Surface-Consistent Residual Statics, Phase, and Amplitude Corrections: A Statistical Way
A physical system produces output due to impulse, which corresponds to a convolution process. Convolution has a very wide tolerance, therefore deconvolution is widespread. When seismic waves propagate in the underground medium, the stable wavelet is affected by several factors: complex factors at so...
Saved in:
| Published in | IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 8 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-2892 1558-0644 |
| DOI | 10.1109/TGRS.2022.3166842 |
Cover
| Abstract | A physical system produces output due to impulse, which corresponds to a convolution process. Convolution has a very wide tolerance, therefore deconvolution is widespread. When seismic waves propagate in the underground medium, the stable wavelet is affected by several factors: complex factors at source, propagation factors from the source to reflection interface, the reflection interface, propagation factors from the reflection interface to receiver, and complex factors at the receiver. The purpose of surface-consistent correction is to eliminate the influence of complex factors at source and receiver on residual statics, phase, and amplitude of wavelets from the same stable reflector, which is typical deconvolution. Surface-consistent deconvolution can be referred to as a Bayesian estimation problem. However, it requires a great deal of computation for seismic data, and the statistical method should be more efficient. Based on statistics and physical understanding, maximizing the common midpoint (CMP) stack has been proven to eliminate residual statics and phase changes; particle swarm optimization (PSO) algorithm is used to explore the nonconvex parameter space. Then, under the physical assumption that the energy of wavelets from the same reflection interface changes steadily, the prediction-energy-change equation is introduced; the spatial mutations of amplitudes are corrected by solving a nonlinear equation system. Numerical experiments show that the statistical way is effective. |
|---|---|
| AbstractList | A physical system produces output due to impulse, which corresponds to a convolution process. Convolution has a very wide tolerance, therefore deconvolution is widespread. When seismic waves propagate in the underground medium, the stable wavelet is affected by several factors: complex factors at source, propagation factors from the source to reflection interface, the reflection interface, propagation factors from the reflection interface to receiver, and complex factors at the receiver. The purpose of surface-consistent correction is to eliminate the influence of complex factors at source and receiver on residual statics, phase, and amplitude of wavelets from the same stable reflector, which is typical deconvolution. Surface-consistent deconvolution can be referred to as a Bayesian estimation problem. However, it requires a great deal of computation for seismic data, and the statistical method should be more efficient. Based on statistics and physical understanding, maximizing the common midpoint (CMP) stack has been proven to eliminate residual statics and phase changes; particle swarm optimization (PSO) algorithm is used to explore the nonconvex parameter space. Then, under the physical assumption that the energy of wavelets from the same reflection interface changes steadily, the prediction-energy-change equation is introduced; the spatial mutations of amplitudes are corrected by solving a nonlinear equation system. Numerical experiments show that the statistical way is effective. |
| Author | Feng, Bo Wang, Huazhong Lei, Ting |
| Author_xml | – sequence: 1 givenname: Ting orcidid: 0000-0002-8709-0752 surname: Lei fullname: Lei, Ting email: 121600571@qq.com organization: School of Ocean and Earth Science, Tongji University, Shanghai, China – sequence: 2 givenname: Huazhong surname: Wang fullname: Wang, Huazhong email: herbhuak@vip.163.com organization: School of Ocean and Earth Science, Tongji University, Shanghai, China – sequence: 3 givenname: Bo orcidid: 0000-0002-4033-1635 surname: Feng fullname: Feng, Bo email: ancd111@163.com organization: School of Ocean and Earth Science, Tongji University, Shanghai, China |
| BookMark | eNo9kMFLwzAUh4NMcE7_APFS8LrOlzRpGm9j6BQGyjbRW8iaV-zY2pmkh_33ZnR4epfv-z34rsmgaRsk5I7ChFJQj-v5cjVhwNgko3lecHZBhlSIIoWc8wEZAlV5ygrFrsi191sAygWVQ_K96lxlSkxnbeNrH7AJyRJ9bTuzS1bBhLr04-Tjx3gcJ6axyXR_2NWhs5jMWuewDHUUn5JpD_vIR_HLHG_IZWV2Hm_Pd0Q-X57Xs9d08T5_m00Xacm4CKkpLGxKkEwZWaKtMqnASiNzYIVkGTLLC7oBlGA5KioVF0bQioItzcYIm43IQ797cO1vhz7obdu5Jr7ULI8BhJDAI0V7qnSt9w4rfXD13rijpqBPAfUpoD4F1OeA0bnvnRoR_3kl42hBsz9Nq23X |
| CODEN | IGRSD2 |
| Cites_doi | 10.1109/TGRS.2012.2189777 10.1016/b978-0-12-420023-4.00011-3 10.1137/1.9780898717921.ch1 10.1109/TGRS.2020.2997977 10.1190/1.1441896 10.1109/TGRS.2021.3076991 10.1190/1.1440441 10.1109/ICNN.1995.488968 10.1190/1.1441133 10.1109/TGRS.2015.2513417 10.1190/1.9781560801580.ch3 10.1111/j.1365-246X.2006.02908.x 10.1007/978-3-540-49809-4_7 10.1190/1.1816488 10.1109/ICEC.1998.699146 10.1190/1.9781560801610.ch10 10.1109/TGRS.2010.2050327 10.1190/1.1443421 10.1190/tle39060382.1 10.1190/1.1443296 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2022.3166842 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore (IEEE/IET Electronic Library - IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Physics |
| EISSN | 1558-0644 |
| EndPage | 8 |
| ExternalDocumentID | 10_1109_TGRS_2022_3166842 9755881 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2018YFA0702503 funderid: 10.13039/501100012166 – fundername: Fundamental Research Funds for the Central Universities funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 42074143; 42174135 funderid: 10.13039/501100001809 – fundername: Shanghai Pujiang Program grantid: 20PJ1413500 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c245t-a8d0bc0729a7cedf3790d7a76028723e2d481b0e70d4e917945a51f10dcaba5d3 |
| IEDL.DBID | RIE |
| ISSN | 0196-2892 |
| IngestDate | Tue Aug 26 14:40:35 EDT 2025 Wed Oct 01 02:20:15 EDT 2025 Wed Aug 27 02:40:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c245t-a8d0bc0729a7cedf3790d7a76028723e2d481b0e70d4e917945a51f10dcaba5d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8709-0752 0000-0002-4033-1635 |
| PQID | 2655855704 |
| PQPubID | 85465 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_9755881 crossref_primary_10_1109_TGRS_2022_3166842 proquest_journals_2655855704 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref24 ref12 ref23 ref15 ref14 ref20 ref11 ref10 Roberto (ref19) 2018 ref2 Cressie (ref22) 2015 ref1 ref17 ref16 ref18 ref7 ref9 ref4 ref3 Goodfellow (ref21); 2016 ref5 Zhang (ref8) 2015 Robinson (ref6) 2008 |
| References_xml | – ident: ref1 doi: 10.1109/TGRS.2012.2189777 – ident: ref17 doi: 10.1016/b978-0-12-420023-4.00011-3 – ident: ref5 doi: 10.1137/1.9780898717921.ch1 – ident: ref2 doi: 10.1109/TGRS.2020.2997977 – ident: ref18 doi: 10.1190/1.1441896 – ident: ref3 doi: 10.1109/TGRS.2021.3076991 – ident: ref15 doi: 10.1190/1.1440441 – ident: ref20 doi: 10.1109/ICNN.1995.488968 – start-page: 29 volume-title: Statistics for Spatial Data year: 2015 ident: ref22 article-title: Geostatistics – ident: ref4 doi: 10.1190/1.1441133 – ident: ref13 doi: 10.1109/TGRS.2015.2513417 – ident: ref16 doi: 10.1190/1.9781560801580.ch3 – ident: ref12 doi: 10.1111/j.1365-246X.2006.02908.x – volume: 2016 start-page: 95 volume-title: Deep Learning ident: ref21 article-title: Machine learning basics – ident: ref23 doi: 10.1007/978-3-540-49809-4_7 – ident: ref11 doi: 10.1190/1.1816488 – start-page: 163 volume-title: Modern Signal Processing year: 2015 ident: ref8 article-title: Adaptive filter – ident: ref24 doi: 10.1109/ICEC.1998.699146 – start-page: 253 volume-title: Digital Imaging and Deconvolution: The ABCs of Seismic Exploration and Processing year: 2008 ident: ref6 article-title: Deconvolution doi: 10.1190/1.9781560801610.ch10 – ident: ref7 doi: 10.1109/TGRS.2010.2050327 – ident: ref10 doi: 10.1190/1.1443421 – ident: ref14 doi: 10.1190/tle39060382.1 – ident: ref9 doi: 10.1190/1.1443296 – start-page: 222 volume-title: The LION Way: Machine Learning Plus Intelligent Optimization year: 2018 ident: ref19 article-title: Collaborative feedback search optimization |
| SSID | ssj0014517 |
| Score | 2.3759599 |
| Snippet | A physical system produces output due to impulse, which corresponds to a convolution process. Convolution has a very wide tolerance, therefore deconvolution is... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Amplitude Amplitudes Bayesian analysis Computation Convolution Corrections Deconvolution Maximum likelihood detection Mutation Nonlinear equations Nonlinear filters P-waves Particle swarm optimization phase Phase changes Probability theory Receivers Reflection residual statics Seismic data Seismic waves Statistical analysis Statistical methods Statistics Surface waves surface-consistent Wave propagation |
| Title | Surface-Consistent Residual Statics, Phase, and Amplitude Corrections: A Statistical Way |
| URI | https://ieeexplore.ieee.org/document/9755881 https://www.proquest.com/docview/2655855704 |
| Volume | 60 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore (IEEE/IET Electronic Library - IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyQxEC5UEPTgrqPiuLNLDp5keuxH0un2NojusKCID5xbk0c1gtAjds9Bf72pdM_g67C3hk5CSFWSqlR9XwEcYsaVlIlyG6nMKMxoA62sCIyMuC2d95YIAidfXKaTO_5vKqYrMFxiYRDRJ5_hiD59LN_OzJyeyo5zKURGOOtVmaUtVmsZMeAi6qDRaeCciLiLYEZhfnz79_rGeYJx7BzUlOJOH-4gX1Tly0nsr5fzH3CxmFibVfI4mjd6ZF4_cTb-78x_wlZnZ7JxqxjbsIJVDzbfsQ_2YN1nf5q6BxtkcraMzTswvZk_l8pg4Gt5OiWoGnaNtQdtMd_Q1EN29eCuvyFTlWVjSkonikx2SqU-PFCiPmFjthzVdbxXL7twd352ezoJuvoLgYm5aAKV2VAbohZX0qAtE5mHViqZOptExgnGljujN0QZWo457WyhRFRGoTVKK2GTPVirZhXuAxNKYlZSUWArea6s1oJjJBNdxqh1mvXhaCGR4qml2Si8exLmBYmvIPEVnfj6sEMrvGzYLW4fBgsZFt1GrIs4df-IZowffN_rF2zQ2O2rygDWmuc5_nZ2RqP_eAV7A2Goz5c |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB6tQAg4tHRp1S0UfOip2ix52HHCbbUqXSiLKljUvUV-TFSpUkAke4Bfj8fJrvrg0Fuk2I7lGccznvm-AfiEGVdSJsptpDKjMKMNtLIiMDLitnTeWyIInDy7Sqe3_GIhFj0YrrEwiOiTz3BEjz6Wb-_Mkq7KTnIpREY4603BORctWmsdM-Ai6sDRaeDciLiLYUZhfjL_en3jfME4di5qSpGnP04hX1bln3-xP2DOXsNsNbU2r-TXaNnokXn6i7Xxf-e-B686S5ONW9V4Az2s-rD7G_9gH7Z8_qep-7BDRmfL2bwPi5vlQ6kMBr6ap1ODqmHXWHvYFvMNTT1k33-6A3DIVGXZmNLSiSSTTajYh4dK1KdszNajuo4_1ONbuD37Mp9Mg64CQ2BiLppAZTbUhsjFlTRoy0TmoZVKps4qkXGCseXO7A1RhpZjTntbKBGVUWiN0krY5B1sVHcVvgcmlMSspLLAVvJcWa0Fx0gmuoxR6zQbwOeVRIr7lmij8A5KmBckvoLEV3TiG8A-rfC6Ybe4AzhcybDotmJdxKl7R0Rj_MPLvY5hezqfXRaX51ffDmCHvtPesRzCRvOwxI_O6mj0kVe2Z2uz0uQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface-Consistent+Residual+Statics%2C+Phase%2C+and+Amplitude+Corrections%3A+A+Statistical+Way&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Lei%2C+Ting&rft.au=Wang%2C+Huazhong&rft.au=Feng%2C+Bo&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FTGRS.2022.3166842&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2022_3166842 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |