Surface-Consistent Residual Statics, Phase, and Amplitude Corrections: A Statistical Way

A physical system produces output due to impulse, which corresponds to a convolution process. Convolution has a very wide tolerance, therefore deconvolution is widespread. When seismic waves propagate in the underground medium, the stable wavelet is affected by several factors: complex factors at so...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 8
Main Authors Lei, Ting, Wang, Huazhong, Feng, Bo
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2022.3166842

Cover

Abstract A physical system produces output due to impulse, which corresponds to a convolution process. Convolution has a very wide tolerance, therefore deconvolution is widespread. When seismic waves propagate in the underground medium, the stable wavelet is affected by several factors: complex factors at source, propagation factors from the source to reflection interface, the reflection interface, propagation factors from the reflection interface to receiver, and complex factors at the receiver. The purpose of surface-consistent correction is to eliminate the influence of complex factors at source and receiver on residual statics, phase, and amplitude of wavelets from the same stable reflector, which is typical deconvolution. Surface-consistent deconvolution can be referred to as a Bayesian estimation problem. However, it requires a great deal of computation for seismic data, and the statistical method should be more efficient. Based on statistics and physical understanding, maximizing the common midpoint (CMP) stack has been proven to eliminate residual statics and phase changes; particle swarm optimization (PSO) algorithm is used to explore the nonconvex parameter space. Then, under the physical assumption that the energy of wavelets from the same reflection interface changes steadily, the prediction-energy-change equation is introduced; the spatial mutations of amplitudes are corrected by solving a nonlinear equation system. Numerical experiments show that the statistical way is effective.
AbstractList A physical system produces output due to impulse, which corresponds to a convolution process. Convolution has a very wide tolerance, therefore deconvolution is widespread. When seismic waves propagate in the underground medium, the stable wavelet is affected by several factors: complex factors at source, propagation factors from the source to reflection interface, the reflection interface, propagation factors from the reflection interface to receiver, and complex factors at the receiver. The purpose of surface-consistent correction is to eliminate the influence of complex factors at source and receiver on residual statics, phase, and amplitude of wavelets from the same stable reflector, which is typical deconvolution. Surface-consistent deconvolution can be referred to as a Bayesian estimation problem. However, it requires a great deal of computation for seismic data, and the statistical method should be more efficient. Based on statistics and physical understanding, maximizing the common midpoint (CMP) stack has been proven to eliminate residual statics and phase changes; particle swarm optimization (PSO) algorithm is used to explore the nonconvex parameter space. Then, under the physical assumption that the energy of wavelets from the same reflection interface changes steadily, the prediction-energy-change equation is introduced; the spatial mutations of amplitudes are corrected by solving a nonlinear equation system. Numerical experiments show that the statistical way is effective.
Author Feng, Bo
Wang, Huazhong
Lei, Ting
Author_xml – sequence: 1
  givenname: Ting
  orcidid: 0000-0002-8709-0752
  surname: Lei
  fullname: Lei, Ting
  email: 121600571@qq.com
  organization: School of Ocean and Earth Science, Tongji University, Shanghai, China
– sequence: 2
  givenname: Huazhong
  surname: Wang
  fullname: Wang, Huazhong
  email: herbhuak@vip.163.com
  organization: School of Ocean and Earth Science, Tongji University, Shanghai, China
– sequence: 3
  givenname: Bo
  orcidid: 0000-0002-4033-1635
  surname: Feng
  fullname: Feng, Bo
  email: ancd111@163.com
  organization: School of Ocean and Earth Science, Tongji University, Shanghai, China
BookMark eNo9kMFLwzAUh4NMcE7_APFS8LrOlzRpGm9j6BQGyjbRW8iaV-zY2pmkh_33ZnR4epfv-z34rsmgaRsk5I7ChFJQj-v5cjVhwNgko3lecHZBhlSIIoWc8wEZAlV5ygrFrsi191sAygWVQ_K96lxlSkxnbeNrH7AJyRJ9bTuzS1bBhLr04-Tjx3gcJ6axyXR_2NWhs5jMWuewDHUUn5JpD_vIR_HLHG_IZWV2Hm_Pd0Q-X57Xs9d08T5_m00Xacm4CKkpLGxKkEwZWaKtMqnASiNzYIVkGTLLC7oBlGA5KioVF0bQioItzcYIm43IQ797cO1vhz7obdu5Jr7ULI8BhJDAI0V7qnSt9w4rfXD13rijpqBPAfUpoD4F1OeA0bnvnRoR_3kl42hBsz9Nq23X
CODEN IGRSD2
Cites_doi 10.1109/TGRS.2012.2189777
10.1016/b978-0-12-420023-4.00011-3
10.1137/1.9780898717921.ch1
10.1109/TGRS.2020.2997977
10.1190/1.1441896
10.1109/TGRS.2021.3076991
10.1190/1.1440441
10.1109/ICNN.1995.488968
10.1190/1.1441133
10.1109/TGRS.2015.2513417
10.1190/1.9781560801580.ch3
10.1111/j.1365-246X.2006.02908.x
10.1007/978-3-540-49809-4_7
10.1190/1.1816488
10.1109/ICEC.1998.699146
10.1190/1.9781560801610.ch10
10.1109/TGRS.2010.2050327
10.1190/1.1443421
10.1190/tle39060382.1
10.1190/1.1443296
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2022.3166842
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore (IEEE/IET Electronic Library - IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Physics
EISSN 1558-0644
EndPage 8
ExternalDocumentID 10_1109_TGRS_2022_3166842
9755881
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018YFA0702503
  funderid: 10.13039/501100012166
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 42074143; 42174135
  funderid: 10.13039/501100001809
– fundername: Shanghai Pujiang Program
  grantid: 20PJ1413500
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c245t-a8d0bc0729a7cedf3790d7a76028723e2d481b0e70d4e917945a51f10dcaba5d3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Tue Aug 26 14:40:35 EDT 2025
Wed Oct 01 02:20:15 EDT 2025
Wed Aug 27 02:40:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-a8d0bc0729a7cedf3790d7a76028723e2d481b0e70d4e917945a51f10dcaba5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8709-0752
0000-0002-4033-1635
PQID 2655855704
PQPubID 85465
PageCount 8
ParticipantIDs ieee_primary_9755881
crossref_primary_10_1109_TGRS_2022_3166842
proquest_journals_2655855704
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref24
ref12
ref23
ref15
ref14
ref20
ref11
ref10
Roberto (ref19) 2018
ref2
Cressie (ref22) 2015
ref1
ref17
ref16
ref18
ref7
ref9
ref4
ref3
Goodfellow (ref21); 2016
ref5
Zhang (ref8) 2015
Robinson (ref6) 2008
References_xml – ident: ref1
  doi: 10.1109/TGRS.2012.2189777
– ident: ref17
  doi: 10.1016/b978-0-12-420023-4.00011-3
– ident: ref5
  doi: 10.1137/1.9780898717921.ch1
– ident: ref2
  doi: 10.1109/TGRS.2020.2997977
– ident: ref18
  doi: 10.1190/1.1441896
– ident: ref3
  doi: 10.1109/TGRS.2021.3076991
– ident: ref15
  doi: 10.1190/1.1440441
– ident: ref20
  doi: 10.1109/ICNN.1995.488968
– start-page: 29
  volume-title: Statistics for Spatial Data
  year: 2015
  ident: ref22
  article-title: Geostatistics
– ident: ref4
  doi: 10.1190/1.1441133
– ident: ref13
  doi: 10.1109/TGRS.2015.2513417
– ident: ref16
  doi: 10.1190/1.9781560801580.ch3
– ident: ref12
  doi: 10.1111/j.1365-246X.2006.02908.x
– volume: 2016
  start-page: 95
  volume-title: Deep Learning
  ident: ref21
  article-title: Machine learning basics
– ident: ref23
  doi: 10.1007/978-3-540-49809-4_7
– ident: ref11
  doi: 10.1190/1.1816488
– start-page: 163
  volume-title: Modern Signal Processing
  year: 2015
  ident: ref8
  article-title: Adaptive filter
– ident: ref24
  doi: 10.1109/ICEC.1998.699146
– start-page: 253
  volume-title: Digital Imaging and Deconvolution: The ABCs of Seismic Exploration and Processing
  year: 2008
  ident: ref6
  article-title: Deconvolution
  doi: 10.1190/1.9781560801610.ch10
– ident: ref7
  doi: 10.1109/TGRS.2010.2050327
– ident: ref10
  doi: 10.1190/1.1443421
– ident: ref14
  doi: 10.1190/tle39060382.1
– ident: ref9
  doi: 10.1190/1.1443296
– start-page: 222
  volume-title: The LION Way: Machine Learning Plus Intelligent Optimization
  year: 2018
  ident: ref19
  article-title: Collaborative feedback search optimization
SSID ssj0014517
Score 2.3759599
Snippet A physical system produces output due to impulse, which corresponds to a convolution process. Convolution has a very wide tolerance, therefore deconvolution is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Amplitude
Amplitudes
Bayesian analysis
Computation
Convolution
Corrections
Deconvolution
Maximum likelihood detection
Mutation
Nonlinear equations
Nonlinear filters
P-waves
Particle swarm optimization
phase
Phase changes
Probability theory
Receivers
Reflection
residual statics
Seismic data
Seismic waves
Statistical analysis
Statistical methods
Statistics
Surface waves
surface-consistent
Wave propagation
Title Surface-Consistent Residual Statics, Phase, and Amplitude Corrections: A Statistical Way
URI https://ieeexplore.ieee.org/document/9755881
https://www.proquest.com/docview/2655855704
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore (IEEE/IET Electronic Library - IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyQxEC5UEPTgrqPiuLNLDp5keuxH0un2NojusKCID5xbk0c1gtAjds9Bf72pdM_g67C3hk5CSFWSqlR9XwEcYsaVlIlyG6nMKMxoA62sCIyMuC2d95YIAidfXKaTO_5vKqYrMFxiYRDRJ5_hiD59LN_OzJyeyo5zKURGOOtVmaUtVmsZMeAi6qDRaeCciLiLYEZhfnz79_rGeYJx7BzUlOJOH-4gX1Tly0nsr5fzH3CxmFibVfI4mjd6ZF4_cTb-78x_wlZnZ7JxqxjbsIJVDzbfsQ_2YN1nf5q6BxtkcraMzTswvZk_l8pg4Gt5OiWoGnaNtQdtMd_Q1EN29eCuvyFTlWVjSkonikx2SqU-PFCiPmFjthzVdbxXL7twd352ezoJuvoLgYm5aAKV2VAbohZX0qAtE5mHViqZOptExgnGljujN0QZWo457WyhRFRGoTVKK2GTPVirZhXuAxNKYlZSUWArea6s1oJjJBNdxqh1mvXhaCGR4qml2Si8exLmBYmvIPEVnfj6sEMrvGzYLW4fBgsZFt1GrIs4df-IZowffN_rF2zQ2O2rygDWmuc5_nZ2RqP_eAV7A2Goz5c
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB6tQAg4tHRp1S0UfOip2ix52HHCbbUqXSiLKljUvUV-TFSpUkAke4Bfj8fJrvrg0Fuk2I7lGccznvm-AfiEGVdSJsptpDKjMKMNtLIiMDLitnTeWyIInDy7Sqe3_GIhFj0YrrEwiOiTz3BEjz6Wb-_Mkq7KTnIpREY4603BORctWmsdM-Ai6sDRaeDciLiLYUZhfjL_en3jfME4di5qSpGnP04hX1bln3-xP2DOXsNsNbU2r-TXaNnokXn6i7Xxf-e-B686S5ONW9V4Az2s-rD7G_9gH7Z8_qep-7BDRmfL2bwPi5vlQ6kMBr6ap1ODqmHXWHvYFvMNTT1k33-6A3DIVGXZmNLSiSSTTajYh4dK1KdszNajuo4_1ONbuD37Mp9Mg64CQ2BiLppAZTbUhsjFlTRoy0TmoZVKps4qkXGCseXO7A1RhpZjTntbKBGVUWiN0krY5B1sVHcVvgcmlMSspLLAVvJcWa0Fx0gmuoxR6zQbwOeVRIr7lmij8A5KmBckvoLEV3TiG8A-rfC6Ybe4AzhcybDotmJdxKl7R0Rj_MPLvY5hezqfXRaX51ffDmCHvtPesRzCRvOwxI_O6mj0kVe2Z2uz0uQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface-Consistent+Residual+Statics%2C+Phase%2C+and+Amplitude+Corrections%3A+A+Statistical+Way&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Lei%2C+Ting&rft.au=Wang%2C+Huazhong&rft.au=Feng%2C+Bo&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FTGRS.2022.3166842&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2022_3166842
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon