2015.2501817 – ident: ref20 doi: 10.1109/SPAWC.2016.7536783 – ident: ref24 doi: 10.1109/TEMC.2006.890223 – ident: ref49 doi: 10.1109/LCOMM.2022.3216865 – ident: ref18 doi: 10.1109/TCOMM.2020.3044616 – ident: ref31 doi: 10.1109/JIOT.2023.3244566 – ident: ref19 doi: 10.1109/MWC.001.2000220 – ident: ref30 doi: 10.1109/TVT.2022.3222448 – ident: ref14 doi: 10.1109/JSYST.2020.2984637 – ident: ref12 doi: 10.1109/JIOT.2023.3328313 – ident: ref16 doi: 10.1109/TWC.2021.3091806 – ident: ref3 doi: 10.1109/MVT.2020.3037430 – ident: ref13 doi: 10.1109/TWC.2024.3353336 – ident: ref17 doi: 10.1109/TVT.2020.3002899 – year: 2023 ident: ref44 article-title: Sensing performance of cooperative joint sensing-communication UAV network – ident: ref5 doi: 10.1109/LCOMM.2022.3178193 – ident: ref4 doi: 10.1109/JSEN.2023.3330936 – ident: ref11 doi: 10.1109/TVT.2020.3042466 – ident: ref21 doi: 10.1109/TITS.2016.2632309 – ident: ref47 doi: 10.1109/JIOT.2023.3303137 – ident: ref10 doi: 10.1109/SPAWC60668.2024.10694260 – ident: ref29 doi: 10.1109/radarconf2043947.2020.9266343 – ident: ref41 doi: 10.1109/TSP.2015.2510978 – ident: ref40 doi: 10.1109/TSP.2015.2505681 – ident: ref7 doi: 10.1109/TSP.2021.3057499 – ident: ref36 doi: 10.1109/TGRS.2017.2680321 – ident: ref39 doi: 10.1109/TWC.2023.3244195 – ident: ref2 doi: 10.1109/JIOT.2023.3235618 – ident: ref43 doi: 10.1109/TSP.2023.3278858 – ident: ref28 doi: 10.1109/LWC.2023.3303949 – ident: ref42 doi: 10.1109/JSYST.2020.2986020 – ident: ref9 doi: 10.1109/JIOT.2024.3406930 – ident: ref15 doi: 10.1109/TWC.2022.3219463 – ident: ref38 doi: 10.1109/TVT.2023.3294502 – ident: ref22 doi: 10.1109/LCOMM.2018.2869742 – ident: ref32 doi: 10.3390/s21123962 – ident: ref8 doi: 10.1109/TWC.2018.2832134 – ident: ref1 doi: 10.1109/COMST.2022.3149272  | 
    
| SSID | ssj0014491 | 
    
| Score | 2.4731112 | 
    
| Snippet | Integrated sensing and communication (ISAC) is expected to become a crucial component of the sixth-generation (6G) networks owing to its outstanding spectrum... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 10943 | 
    
| SubjectTerms | Accuracy Communication Constraints cooperative sensing Cramer-Rao lower bound Downlink Hardware Integrated sensing and communication Interference Lower bounds multi-target detection OFDM Optimization Orthogonal Frequency Division Multiplexing resource allocation Resource management Root-mean-square errors Sensors Subcarriers Subsystems Uplink Uplinking Waveforms  | 
    
| Title | Cooperative Sensing in Uplink ISAC System: A Multi-User Waveform Optimization Approach | 
    
| URI | https://ieeexplore.ieee.org/document/10912780 https://www.proquest.com/docview/3246320856  | 
    
| Volume | 74 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWgEwx8FlEoyAMLQ9J8OHHMFlVUBYkytCndIie2EapIKkgZ-PWcnQRVICS2KIoty3e2n3P33iF0FXIacRKFFqdMWkQpaQGO4xa8ZQxaMMdI5j9MwnFC7hfBoiGrGy6MlNIkn0lbP5pYvijztf5VNtAilh6N4Ia-TaOwJmt9hwwIacrjubCCARe0MUmHDWbzGdwEvcD2AZ-7moqycQaZoiq_dmJzvIz20aQdWJ1VsrTXVWbnnz80G_898gO01wBNHNeecYi2ZHGEdjfkB4_RfFiWK1lLf-OpzmQvnvFLgRPN0l3iu2k8xLWi-Q2OsaHqWgm4LH7iH1KDXfwIG85rw-TEcSNP3kXJ6HY2HFtNnQUr90hQWXlkkKFyVa4RQeYyJpgnaEglU5LCEady5ivmcA2WXE6on_EMoI0IciUE809QpygLeYowp4HQFMQMHIA4SmU8jAR3CKcC-sq9HrpuZz5d1XIaqbmGOCwFK6XaSmljpR7q6onc-K6ewx7qt7ZKmwX3ngIuDH1dbzQ8-6PZOdrRvdeptn3Uqd7W8gIARZVdGkf6AnEJxxE | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELUQDMDAZxGFAh5YGNLmw4ljtqqiaqEtQ9PSLXJiG6GKtIKUgV_P2UlQBUJii6I4se7O9nN87x1C1wGnISdhYHHKpEWUkhbgOG7BXcagBbONZP5wFPQm5H7mz0qyuuHCSClN8pls6ktzli8W6Ur_KmtpEUuXhrBD3_IJIX5B1_o-NCCkLJDnwBgGZFCdStqsFU0j2Au6ftMDhO5oMsraKmTKqvyai80C091Ho6prRV7JvLnKk2b6-UO18d99P0B7JdTE7SI2DtGGzI7Q7poA4TGadhaLpSzEv_FY57Jnz_glwxPN053j_rjdwYWm-S1uY0PWtSYQtPiJf0gNd_EjTDmvJZcTt0uB8hqadO-iTs8qKy1YqUv83EpDgw2Vo1KNCRKHMcFcQQMqmZIUFjmVMk8xm2u45HBCvYQnAG6EnyohmHeCNrNFJk8R5tQXmoSYQAgQW6mEB6HgNuFUwLtSt45uKsvHy0JQIzYbEZvF4KVYeykuvVRHNW3ItecKG9ZRo_JVXA659xiQYeDpiqPB2R_NrtB2LxoO4kF_9HCOdvSXisTbBtrM31byAuBFnlyaoPoCCtTKXg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperative+Sensing+in+Uplink+ISAC+System%3A+A+Multi-User+Waveform+Optimization+Approach&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Li%2C+Yiheng&rft.au=Wei%2C+Zhiqing&rft.au=Wang%2C+Yi&rft.au=Liu%2C+Haoming&rft.date=2025-07-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=74&rft.issue=7&rft.spage=10943&rft.epage=10957&rft_id=info:doi/10.1109%2FTVT.2025.3548138&rft.externalDocID=10912780 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |